经典薛定谔方程
- 格式:ppt
- 大小:1.01 MB
- 文档页数:25
§12-6 薛定谔方程德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告。
报告后, 德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来,它是否正确,只能由实验检验。
一、薛定谔方程 1 一维薛定谔方程1)一维自由运动粒子(无势场)设:一维自由运动粒子,无势场,不受力,动量不变。
一维自由运动粒子的波函数(前已讲)ψ(x , t ) = ψ0 e -i(2π/h ) (Et - px )由此有再利用 可得此即一维自由运动粒子(无势场)的含时薛定谔方程。
2)若粒子在势场U (x , t ) 中运动由 有此即一维自由运动粒子在势场中的含时薛定谔方程。
3)定态薛定谔方程若粒子在恒定势场U = U (x )中运动,微观粒子的势能仅是坐标的函数,与时间无关,可把上式中的波函数分成坐标函数与时间函数的乘积,即2222ip x hp x hψψψψ∂=∂∂=-∂22p E m=222282h h i m x tψψππ∂∂-=∂∂22p p E E m =+222282p h h E i m x tψψψππ∂∂-+=∂∂2(,)()()()iEt hx t x f t x eπψϕϕ-==式中 ψ =ψ (x , t )是粒子在势场U = U (x , t )中运动的波函数。
将ψ =ψ (x , t ) = ψ(x )T (t )代入得一维定态薛定谔方程式中ψ =ψ (x )是定态波函数,它所描写的粒子的状态称作定态,是能量取确值的状态。
定态的概率密度ψ(x ,t ) ψ*(x ,t ) = ψ (x ) ψ *(x ) 定态下的概率密度和时间无关。
在量子力学中用薛定谔方程式加上波函数的物理条件,求解微观粒子在一定的势场中的运动问题(求波函数,状态能量,概率密度等)。
爱因斯坦薛定谔方程
爱因斯坦-薛定谔方程(Einstein-Schrödinger equation)是一个量子力学中的方程,将爱因斯坦的相对论和薛定谔方程结合在一起,描述了物质和场相互作用的行为。
这个方程是在广义相对论和量子力学之间的理论框架下提出的。
具体而言,爱因斯坦-薛定谔方程描述了物质在引力场中的行为,以及粒子与电磁场的相互作用。
它是一个偏微分方程,通常被写成:iħ∂ψ/∂t = (c^2√(p^2c^2 + m^2c^4) + eφ)ψ。
其中,ψ是波函数,描述了量子态的演化;t是时间;ħ是约化普朗克常数;c是光速;p是动量算符;m是粒子的静质量;e是元电荷;φ是电磁场势。
爱因斯坦-薛定谔方程是一个非常复杂的方程,它描述了物质在引力场和电磁场中的量子行为。
这个方程在理论物理的研究中扮演着重要的角色,帮助我们理解微观世界的行为。
但是,由于其复杂性,解析解很难找到,通常需要使用数值方法进行求解。
薛定谔方程薛定谔方程(Schrödinger equation)是一个由奥地利物理学家薛定谔在1926年[1]描述量子力学中波函数的运动方程,被认为是量子力学的奠基理论之一。
薛定谔方程主要分为含时薛定谔方程与不含时薛定谔方程。
含时薛定谔方程相依于时间,专门用来计算一个量子系统的波函数,怎样随着时间演变。
不含时薛定谔方程不相依于时间,可以计算一个定态量子系统,对应于某本征能量的本征波函数。
波函数又可以用来计算,在量子系统里,某个事件发生的概率幅。
而概率幅的绝对值的平方,就是事件发生的概率密度。
薛定谔方程的解答,清楚地描述量子系统里,量子尺寸粒子的统计性量子行为。
量子尺寸的粒子包括基本粒子,像电子、质子、正电子、等等,与一组相同或不相同的粒子,像原子核。
薛定谔方程可以转换为海森堡的矩阵力学,或费曼的路径积分表述 (path integral formulation) 。
薛定谔方程是个非相对论性的方程,不能够用于相对论性理论。
海森堡表述比较没有这么严重的问题;而费曼的路径积分表述则完全没有这方面的问题。
目录[隐藏], 1 含时薛定谔方程, 2 不含时薛定谔方程, 3 历史背景与发展, 4 含时薛定谔方程导引o 4.1 启发式导引, 4.1.1 假设, 4.1.2 波函数以复值平面波来表达波函数o 4.2 薛定谔的导引, 5 特性o 5.1 线性方程, 5.1.1 证明o 5.2 实值的本征态o 5.3 幺正性, 5.3.1 证明o 5.4 完备基底, 6 相对论性薛定谔方程, 7 解析方法, 8 实例o 8.1 自由粒子o 8.2 一维谐振子o 8.3 球对称位势, 8.3.1 角部分解答, 8.3.2 径向部分解答, 9 参阅, 10 参考文献, 11 外部链接[编辑] 含时薛定谔方程虽然,含时薛定谔方程能够启发式地从几个假设导引出来。
理论上,我们可以直接地将这方程当作一个基本假定。
在一维空间里,一个单独粒子运动于位势中的含时薛定谔方程为;(1) 其中,是质量,是位置,是相依于时间的波函数,是约化普朗克常数,是位势。
第二十七章薛定谔方程§27.1 薛定谔方程§27.2 无限深方势阱中的粒子§27.3 势垒穿透§27.4 一维谐振子*§27.5 力学量算符§27.1 薛定谔方程薛定谔方程是决定粒子波函数演化的方程。
薛定谔方程是量子力学的基本动力学方程,在量子力学中的地位如同牛顿方程在经典力学中的地位。
和牛顿方程一样,薛定谔方程不能由其它的基本原理推导得到,是量子力学的一个基本的假设,其正确性也只能靠实验来检验。
▲薛定谔方程是线性的,满足解的叠加原理。
▲薛定谔方程关于时间是一阶的,经典波动方程关于时间是二阶的。
▲薛定谔方程是量子力学的一个“基本假定”,是非相对论形式的方程。
若和是方程的解,),(1t r Ψ ),(2t r Ψ 则也是方程的解。
),(),(2211t r Ψc t r Ψc ▲方程含有虚数i ,其解是复函数,不可直接测量,是概率密度,可直接测量。
Ψ2||Ψ一. 一维无限深方势阱模型极限理想化U (x )U =U 0U =U 0E U =0x 0§27.2 无限深方势阱中的粒子表面电子运动限于区间aa金属无限深方势阱U =0EU →∞U (x )x 0U →∞-a /2a /2n 很大时,阱内粒子概率分布趋于均匀| n|2E n-a/2a/2玻尔对应原理:大量子数极限下,量子体系行为向经典过渡。
§27.3 势垒穿透一.粒子进入势垒⎩⎨⎧>≤=)0( , )0( ,0 )(0x U x x U 金属与半导体接触处,势能隆起形成势垒。
势垒的物理模型:xII 区I 区U 0U (x )1.一维势垒模型粒子从x = - 处以特定能量E (E < U 0) 入射,xII 区0I 区U 0U (x )2.问题经典图像:量子图像:粒子无法跃上台阶,只能反射。
粒子具有波动性,波不仅被反射,而且能透射进入势垒区,只要U 0有限。
薛定谔方程(Schrodinger equation)是由奥地利物理学家薛定谔提出的量子力学中的一个基本方程,也是量子力学的一个基本假定,其正确性只能靠实验来检验。
它是将物质波的概念和波动方程相结合建立的二阶偏微分方程,可描述微观粒子的运动,每个微观系统都有一个相应的薛定谔方程式,通过解方程可得到波函数的具体形式以及对应的能量,从而了解微观系统的性质。
1定义薛定谔方程薛定谔方程(Schrodinger equation)又称薛定谔波动方程(Schrodinger wave equation)在量子力学中,体系的状态不能用力学量(例如x)的值来确定,而是要用力学量的函数Ψ(x,t),即波函数(又称概率幅,态函数)来确定,因此波函数成为量子力学研究的主要对象。
力学量取值的概率分布如何,这个分布随时间如何变化,这些问题都可以通过求解波函数的薛定谔方程得到解答。
这个方程是奥地利物理学家薛定谔于1926年提出的,它是量子力学最基本的方程之一,在量子力学中的地位与牛顿方程在经典力学中的地位相当。
薛定谔方程是量子力学最基本的方程,亦是量子力学的一个基本假定,其正确性只能靠实验来确定。
2方程概述量子力学中求解粒子问题常归结为解薛定谔方程或定态薛定谔方程。
薛定谔方程广泛地用于原子物理、核物理和固体物理,对于原子、分子、核、固体等一系列问题中求解的结果都与实际符合得很好。
薛定谔方程仅适用于速度不太大的非相对论粒子,其中也没有包含关于粒子自旋的描述。
当涉及相对论效应时,薛定谔方程由相对论量子力学方程所取代,其中自然包含了粒子的自旋。
.薛定谔提出的量子力学基本方程。
建立于1926年。
它是一个非相对论的波动方程。
它反映了描述微观粒子的状态随时间变化的规律,它在量子力学中的地位相当于牛顿定律对于经典力学一样,是量子力学的基本假设之一。
设描述微观粒子状态的波函数为Ψ(r,t),质量为m的微观粒子在势场V(r,t)中运动的薛定谔方程为。
第27章薛定谔方程·德布洛意关于物质波的概念传到苏黎世后,薛定谔作了一个关于物质波的报告,报告后,德拜(P.Debye)评论说:有了波,就应有一个波动方程。
几个月后,薛定谔果然提出了一个波方程,这就是后来在量子力学中著名的薛定谔方程。
·薛定谔方程是量子力学的动力学方程,象牛顿方程一样,不能从更基本的方程推导出来;它是否正确,只能由实验检验。
§1 薛定谔方程的建立(一种方法)一.薛定谔方程1.一维薛定谔方程·一维自由运动粒子无势场,不受力,动量不变。
· 一维自由运动粒子的波函数(前已讲)由此有· 再利用 可得此即 一维自由运动粒子(无势场)的薛定谔方程·推广到若粒子在势场U (x , t ) 中运动由 有 ∂ψ∂ x = ( )P ψi h∂2ψ ∂ x 2 P 2h 2= -( ) ψ P 22m E = P 22m E = +U (x , t )∂ t= i h ( ) ψ (x , t )h 22m - ( ) ψ (x , t ) ∂x 2∂ ∂2一维薛定谔方程 式中 ψ =ψ (x , t )是粒子在势场U = U (x , t ) 中运动的波函数·和经典关系相比较,只要把再作用到波函数 ψ (x , t ) 上,即可得到 上述方程。
P 22m E = +U (x , t )2.三维薛定谔方程式由一维方程推广可得三维薛定谔方程式· 拉普拉斯算符(三维薛定谔方程式在球坐标下的形式请见 教材B 版p332)·当 U (r , t) = 0时,方程的解, 即三维自由运动粒子的波函数∂2 ∂x 2 ∂2 ∂y 2 ∇2≡ + + ∂2 ∂z 2·波函数的叠加原理薛定谔方程是ψ的线性微分方程;若ψ1、ψ2是方程的解,则c1ψ1 + c2ψ2也是方程的解。
(c1、c2是常数)★E.Schrodinger & P.A.M.Dirac 荣获1933年Nobel Prize (for the discovery of new productive forms of atomic theory)薛定谔(1887-1961)奥地利人创立量子力学二.定态薛定谔方程 1.一维定态薛定谔方程 若粒子在恒定势场U = U (x ) 中运动(含常数势场U = U 0 )薛定谔方程式可用分离变量法求解。