浅谈形状记忆合金材料
- 格式:docx
- 大小:30.19 KB
- 文档页数:13
成绩____浅谈形状记忆合金材料化学专业 2013级蒋文娟指导教师肖凤摘要:形状记忆合金又叫记忆金属,是一种在加热升温后能完全消除其在较低的温度下发生的形变,恢复其形变原始形狀的合金材料。
这种合金在高温(奥氏体状态)下发生的“伪弹性”行为,表现为这种合金能承载比一般金属大几倍甚至几十倍的可恢复应变。
形状记忆合金的这些独特性质源于其内部发生的一种独特的固态相变——热弹性马氏相变体。
关键词:形状记忆合金;马氏相变体;记忆效应Key words:shape memory alloy;Martensitic transformation;memory effect形状记忆合金材料兼有传感和驱动的双重功能,是一种智能结构中技术成熟性很高的功能材料,可以实现机械结构的微型化和智能化。
形状记忆效应(SME)即某种材料在高温定形后,冷却到低温(或室温),并施加变形,使它存在残余变形。
当温加热超过材料的相变点,残余变形即可消失,恢复到高温时的固有形状,如同记住了高温下的状态。
SMA及其驱动控制系统具有许多的优点,如高功率重量比,适于微型化;集传感、控制、换能、致动于一身,结构简单,易于控制;对环境适应能力强,不受温度以外的其他因素影响等,有着传统驱动器不可比拟的性能优点。
形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。
1发展史1932年,瑞典人奥兰德在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。
记忆合金的开发迄今不过20余年,但由于其在各领域的特效应用,正广为世人所瞩目,被誉为"神奇的功能材料"。
最早关于形状记忆效应的报道是由Chang及Read等人在1952年作出的。
他们观察到Au-Cd合金中相变的可逆性。
形状记忆合金材料形状记忆合金材料最早于1951年由美国海军实验室的奥古斯特·索尔兹曼博士发现。
他发现一种铜锌合金在加热后会恢复到其原始形状。
这种合金被命名为“诺博-间兰合金”,后来被进一步研究和改进,形成了现在所称的形状记忆合金材料。
形状记忆合金材料通常由镍、钛、铜、锌等金属元素组成,其中最常用的是镍钛合金,它具有良好的形状记忆效应和恢复力。
形状记忆合金材料有两种记忆效应:一种是热记忆效应,即在加热过程中发生形状改变并冷却后恢复原状;另一种是力记忆效应,即在受力作用下发生形状改变,并在受力消失后恢复原状。
形状记忆合金材料具有许多优点,使其在各个领域得到了广泛应用。
首先,它具有良好的强度和韧性,可以承受高温和高压的环境。
其次,它的形状记忆效应可重复使用,具有稳定性和可靠性。
此外,形状记忆合金材料还可以用来制造微小的机械部件,用于微纳技术和医疗器械等领域。
在航空领域,形状记忆合金材料可以用于制造飞机主动结构,如自动调整气动面和自动调整舵面等。
这些材料可以根据外界条件自动调整形状,提高飞机的机动性和稳定性。
此外,形状记忆合金材料还可以用于燃油喷射器和各种传感器等部件,提高航空器的性能和安全性。
在汽车领域,形状记忆合金材料可以用于制造汽车的结构件,如车身和座椅等。
这种材料可以根据碰撞的力度和方向自动调整形状,从而提高汽车的碰撞安全性。
此外,形状记忆合金材料还可以用于制造行车记录仪和智能导航系统等装置,提高汽车的智能化水平。
在医疗领域,形状记忆合金材料可以用于制造支架和植入物等医疗器械。
这些材料可以依据受力情况自动调整形状,提高植入物在患者体内的适应性和稳定性。
此外,形状记忆合金材料还可以用于制造人工关节和义肢等器械,改善患者的生活质量。
总之,形状记忆合金材料是一种具有广泛应用前景的材料。
随着科学技术的不断进步,对形状记忆合金材料的研究和开发也在不断深入。
可以预见,在未来的发展中,形状记忆合金材料将在各个领域得到更广泛的应用,并促进人类社会的进步和发展。
形状记忆合金的机理及其应用形状记忆合金是一种智能材料,具有在受到外界刺激后恢复原本形状的特性。
它的机理及应用在材料科学领域引起了广泛的关注和研究。
本文将详细介绍形状记忆合金的机理以及其在各个领域的应用。
形状记忆合金的机理是由于其在相变时具有记忆性能。
通常形状记忆合金是一种金属合金,最常见的是钛镍合金。
当形状记忆合金处于高温相时,它可以被塑性变形,而当温度下降时它会回复原来的形状。
这种特性是由于形状记忆合金中存在马氏体相和奥氏体相两种组织结构。
由于形状记忆合金具有记忆形状的特性,它在各个领域都有着广泛的应用。
在医疗领域,形状记忆合金常用于医疗器械的制造。
例如在心脏手术中,可以使用形状记忆合金制成的支架,当支架导入到体内后可以根据体温发生形状变化,从而将支架固定在需要的位置。
形状记忆合金还可以应用于航空航天领域。
例如在航天器的发动机中,形状记忆合金可以用于制造喷嘴部件。
当喷嘴受到高温气流的冲击时,可以通过形状记忆合金的相变来保持喷嘴结构的稳定性,确保发动机的正常工作。
在建筑领域,形状记忆合金也有着广泛的应用前景。
例如可以用于地震防护结构中,当建筑物受到地震力作用时,形状记忆合金可以通过相变来调整结构的形状,减小地震对建筑物的影响。
形状记忆合金还可以用于高端制造领域。
例如在精密仪器的制造中,可以使用形状记忆合金制成的零部件,通过温度的变化来调整零部件的形状,从而实现精密的控制。
形状记忆合金是一种具有智能材料特性的材料,其机理是由于相变具有记忆形状的能力。
形状记忆合金具有着广泛的应用前景,在医疗、航空航天、建筑和高端制造等领域都有着重要的应用价值。
相信随着技术的不断进步,形状记忆合金的应用领域将会更加广泛,为人类社会的发展带来更多的便利和进步。
浅谈形状记忆合金力学性能及其工程应用形状记忆合金(Shape Memory Alloy),简称SMA,自1963年在美国海军实验室被发现以来,如今已经在机械,航空航天,生物医学等诸多领域都得到了广泛地研究和应用。
SMA一般分为镍钛系,铜系和铁系三大类。
顾名思义,形状记忆合金是具有记忆效应的特殊合金材料,实际上除了形状记忆效应SMA还具有伪弹性,形状记忆合金含有以上两个力学性质。
一般金属受到外力产生弹性变形,随着继续加载,金属在到达屈服点之后将产生不可恢复的塑性变形,应力去除之后材料不能恢复到原来的初始状态。
但是如果将产生塑性变形的金属加热到一定温度之上,材料就能恢复到产生变形之前的状态(恢复变形可达8%的应变量)这就是形状记忆效应。
所谓伪弹性,即当温度高于奥氏体的转换温度(此温度不存在马氏体),加载的应力超过弹性极限的时候,材料产生非弹性变形且稳定存在于该应力水平的持续作用下,一旦应力消除即使不采用加热的方式材料也能恢复到变形状态前的性质。
综上,在SMA中马氏体相变不仅由温度引起,应力也可以诱发马氏体相变。
二者在本质上是一致的,伪弹性是在加载过程中产生应力诱导的马氏体相变,当外力消失后发生马氏体逆相变回到原来的状态,而形状记忆效应那么是通过加热产生马氏体逆相变回到原来的状态。
下面从材料结构和微观组织方面更进一步介绍。
形状记忆合金是具有马氏体相和奥氏体相且二者能相互转化的两相材料。
马氏体是铁碳合金从高温奥氏体(具有面心立方结构)经过急冷淬火后会变得比拟硬,经过抛光浸蚀后在显微镜下观察到的致密组织,其结构是基于奥氏体立方结构某一个面上原子联动所引起的切变型晶格的斜方结构。
马氏体开始相变的温度记为Ms,终了温度以Mf表示。
在加热过程中,奥氏体相变开始的温度用As表示,终了温度为Af。
一般的As>Ms,Af>Mf。
根据马氏体相变温度与奥氏体相变温度之差(As-Ms)以及马氏体的生长方式可分为:热弹性马氏体相变和非热弹性马氏体相变。
材料科学中的形状记忆合金应用随着科技的不断进步和发展,材料科学在现代产业中扮演着越来越重要的角色。
形状记忆合金作为一种新型材料,在各个领域都有着广泛的应用。
本文将重点介绍形状记忆合金的特点及其应用于生产制造和医疗领域的情况。
一、形状记忆合金的概述形状记忆合金,简称SMA,是一种具有记忆性能的智能材料。
它可以在外界条件变化的刺激下,通过膨胀、收缩、扭曲等形变,以回忆并恢复其预先设定的原始形状。
SMA独特的性质使得它应用在许多领域中,如生产制造、医疗、航空航天等,是一种非常有前景的材料。
二、形状记忆合金的特点1、具有高延展性和强韧度SMA的延展性很强,硬度也相对较高,可以避免在形状改变时断裂或断裂。
这意味着SMA可以在复杂的情况下执行工作任务,例如微型操纵或机械器件的旋转。
2、恢复高频率形状SMA能够以高频率收缩和膨胀,这是因为它的形状记忆机制与传统材料不同。
SMA在变形时需要耗费能量,而这种能量可以显著地快速释放。
因此,在需要快速形状改变的应用中,SMA通常是首选的材料之一。
3、自修复特性优良当SMA遇到轻微的撞击或压力时,具有自我给排氧的能力,并且可以很容易地自我修复。
这种特性使得SMA可以在高压或高温环境下操作,提高了其使用寿命。
三、形状记忆合金在生产制造领域的应用1、飞机零部件SMA通常在飞机机翼等结构中应用,例如作为弯曲和伸缩的元件、使托架或座椅框架易弯曲的关节。
该材料也可以用于航空航天制造中的翼尖,具有改善飞机稳定性的作用。
2、汽车零部件SMA可以用于汽车安全气囊中。
当气囊装置被激活时,SMA 可将包含气囊的体积扩大至数倍,形状的恢复速度也非常快。
四、形状记忆合金在医疗领域的应用1、牙套SMA材料可以被用于矫正牙齿的牙套中。
与传统的钢丝相比,SMA具有更好的恢复能力,更容易适应患者口腔内的形态,可以更好地适应患者需求。
2、内科医学器械SMA也可以被用于泌尿科等领域中的医疗器械中。
例如,可以用SMA制作支架,帮助患者治疗排尿障碍和结石等疾病。
形状记忆合金的原理
形状记忆合金(SMA)是一种具有特殊形状记忆性能的金属合金材料,它可以在受到外部刺激后恢复到其原始形状。
这种材料在工程、医学、航空航天等领域具有广泛的应用前景,因此其原理和特性备受关注。
形状记忆合金的原理主要基于固态相变和晶体结构的特殊性质。
在常温下,形
状记忆合金处于一种称为马氏体的相态,此时材料呈现出一种特定的形状。
当受到外部力或温度变化等刺激时,马氏体会发生相变,转变为奥氏体相,从而使材料发生形状变化。
一旦外部刺激消失,材料又会恢复到原始的马氏体相态,恢复原来的形状。
形状记忆合金的这种特殊性质主要源于其晶体结构的特殊性。
在马氏体相态下,形状记忆合金的晶体结构呈现出一种扭曲的形态,这种扭曲结构使得材料能够存储和记忆原始形状。
当马氏体发生相变为奥氏体时,晶体结构重新排列,从而导致材料形状发生变化。
而当外部刺激消失时,晶体结构又会重新排列回马氏体相态,使得材料能够恢复原来的形状。
除了形状记忆性能,形状记忆合金还具有超弹性和耐腐蚀等优良性能。
这使得
它在医学领域有着广泛的应用,例如用于支架和植入物等医疗器械。
在航空航天领域,形状记忆合金也可以用于制造具有自修复功能的材料,提高材料的使用寿命和安全性。
总的来说,形状记忆合金的原理基于固态相变和晶体结构的特殊性质,使得它
具有形状记忆、超弹性和耐腐蚀等优良性能。
这种材料在工程、医学、航空航天等领域有着广泛的应用前景,对于推动材料科学和工程技术的发展具有重要意义。
科技视界Science&Technology VisionScience&Technology Vision科技视界瑞典人奥兰德于1932年发现了“记忆”效应。
即在经过加热到一定温度的时候,合金的形状可以变化会改变之前的形状。
所以这种具有特殊性能的金属被人们称作“记忆合金”。
记忆合金问世的80多年来,经过长足的发展,它已经为科学领域做重了重要的贡献,并且它的作用还在向其他各领域无限延伸。
1形状记忆合金材料的发展历程1963年,美国海军军械研究所的比勒在研究工作中发现了每种将元素按照一定重量比组成的形状记忆合金都有一个转变温度;在这一温度以上将该合金加工成一定的形状,然后将其冷却到转变温度以下。
如果人为地改变其形状后再加热到转变温度以上,该合金便会自动地恢复到原先在转变温度以上加工而成的形状。
这一发现确定了“形状记忆合金”的的存在。
接着在1969年,镍-钛合金的“形状记忆效应”首次实现了在工业上应用,美国于某种喷气式战斗机的油压系统中应用了镍-钛合金的接头以保证其在温度变化的过程中发生形变,形成牢固紧密的连接。
事实证明这很成功,运用了该种合金后从未发生过漏油、脱落或者是破损等事故。
同年,在人类历史上具有迈进一大步的重要意义的美国“阿波罗”号登月过程中,也应用了形状记忆合金,运用记忆合金制作的直径数米的半球形天线事先被压成一团,装进登月舱带上了天。
到达月球将其取出之后,在阳光的照耀下温度升高,它又“记”起了自己原来的形状,完成了月球和地球之间的信息传输。
而随着技术的不断创新,对形状记忆合金的应用逐渐拓展到机械电子产品、生物医疗等各个方面。
在1970年时,美国就曾用记忆合金制作了F-14战斗上的低温配合连接器。
2形状记忆合金材料的应用现状根据不同的热力载荷条件,形状记忆合金共呈现出了两种性能。
包括“形状记忆效应”和“伪弹性”。
根据形变的效应可将“形状记忆效应分为三种”,这是根据合金产品在温度变化条件下所能够发生的形变现象进行区分。
浅谈形状记忆合金材料浅谈形状记忆合金材料引言:时代的发展与材料的发展是相辅相成的。
随着科学技术的进步,材料研究变得尤为重要。
现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。
例如形状记忆材料就是一种典型的新型功能材料。
形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。
一、形状记忆合金及形状记忆效应形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记忆材料中较为重要的材料之一。
形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
1、形状记忆合金分类到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。
在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。
(a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定,相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。
但由于其原材料Ni 、Ti价格昂贵,且加工成本高等因素,其应用受到限制。
(b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。
铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和Cu-Al-Ni两种。
(c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。
2、呈现形状记忆效应的合金的必备条件(a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母相之间的界面的移动是完全可逆的(b)合金中的异类原子在母相与马氏体中必须为有序结构(c)马氏体相变在晶体学上是完全可逆的3、状记忆效应的分类(a)单程记忆效应形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
浅谈形状记忆合金时代的发展离不开材料的发展。
科学技术的进步,越来越体现出材料研究的重要性。
现如今材料的研究逐渐倾向于功能化、多样性。
形状记忆材料就是一种典型的新型功能材料。
形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。
单程记忆、双程记忆和全方位记忆是形状记忆效应按形状恢复形式进行的三种分类,如下图所示。
单向记忆效应是指当材料被加热后能恢复到原始形态,但是只能单程,不可逆,也就是说继续加热冷却,材料形状都不再发生变化。
能够根据加热冷却的不同,反复出现低温状态和高温状态的材料则具有双程记忆效应。
全方位记忆效应的材料除了具有双程记忆效应外,最显著的特点就是可以出现和高温时完全相反的形状,这只需要将材料冷却到更低的温度就可以做到。
一、形状记忆合金的发展历史“形状记忆”这一名称的提出是在20世纪60年代,但是人们早在30年代就发现了形状记忆这一奇特的现象,遗憾的是当时没有引起人们足够的重视。
最初形状记忆只被人们当成某些材料的个例,根本无法在实际应用中运用。
记忆材料之所以能在生产、生活中广泛应用,还是得益于TiNi合金的研究与发展。
现在形状记忆合金已多达几十种。
我国是在20世纪70年代后期才开始研究记忆合金的。
形状记忆合金材料的发现,改变了一直以来形成的金属热胀冷缩等传统观念。
二、形状记忆合金的特点形状记忆合金具有优良的延展性,一般只要不超过8%至10%的变形量,均可恢复原有形状。
此外它还具有不次于不锈钢的耐腐蚀性能和抗疲劳性能。
并且高温下记忆合金仍有较大的刚度。
这些异于普通材料的特点决定了形状记忆合金的广阔发展前景。
但是由于形状记忆效应需要电源加热,温度过高又会影响它的记忆性能,这就大大缩小了形状记忆合金材料的使用范围,并且在长期使用后它的工作稳定性较差,因此,在一定程度上制约了形状记忆合金的应用。
什么是形状记忆合金有一种记忆方法是形状记忆法,你在运用过这种方法吗?那你有知道什么是形状记忆合金吗?下面和一起来了解什么是形状记忆合金吧,希望对你有帮助!形状记忆合金的定义形状记忆合金(Shape Memory Alloys,),简称SMA,是一种在加热升温后能完全消除其在较低的温度下发生的变形,恢复其变形前原始形状的合金材料,即拥有“记忆"效应的合金。
在航空航天领域内的应用有很多成功的范例。
人造卫星上庞大的天线可以用记忆合金制作。
发射人造卫星之前,将抛物面天线折叠起来装进卫星体内,火箭升空把人造卫星送到预定轨道后,只需加温,折叠的卫星天线因具有“记忆”功能而自然展开,恢复抛物面形状。
形状记忆合金简介形状记忆合金(shape memory alloy)在临床医疗领域内有着广泛的应用,例如人造骨骼、伤骨固定加压器、牙科正畸器、各类腔内支架、栓塞器、心脏修补器、血栓过滤器、介入导丝和手术缝合线等等,记忆合金在现代医疗中正扮演着不可替代的角色。
记忆合金同我们的日常生活也同样休戚相关。
形状记忆合金具有形状记忆效应(shape memory effect) ,以记忆合金制成的弹簧为例,把这种弹簧放在热水中,弹簧的长度立即伸长,再放到冷水中,它会立即恢复原状。
利用形状记忆合金弹簧可以控制浴室水管的水温:在热水温度过高时通过"记忆"功能,调节或关闭供水管道,避免烫伤。
也可以制作成消防报警装置及电器设备的保险装置。
当发生火灾时,记忆合金制成的弹簧发生形变,启动消防报警装置,达到报警的目的。
还可以把用记忆合金制成的弹簧放在暖气的阀门内,用以保持暖房的温度,当温度过低或过高时,自动开启或关闭暖气的阀门。
形状记忆合金的形状记忆效应还广泛应用于各类温度传感器触发器中。
形状记忆合金另一种重要性质是伪弹性(pseudoelasticity,又称超弹性,superelasticity) ,表现为在外力作用下,形状记忆合金具有比一般金属大的多的变形恢复能力,即加载过程中产生的大应变会随着卸载而恢复[2-3] 。
形状记忆合金材料的研究现状及未来前景近年来,形状记忆合金(Shape Memory Alloys,SMA)由于其独特的形状记忆效应和超弹性性能被广泛关注,并在智能材料、航空航天、生物医学等领域得到广泛应用。
本文将对形状记忆合金材料的研究现状及未来前景进行探讨。
一、形状记忆合金的定义和性质形状记忆合金是一种可以通过温度、应力等外界作用,实现形状记忆效应和超弹性性能的合金材料。
其最为独特的性质是具有记忆功能,即在特定的外力作用下,可以发生永久形状的改变,然而一旦去掉外力作用,它又能回到原有的形状。
这种记忆效应的发生和消失又称为相变。
此外,形状记忆合金还具有超弹性性能,即在外力作用下能够发生大变形,但当去掉外力后又能恢复到原来的形状,这种性质使它成为一种优良的智能材料。
二、形状记忆合金的研究现状自上世纪50年代以来,随着形状记忆合金的不断发展,人们对其进行了大量的研究。
目前国内外研究的重点主要集中在以下几个方面:1、形状记忆合金的制备与加工形状记忆合金是一种多功能复合材料,由于其自身的记忆和高弹性性能,以及其化学稳定性和防腐能力等,使其成为制造各种机械和电器设备的理想材料。
因此,制备和加工成为了重要的研究方向。
现阶段,形状记忆合金的制备方法主要包括粉末冶金、熔融法、溶液分解-沉淀法等。
其中,粉末冶金是最成熟的制备方法,在制备形状记忆合金时,一般采用惯性摩擦焊、冷轧板等加工成型方式。
2、形状记忆合金的相变机理形状记忆合金的相变机理是产生记忆效应的关键因素。
现阶段,研究相变机理主要有两个方向:一是基于电子和晶体缺陷的相变机理,主要是探讨相变过程中电子和晶体缺陷的变化情况,包括离子扩散、漂移等;另一种是基于热力学的相变机理,主要是以热力学概念来研究SMA的相变。
3、形状记忆合金的应用形状记忆合金的应用有非常广泛的领域,包括生物医学、航空航天、汽车制造、机械制造、建筑工程等领域。
其中,最具代表性的应用就是在生物医学领域,如心脏支架、口腔矫治器,还有智能材料领域,如智能织物、智能机器人等。
记忆合金材料记忆合金是一种具有形状记忆性能的特殊金属材料,它可以在经历形变后恢复到原来的形状。
这种材料因其独特的性能而备受关注,被广泛应用于医疗、航空航天、汽车等领域。
本文将介绍记忆合金材料的特性、应用和发展前景。
记忆合金的特性主要体现在其形状记忆性能和超弹性。
形状记忆效应是指在一定的温度范围内,记忆合金可以在经历形变后恢复到其原始形状。
这种特性使得记忆合金可以被用于制造具有自修复功能的材料,例如在航空航天领域中,可以用于制造具有自修复能力的飞机零部件,提高飞行安全性。
而超弹性则是指在一定的应力作用下,记忆合金可以发生较大的弹性变形而不会永久变形,这使得其可以用于制造弹簧、扭簧等弹性元件。
记忆合金材料的应用非常广泛。
在医疗领域,记忆合金被用于制造支架、植入物等医疗器械,其形状记忆性能可以使得这些器械在植入人体后能够自动调整到适合的形状,减少手术创伤。
在汽车领域,记忆合金可以用于制造汽车零部件,例如制动系统、悬挂系统等,提高汽车的安全性和舒适性。
在航空航天领域,记忆合金被用于制造飞机零部件、航天器零部件等,提高了飞行器的可靠性和安全性。
记忆合金材料的发展前景十分广阔。
随着科学技术的不断进步,记忆合金材料的制备工艺和性能不断得到提升,使得其在更多领域得到应用。
未来,记忆合金材料有望在智能材料、柔性电子、人工智能等领域发挥重要作用,为人类社会的发展做出更大的贡献。
综上所述,记忆合金材料具有独特的形状记忆性能和超弹性,被广泛应用于医疗、航空航天、汽车等领域,并且在未来有着广阔的发展前景。
相信随着科学技术的不断进步,记忆合金材料将会发挥更加重要的作用,为人类社会的发展带来更多的惊喜和改变。
形状记忆合金的特点和应用什么是形状记忆合金?形状记忆合金,也称记忆合金,是一种特殊的金属合金。
其特殊之处在于在经历某些物理变化或力学应力的情况下能够“记忆”自己的原始形状,并还原成原来的形状。
形状记忆合金的特点形状记忆合金具有以下特点:1.记忆性:形状记忆合金在经历一定的变形后,能够回到原始形状。
这种特性被称为“形状记忆”。
2.弹性:形状记忆合金的弹性非常好,能够承受很大的变形。
3.耐腐蚀性:形状记忆合金具有很好的耐腐蚀性能。
4.高温稳定性:形状记忆合金在高温下也能保持稳定性。
形状记忆合金的应用形状记忆合金被广泛应用于各个领域,以下是几个重要的应用:医疗领域形状记忆合金在医疗领域有着广泛的应用。
它们可以被用于制造支架、手术器械和植入物等医疗设备。
例如,在心脏手术中,医生使用形状记忆合金支架来扩张狭窄的心脏血管。
汽车和航空领域形状记忆合金也被广泛地应用于汽车和航空领域。
汽车发动机由于高温和高压的影响,对材料的性能要求很高,而形状记忆合金能够稳定地工作在高温和高压环境下,因此是理想的选择。
在航空领域,一些形状记忆合金被用作机身、发动机和座椅支架等高强度部件。
家具领域形状记忆合金在家具领域也有应用。
例如,一些奢华的床垫上使用形状记忆合金弹簧,可以根据人体的不同形状来适应睡眠者的身体。
此外,还有一些可以自动调节高度和角度的桌子和椅子等家具,其结构中也使用了形状记忆合金。
形状记忆合金的未来虽然形状记忆合金已经被广泛应用,但其未来的发展仍有很多潜力。
例如,科学家正在研究如何利用形状记忆合金制造更先进的机器人和人工肢体,以及如何运用于智能材料等方面。
因此,我们期待着形状记忆合金在未来的广泛应用。
形状记忆合金的机理及其应用形状记忆合金是一种具有特殊记忆性能的金属材料,它可以在经历形变后恢复到原来的形状。
这种金属材料具有许多独特的特性,因此在许多领域具有广泛的应用。
本文将介绍形状记忆合金的机理及其在工程、医疗、航空航天等领域的应用。
形状记忆合金的机理形状记忆合金最常见的例子是钛镍合金,它是一种由钛和镍组成的合金材料。
形状记忆合金的记忆效应是其最显著的特性之一,这是由其特殊的晶体结构和相变特性所决定的。
在常温条件下,形状记忆合金处于其高温相状态,即奥氏体相。
在这种状态下,合金具有良好的塑性和可形变性,可以通过外力进行形变而不会发生破裂。
当形状记忆合金被加热到一定温度时,会发生相变,转变为低温相状态,即马氏体相。
在这种状态下,合金会恢复到原来的形状,消除之前的形变痕迹。
形状记忆合金的相变过程是通过应力诱导和温度诱导两种方式进行的。
应力诱导相变是指在受到外力作用时,合金会发生相变,从而产生形变,而温度诱导相变则是指在特定温度下发生相变,使合金恢复原来的形状。
由于其特殊的记忆性能,形状记忆合金在许多领域具有广泛的应用。
在工程领域,形状记忆合金被广泛应用于机械和汽车领域。
可以将形状记忆合金用于制造汽车零部件,如车身结构和发动机零件,以提高汽车的安全性能和耐久性。
形状记忆合金还可以用于制造高性能阀门、管道连接件等,以应对极端工况下的压力和温度变化。
在医疗领域,形状记忆合金被广泛应用于医疗器械和植入物。
可以将形状记忆合金用于制造支架和植入内置器件,如心脏起搏器和血管支架,以治疗心血管疾病和其他疾病。
形状记忆合金还可以用于制造牙齿矫正器和关节假体,以改善患者的生活质量。
形状记忆合金具有独特的记忆性能和优异的物理特性,使其在工程、医疗、航空航天等领域具有广泛的应用前景。
随着材料科学和工程技术的不断发展,形状记忆合金将会有更加广泛的应用和推广,为人类社会的发展和进步做出更大的贡献。
形状记忆合金概述整体来看,形状记忆合金是一种很神奇的材料呢。
我就先从我的初步认识开始说吧。
一开始听到这个名字,就觉得很奇妙,这种合金它能“记住”自己的形状。
大致分这几个部分来理解吧。
首先呢,从它的定义上讲,它就是一种具有形状记忆效应的合金。
比如说,你把它弄成一个弯曲的形状,当你对它进行某种操作,像加热啦或者施加电场之类的操作后,它就会恢复到它原来预先设定的形状。
这就是它最显著的特征。
然后说说它的原理。
核心内容就是它内部的晶体结构的变化。
你可以想象合金里面的原子排列就像是一个个小小的积木堆起来的结构。
在不同的温度或者外力影响下,这些积木会改变它们的排列方式。
当条件恢复到特定情况的时候,原子们又回到了原来的排列结构,这样合金就又恢复到原来的形状了。
比如说镍钛合金,它就是一种很典型的形状记忆合金。
在医学领域经常有应用,像制作牙齿矫正的弓丝。
刚开始这个弓丝是比较软的,方便医生把它安装在牙齿上,当安装好之后,体温就相当于对它进行了加热的作用,它就会慢慢地恢复到原来预设好的形状,从而对牙齿施加一定的力度,让牙齿逐渐排列整齐。
主要包括这些方面的应用吧,除了医学上,在工程领域也很重要。
例如航天领域中,一些复杂的结构部件可以使用形状记忆合金。
在太空中因为温度和压力环境复杂,这种合金可以根据环境变化改变形状或者恢复形状,从而保证部件功能的正常发挥。
对了还有个方面也很有趣,就是在机器人方面的应用。
可以把形状记忆合金作为机器人的“肌肉”,通过控制温度或者电场等条件,让合金像肌肉一样伸缩弯曲,这样能让机器人做出更多灵活的动作。
当然了,对于形状记忆合金,我还有一些不确定的地方。
比如说,虽然知道它原理大概和晶体结构有关,但是详细的原子级别的变化和相互之间的作用力我还不是特别明白,我感觉这需要一些专业的物理化学知识来深入探究。
不过从整体框架理解的话,这种合金的形状记忆效应以及多方面的应用,是我们认识它的重点。
形状记忆合金介绍形状记忆合金(Shape Memory Alloys,SMA)是一种特殊的金属合金材料,具有特殊的能力可以记住并恢复其原始的形状。
这种材料可以在受到应力或温度变化时发生可逆的相变,与传统的金属材料不同,形状记忆合金拥有可塑性和形状记忆性能,使其在许多工业和科学应用中具有广泛的用途。
形状记忆合金最早是由美国海军的研究人员在20世纪60年代发现的,当时他们在试图找到一种用于制造可以回收利用的海上漏斗的材料。
他们意外地发现,在加热后这种合金会从受到挤压的形状恢复到原始形状。
这项发现引起了广泛的兴趣,并带来了许多关于形状记忆合金的研究与应用。
形状记忆合金的独特性质源于其原子结构的特殊排列。
在一定条件下,形状记忆合金通过两种相变(Austenite相和Martensite相)之间的相互转换来实现形状记忆效应。
当合金处于高温下时,原子结构会呈现出名为Austenite相的排列,此时合金处于高弹性形状。
当温度下降到临界温度以下时,合金会自发地转变为Martensite相,从而改变形状。
当再次加热合金时,它会恢复到原始的Austenite相形状。
形状记忆合金具有许多独特的性能和应用。
首先,它们具有良好的弹性形变能力,可以在受到应力时发生可逆的形变。
这使得形状记忆合金在医疗器械、航天航空等领域的应用十分广泛。
例如,在血管支架的制造过程中,形状记忆合金可以在体内经历较小的创伤,然后回复到原始形状,从而血管得以保持畅通。
其次,形状记忆合金具有优异的耐腐蚀性能,这使得它们在海洋工程、汽车制造等领域的应用广泛。
相较于其它材料,形状记忆合金在恶劣环境中的使用寿命更长,并且不会轻易受到腐蚀。
另外,形状记忆合金的温度相变性能使其具有温度感应的应用潜力。
例如,在建筑中,可以利用形状记忆合金的温度相变特性来控制窗帘、百叶窗等遮阳装置的开闭,从而实现智能化的节能设计。
形状记忆合金还具有记忆效应可逆性、高纯度制备等优点。
形状记忆合金的机理及其应用形状记忆合金,又称记忆合金,是一种具有记忆性能的特殊金属合金材料。
它能够在一定温度范围内实现弹性形变,并且在去除外力的情况下能够恢复原来的形状。
这种神奇的材料被广泛应用于医疗器械、航空航天、汽车制造等领域,具有非常重要的意义。
形状记忆合金的机理形状记忆合金是由金属元素和非金属元素的合金组成,其最著名的代表是镍钛合金(NiTi)。
这种合金具有独特的内部晶体结构,在一定温度范围内具有“记忆效应”。
形状记忆合金的记忆效应是由于其内部晶体结构的变化而产生的。
在形状记忆合金的相变温度范围内,晶体结构由低温相变为高温相,这种相变过程伴随着晶格的变化。
当形状记忆合金在高温相状态下被弯曲或拉伸,然后在低温相状态下重新加热时,晶体结构发生改变,原本被弯曲或拉伸的部分会恢复到原来的状态,这就是形状记忆合金的记忆效应。
1. 医疗器械领域形状记忆合金在医疗器械领域有着广泛的应用。
比如在心脏支架的制造中,形状记忆合金能够在体内被压缩成小体积,通过血管输送到需要的位置后再恢复成原来的形状,起到支撑作用。
在牙齿正畸治疗中,也可以使用形状记忆合金制成的矫正器,通过温度变化来调整器件的形状,从而达到矫正牙齿的目的。
2. 航空航天领域在航空航天领域,形状记忆合金也有着重要的应用。
比如在航空发动机的控制系统中,可以使用形状记忆合金制成的零件来实现精确的控制和调节。
还可以利用形状记忆合金制成的材料来制造航天器的折叠结构,以减小发射时的体积,节约空间和成本。
3. 汽车制造领域在汽车制造领域,形状记忆合金被广泛用于汽车零部件的制造。
比如在汽车发动机的喷油系统中,可以使用形状记忆合金制成的喷嘴,通过温度变化来控制油水的喷射角度和强度,从而提高发动机的燃烧效率。
在汽车碰撞安全系统中,形状记忆合金也可以用来制造碰撞缓冲材料,以提高汽车的碰撞安全性能。
形状记忆合金的原理形状记忆合金(SMA)是一种具有特殊性能的金属合金材料,它可以在受到外界作用力后发生形状改变,并且在去除外力后能够恢复原来的形状。
这种材料的原理是基于固态相变的特性,具有独特的记忆效应,因此在许多领域得到了广泛的应用。
形状记忆合金最早是由美国海军研究实验室在20世纪60年代发现的,最典型的形状记忆合金是镍钛合金,也称为记忆合金。
它的记忆效应是通过固态相变来实现的,即在固定的温度下,合金会从奥氏体相转变为马氏体相,从而产生形状记忆效应。
当合金处于高温状态时,它会变得柔软并且可以随意变形;而当合金被冷却到特定温度时,它会恢复原来的形状。
形状记忆合金的原理主要包括两个方面,固态相变和形状记忆效应。
固态相变是指在固态条件下,材料的结构发生可逆性的相变,而形状记忆效应是指材料在经历形变后,能够恢复原来的形状。
这两个原理共同作用,使得形状记忆合金具有了特殊的性能。
形状记忆合金的固态相变是通过温度来实现的。
在高温下,形状记忆合金处于奥氏体相,此时合金具有良好的塑性和可塑性,可以被加工成各种形状。
当合金被冷却到特定的温度时,会发生相变,从奥氏体相转变为马氏体相。
在这个过程中,合金会发生形状记忆效应,即恢复原来的形状。
这一过程是可逆的,当再次加热合金时,它会再次变为奥氏体相,形状也会再次变化。
形状记忆合金的应用非常广泛,包括医疗器械、航空航天、汽车制造等领域。
在医疗器械中,形状记忆合金可以用于制作支架、植入物等,利用其形状记忆效应可以在体内完成形状的调整和恢复。
在航空航天领域,形状记忆合金可以用于制作航天器的折叠结构,可以在太空中完成形状的调整和展开。
在汽车制造领域,形状记忆合金可以用于制作汽车零部件,可以在受到外力作用后恢复原来的形状,提高汽车的安全性和可靠性。
总的来说,形状记忆合金是一种具有特殊性能的金属合金材料,它的原理是基于固态相变和形状记忆效应。
这种材料具有广泛的应用前景,可以在许多领域发挥重要作用,为人类社会的发展做出贡献。
形状记忆合金定义形状记忆合金,又称为记忆合金,是一种具有记忆功能的金属材料。
被称为“材料的巨人”或“智能材料”,由于其独特的物理特性,已经成为现代工业中的重要材料之一。
它不仅可以自主改变形状,而且可以记忆原来的形状并在一定温度范围内进行形态识别和变形。
原理形状记忆合金主要是通过改变材料内部晶体结构来实现形状记忆功能。
其中最常见的形状记忆合金是一种双相合金,由晶体起始相和晶体终止相两个相组成,分别具有不同的形状和热特性。
当形状记忆合金受到作用力或温度改变时,晶格结构重新排列,相互作用能随之变化,从而导致形状和热特性的变化,从而实现形状的记忆和变形。
这种材料具有良好的形状记忆性和超弹性,可以广泛应用于机器人、人工心脏瓣膜、汽车零部件、航空航天等领域。
应用形状记忆合金的应用范围广泛,可以用于各种机械、电子、核能、航空和航天等领域。
其中曾被应用于航天飞机发射过程中的支撑结构系统中。
近年来,由于其优良的形状记忆性能,超弹性和良好的机械性能,在医疗设备中的应用越来越受到关注。
由于其出色的抗腐蚀性能和轻质化特性,这种材料也被广泛用于制造管道和储氢器。
值得一提的是,形状记忆合金不仅可以用于实体制造,还可以用于制造智能材料和微纳米器件。
因此,它有着广阔的发展前景和潜力。
发展趋势形状记忆合金是目前发展最快的材料之一,其研究领域广泛,应用领域也越来越广泛。
未来,随着国家对新型材料研究的不断重视和投入,形状记忆合金的应用领域将不断扩大,促进其技术的创新和发展。
预计未来数年内,形状记忆合金的市场需求将呈现逐年增长的趋势。
结论形状记忆合金作为一种具有独特属性和广泛应用领域的新型材料,拥有着广泛的市场前景和潜力。
随着现代工业的发展,它将在各个领域发挥越来越重要的作用,推动新型材料行业的蓬勃发展。
浅谈形状记忆合金材料引言:时代的发展与材料的发展是相辅相成的。
随着科学技术的进步,材料研究变得尤为重要。
现如今材料的研究越来越专业化,并且逐渐倾向于功能化、多样性。
例如形状记忆材料就是一种典型的新型功能材料。
形状记忆材料是指具有形状记忆效应的金属、陶瓷和高分子等材料,在高温下材料形成一种形状,在冷却到低温时会塑性变形成为另外一种形状,如果对材料进行加热,通过马氏体的逆相变,又可以恢复到高温时的形状,这就是形状记忆效应。
一、形状记忆合金及形状记忆效应形状记忆材料是集感知和驱动于一体的特殊功能材料,其中形状记忆合金是形状记忆材料中较为重要的材料之一。
形状记忆合金(Shape Memory Alloy简称SMA)是指具有一定初始形状的合金在低温下经塑性形变并固定成另一种形状后,通过加热到某一临界温度以上又可恢复成初始形状的一类合金。
1、形状记忆合金分类到目前为止,被开发出来的形状记忆合金主要是Ti-Ni基、Cu基与Fe基三种。
在这三大类中,根据不同的要求和工作环境,分别在基体中加入和调整一些合金元素的量,使得每一个大类中都有一系列合金被开发出来,应用在各行各业,以满足各种不同的特殊需求。
(a)Ti-Ni形状记忆合金开发的最早,形状记忆效应最稳定,相对比较成熟,已在航天工业、汽车工业、电子工业、医学及人类生活领域获得应用。
但由于其原材料Ni 、Ti价格昂贵,且加工成本高等因素,其应用受到限制。
(b)Cu基形状记忆合金因价格便宜、原材料来源广泛、易于加工和制造等原因而得到迅速发展。
铜基形状记忆合金是这三类合金中种类最多的一类,但有实际应用价值的目前只有Cu-Zn-Al和Cu-Al-Ni两种。
(c)Fe基形状记忆合金发展较晚,成本较Ti-Ni系和铜系合金低得多,易于加工,在应用方面具有明显的竞争优势,被认为是一种具有广泛应用前景的功能材料,受到广泛的关注。
2、呈现形状记忆效应的合金的必备条件(a)马氏体相变只限于驱动力极小的热弹性型,即马氏体与母相之间的界面的移动是完全可逆的(b)合金中的异类原子在母相与马氏体中必须为有序结构(c)马氏体相变在晶体学上是完全可逆的3、状记忆效应的分类(a)单程记忆效应形状记忆合金在较低的温度下变形,加热后可恢复变形前的形状,这种只在加热过程中存在的形状记忆现象称为单程记忆效应。
(b)双程记忆效应某些合金加热时恢复高温相形状,冷却时又能恢复低温相形状,称为双程记忆效应。
(c)全程记忆效应加热时恢复高温相形状,冷却时变为形状相同而取向相反的低温相形状,称为全程记忆效应。
二、形状记忆金属材料的发展历程1932年,瑞典人XX在金镉合金中首次观察到"记忆"效应,即合金的形状被改变之后,一旦加热到一定的跃变温度时,它又可以魔术般地变回到原来的形状,人们把具有这种特殊功能的合金称为形状记忆合金。
1963年,美国海军XX的XX在研究工作中发现,在高于室温较多的某温度范围内,把一种镍-钛合金丝烧成弹簧,然后在冷水中把它拉直或铸成正方形、三角形等形状,再放在40 ℃以上的热水中,该合金丝就恢复成原来的弹簧形状。
后来陆续发现,某些其他合金也有类似的功能。
这一类合金被称为形状记忆合金。
每种以一定元素按一定重量比组成的形状记忆合金都有一个转变温度;在这一温度以上将该合金加工成一定的形状,然后将其冷却到转变温度以下,人为地改变其形状后再加热到转变温度以上,该合金便会自动地恢复到原先在转变温度以上加工成的形状。
1969年,镍--钛合金的“形状记忆效应”首次在工业上应用。
人们采用了一种与众不同的管道接头装置。
为了将两根需要对接的金属管连接,选用转变温度低于使用温度的某种形状记忆合金,在高于其转变温度的条件下,做成内径比待对接管子外径略微小一点的短管(作接头用),然后在低于其转变温度下将其内径稍加扩大,再把连接好的管道放到该接头的转变温度时,接头就自动收缩而扣紧被接管道,形成牢固紧密的连接。
美国在某种喷气式战斗机的油压系统中便使用了一种镍-钛合金接头,从未发生过漏油、脱落或破损事故。
1969年7月20日,美国宇航员乘坐“阿波罗”11号登月舱在月球上首次留下了人类的脚印,并通过一个直径数米的半球形天线传输月球和地球之间的信息。
这个庞然大物般的天线是怎么被带到月球上的呢?就是用一种形状记忆合金材料,先在其转变温度以上按预定要求做好,然后降低温度把它压成一团,装进登月舱带上天去。
放置于月球后,在阳光照射下,达到该合金的转变温度,天线“记”起了自己的本来面貌,变成一个巨大的半球。
再来看一看我国对形状记忆合金的研究。
我国从上世纪70年代末才开始对形状记忆合金展开研究,起步较晚,但起点较高,在材料冶金学方面,特别是实用形状记忆合金的炼制水平已得到国际学术界的认可,在应用开发上也有一些独到的成果。
但是,由于研究条件的限制,在形状记忆合金的基础理论和材料科学研究方面,我国与国际先进水平尚有一定差距,尤其是在形状记忆合金产业化和工程应用方面与国外差距较大。
三、形状记忆合金的特性1、形状记忆效应:合金在某一温度下受外力而变形,当外力去除后,仍保持其变形后的形状,但当温度上升到某一温度,材料会自动回复到变形前原有的形状,似乎对以前的形状保持记忆,这种效应称为形状记忆效应。
2、超弹性:在高于Af点、低于Md点的温度下施加外应力时产生应力诱发马氏体相变,卸载就产生逆相变,应变完全消失,回到母相状态,表观上呈现非线性拟弹性应变,这种现象称为超弹性。
3、高阻尼特性:形状记忆合金在低于Ms点的温度下进行热弹性马氏体相变,生成大量马氏体变体(结构相同、取向不同),变体间界面能和马氏体内部孪晶界面能都很低,易于迁移,能有效地衰减振动、冲击等外来的机械能,因此阻尼特性特别好。
4、耐磨性:在形状记忆合金中,Ti-Ni合金在高温(CsCl型体心立方结构)状态下同时具有很好的耐腐蚀性和耐磨性。
可用作在化工介质中接触滑动部位的机械密封材料,原子能反应堆中用做冷却水泵机械密封件。
5、逆形状记忆特性:将Cu-Zn-Al记忆合金在Ms点上下的很小温度范围内进行大应变量变形,然后加热到高于Af点的温度时形状不完全恢复,但再加热到高于200ºC时却逆向地恢复到变形后的形状,称为逆形状记忆特性。
6、电阻特性:对于初始组织为马氏体的Ni-Ti合金,在拉伸过程中电阻与应变之间呈线性关系;对于初始组织为奥氏体或奥氏体、马氏体两者混合的Ni-Ti合金,当发生应力诱发马氏体相变后,曲线的斜率降低,相变前后电阻-应变关系保持线性关系。
四、形状记忆合金材料的应用形状记忆合金由于具有许多优异的性能,因而广泛应用于航空航天、机械电子、生物医疗、桥梁建筑、汽车工业及日常生活等多个领域。
1、航空航天工业形状记忆合金已应用到航空和太空装置。
如用在军用飞机的液压系统中的低温配合连接件,欧洲和美国正在研制用于直升飞机的智能水平旋翼中的形状记忆合金材料。
由于直升飞机高震动和高噪声使用受到限制,其噪声和震动的来源主要是叶片涡流干扰,以及叶片型线的微小偏差。
这就需要一种平衡叶片螺距的装置,使各叶片能精确地在同一平面旋转。
欧洲和美国还正在研制用于直升飞机的智能水平旋翼中的形状记忆合金材料,一种叶片的轨迹控制器是现在已有的产品,它是用一个小的双管形状记忆合金驱动器控制叶片边缘轨迹上的小翼片的位置,大大改善了震动情况。
形状记忆合金材料还可用于制造探索宇宙奥秘的月球天线,人们利用形状记忆合金在高温环境下制做好天线,再在低温下把它压缩成一个小铁球,使它的体积缩小到原来的千分之一,这样很容易运上月球,太阳的强烈的辐射使它恢复原来的形状,按照需求向地球发回宝贵的宇宙信息。
形状记忆合金材料广泛地应用于航天航空领域不但可以提高相关设备的性能,也可以为远距离的信息传输架设桥梁,为我们更好了解地球以外的广阔天地做出贡献。
2、机械电子产品1970 年美国用形状记忆合金制作 F-14 战斗上的低温配合连接器,随后有数以百万以上的连件的应用。
形状记忆合金作为低温配合连接在飞机的液压系统中及体积较小的石油、石化、电工业产品中应用。
另一种连接件的形状是焊接的网状金属丝,用于制造导体的金属丝编织层的安全接头。
这种接件已经用于密封装置、电气连接装置、电子工程机械装置,并能在-65~300℃可靠地工作。
已开出的密封系统装置可在严酷的环境中用作电气件连接[6]。
将形状记忆合金制作成一个可打开和关闭快门的弹簧,用于保护雾灯免于飞行碎片的击坏。
用于制造精密仪器或精密车床,一旦由于震动、碰撞等原因变形,只需加热即可排除故障。
在机械制造过程中,各种冲压和机械操作常需将零件从一台机器转移到另一台机器上,现在利用形状记忆合金开发了一种取代手动或液压夹具,这种装置叫驱动汽缸,它具有效率高灵活,装夹力大等特点。
3、生物医疗用于医学领域的 Ni-Ti合金是医用生物材料的佼佼者,在临床医学和医疗器械等方面广泛应用。
除了拥有形状记忆效应或超弹性外,还满足化学和生物学等方面的要求,即良好的生物相容性。
TiNi 可与生物体形成稳定的钝化膜。
在医学上 TiNi 合金主要应用有:(a)牙齿矫形丝用超弹性 TiNi 合金丝和不锈钢丝做的牙齿矫正丝,其中用超弹性 TiNi 合金丝是最适宜的。
通常牙齿矫形用不锈钢丝 CoCr 合金丝,但这些材料有弹性模量高,弹性应变小的缺点。
为了给出适宜的矫正力,在矫正前就要加工成弓形,而且结扎固定要求熟练。
如果用 TiNi 合金作牙齿矫形丝,即使应变高达10%也不会产生塑性变形,而且应力诱发马氏体相变(stress-induced martensite)使弹性模量呈现非线型特性,即应变增大时矫正力波动很少。
这种材料不仅操作简单,疗效好,也可减轻患者不适感。
(b) 脊柱侧弯矫形各种脊柱侧弯症(先天性、习惯性、神经性、佝偻病性、特发性等)疾病,不仅身心受到严重损伤,而且内脏也受到压迫,所以有必要进行外科手术矫形。
目前这种手术采用不锈钢制哈伦敦棒矫形,在手术中安放矫形棒时,要求固定后脊柱受到的矫正力保持在30~40kg以下,一但受力过大,矫形棒就会破坏,结果不仅是脊柱,而且连神经也有受损伤的危险。
同时存在矫形棒安放后矫正力会随时间变化,大约矫正力降到初始时的30%时,就需要再进行手术调整矫正力,这样给患者在精神和肉体上都造成极大痛苦。
采用形状记忆合金制作的哈伦顿棒,只需要进行一次安放矫形棒固定。
如果矫形棒的矫正力有变化,以通过体外加热形状记忆合金,把温度升高到比体温约高5℃,就能恢复足够的矫正力。
另外,外科中用 TiNi 形状记忆合金制做各种骨连接器、血管夹、凝血滤器以及血管扩张元件等。
同时还广泛应用于口腔科、骨科、心血管科、胸外科、肝胆科、泌尿科、妇科等,随着形状记忆的发展,医学应用将会更加广泛。