一轮复习统计概率分布列期望与方差教师版
- 格式:doc
- 大小:1.47 MB
- 文档页数:15
2019-2020年高中数学第一章概率与统计(第3课)离散型随机变量的期望与方差(1)教案湘教版选修2教学目的:1了解离散型随机变量的期望的意义,会根据离散型随机变量的分布列求出期望.⒉理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),则Eξ=np”.能熟练地应用它们求相应的离散型随机变量的期望教学重点:离散型随机变量的期望的概念教学难点:根据离散型随机变量的分布列求出期望授课类型:新授课课时安排:2课时教具:多媒体、实物投影仪教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出若是随机变量,是常数,则也是随机变量并且不改变其属性(离散型、连续型)5.分布列:设离散型随机变量ξ可能取得值为x1,x2,…,x3,…,ξ6. 分布列的两个性质:⑴P i≥0,i=1,2,...;⑵P1+P2+ (1)7.离散型随机变量的二项分布:在一次随机试验中,某事件可能发生也可能不发生,在n次独立重复试验中这个事件发生的次数ξ是一个随机变量.如果在一次试验中某事件发生的概率是P,那么在n次独立重复试验中这个事件恰好发生k次的概率是,(k =0,1,2,…,n ,).为参数,并记=b (k ;n ,p ).8. 离散型随机变量的几何分布:在独立重复试验中,某事件第一次发生时,所作试验的次数ξ也是一个正整数的离散型随机变量.“”表示在第k 次独立重复试验时事件第一次发生.如果把k 次试验时事件A 发生记为、事件A 不发生记为,P()=p ,P()=q(q=1-p),那么112311231()()()()()()()k k k k k P k P A A A A A P A P A P A P A P A q pξ---====(k =0,1,2,…, ).于是得到随机变量ξ的概率分布如下:称这样的随机变量ξ服从几何分布记作g (k ,p )= ,其中k =0,1,2,…, . 二、讲解新课:根据已知随机变量的分布列,我们可以方便的得出随机变量的某些制定的概率,但分布列的用途远不止于此,例如:已知某射手射击所得环数ξ的分布在次射击之前,可以根据这个分布列估计次射击的平均环数.这就是我们今天要学习的离散型随机变量的期望根据射手射击所得环数ξ的分布列,我们可以估计,在n 次射击中,预计大约有 次得4环; 次得5环;………… 次得10环.故在n 次射击的总环数大约为,从而,预计n 次射击的平均环数约为.这是一个由射手射击所得环数的分布列得到的,只与射击环数的可能取值及其相应的概率有关的常数,它反映了射手射击的平均水平.对于任一射手,若已知其射击所得环数ξ的分布列,即已知各个(i =0,1,2,…,10),我们可以同样预计他任意n 次射击的平均环数:….1.数学期望: 一般地,若离散型随机变量ξ的概率分布为则称 …… 2. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平3. 平均数、均值:一般地,在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值4. 期望的一个性质:若(a 、b 是常数),ξ是随机变量,则η也是随机变=……)……) =,由此,我们得到了期望的一个性质:5.若ξB (n,p ),则E ξ=np 证明如下:∵ kn k k n k n k k n q p C p p C k P --=-==)1()(ξ, ∴ 0×+1×+2×+…+k ×+…+n ×. 又∵ 11)]!1()1[()!1()!1()!(!!--=-----⋅=-⋅=k n kn nC k n k n n k n k n k kC ,∴ ++…++…+.故 若ξ~B (n ,p ),则np . 三、讲解范例:例1. 篮球运动员在比赛中每次罚球命中得1分,罚不中得0分,已知他命中的概率为0.7,求他罚球一次得分的期望解:因为3.0)0(,7.0)1(====ξξP P ,所以7.03.007.01=⨯+⨯=ξE例2. 随机抛掷一枚骰子,求所得骰子点数的期望 解:∵6,,2,1,6/1)(⋅⋅⋅===i i P ξ,6/166/126/11⨯+⋅⋅⋅+⨯+⨯=∴ξE =3.5例3. 有一批数量很大的产品,其次品率是15%,对这批产品进行抽查,每次抽取1件,如果抽出次品,则抽查终止,否则继续抽查,直到抽出次品为止,但抽查次数不超过10次求抽查次数的期望(结果保留三个有效数字)解:抽查次数取110的整数,从这批数量很大的产品中抽出1件检查的试验可以认为是彼此独立的,取出次品的概率是0.15,取出正品的概率是0.85,前次取出正品而第次(=1,2,…,10)取出次品的概率:(=1,2, (10)35.52316.0101275.0215.01=⨯+⋅⋅⋅+⨯+⨯=ξE例4. 一次英语单元测验由20个选择题构成,每个选择题有4个选项,其中有且仅有一个选项是正确答案,每题选择正确答案得5分,不作出选择或选错不得分,满分100分学生甲选对任一题的概率为0.9,学生乙则在测验中对每题都从4个选择中随机地选择一个,求学生甲和乙在这次英语单元测验中的成绩的期望解:设学生甲和乙在这次英语测验中正确答案的选择题个数分别是,则~ B (20,0.9),,525.020,189.020=⨯==⨯=∴ηξE E由于答对每题得5分,学生甲和乙在这次英语测验中的成绩分别是5和5所以,他们在测验中的成绩的期望分别是:2555)(5)5(,90185)(5)5(=⨯===⨯==ηηξξE E E E例5.随机的抛掷一个骰子,求所得骰子的点数ξ的数学期望. 解:抛掷骰子所得点数ξ的概率分布为所以1×+2×+3×+4×+5×+6× =(1+2+3+4+5+6)×=3.5.抛掷骰子所得点数ξ的数学期望,就是ξ的所有可能取值的平均值. 例6.某城市出租汽车的起步价为10元,行驶路程不超出4km 时租车费为10元,若行驶路程超出4km ,则按每超出lkm 加收2元计费(超出不足lkm 的部分按lkm 计).从这个城市的民航机场到某宾馆的路程为15km .某司机经常驾车在机场与此宾馆之间接送旅客,由于行车路线的不同以及途中停车时间要转换成行车路程(这个城市规定,每停车5分钟按lkm 路程计费),这个司机一次接送旅客的行车路程ξ是一个随机变量.设他所收租车费为η(Ⅰ)求租车费η关于行车路程ξ的关系式; (Ⅱ)若随机变量求所收租车费η的数学期望.(Ⅲ)已知某旅客实付租车费38元,而出租汽车实际行驶了15km ,问出租车在途中因故停车累计最多几分钟?解:(Ⅰ)依题意得 η=2(ξ-4)十10,即 η=2ξ+2;(Ⅱ)4.161.0183.0175.0161.015=⨯+⨯+⨯+⨯ ∵ η=2ξ+2∴ 2E ξ+2=34.8 (元)故所收租车费η的数学期望为34.8元.(Ⅲ)由38=2ξ+2,得ξ=18,5(18-15)=15 所以出租车在途中因故停车累计最多15分钟 四、课堂练习:1. 口袋中有5只球,编号为1,2,3,4,5,从中任取3球,以表示取出球的最大号码,则( )A .4;B .5;C .4.5;D .4.75 答案:C2. 篮球运动员在比赛中每次罚球命中的1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,求⑴他罚球1次的得分ξ的数学期望; ⑵他罚球2次的得分η的数学期望; ⑶他罚球3次的得分ξ的数学期望. 解:⑴因为,,所以 1×+0×⑵η的概率分布为所以 0×+1×+2×=1.4.所以 0×+1×+2×=2.1.3.设有m升水,其中含有大肠杆菌n个.今取水1升进行化验,设其中含有大肠杆菌的个数为ξ,求ξ的数学期望.分析:任取1升水,此升水中含一个大肠杆菌的概率是,事件“ξ=k”发生,即n个大肠杆菌中恰有k个在此升水中,由n次独立重复实验中事件A(在此升水中含一个大肠杆菌)恰好发生k次的概率计算方法可求出P(ξ=k),进而可求Eξ.解:记事件A:“在所取的1升水中含一个大肠杆菌”,则P(A)=.∴P(ξ=k)=P n(k)=C)k(1-)n-k(k=0,1,2,….,n).∴ξ~B(n,),故Eξ =n×=五、小结:(1)离散型随机变量的期望,反映了随机变量取值的平均水平;(2)求离散型随机变量ξ的期望的基本步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出Eξ公式E(aξ+b)= aEξ+b,以及服从二项分布的随机变量的期望Eξ=np六、课后作业:1.一袋子里装有大小相同的3个红球和两个黄球,从中同时取出2个,则其中含红球个数的数学期望是(用数字作答)于是 E故知红球个数的数学期望为1.22.袋中有4个黑球、3个白球、2个红球,从中任取2个球,每取到一个黑球记0分,每取到一个白球记1分,每取到一个红球记2分,用表示得分数①求的概率分布列②求的数学期望解:①依题意的取值为0、1、2、3、4=0时,取2黑 p(=0)==1时,取1黑1白 p(=1)==2时,取2白或1红1黑p(=2)= +=3时,取1白1红,概率p(=3)= =4时,取2∴分布列为(2)期望E=0×+1×+2×+3×+4×=3.学校新进了三台投影仪用于多媒体教学,为保证设备正常工作,事先进行独立试验,已知各设备产生故障的概率分别为p 1、p 2、p 3,求试验中三台投影仪产生故障的数学期望解:设表示产生故障的仪器数,A i 表示第i 台仪器出现故障(i=1、2、3) 表示第i 台仪器不出现故障,则:p(=1)=p(A 1··)+ p(·A 2·)+ p(··A 3)=p 1(1-p 2) (1-p 3)+ p 2(1-p 1) (1-p 3)+ p 3(1-p 1) (1-p 2) = p 1+ p 2+p 3-2p 1p 2-2p 2p 3-2p 3p 1+3p 1p 2p 3p(=2)=p(A 1· A 2·)+ p(A 1··)+ p(·A 2·A 3) = p 1p 2 (1-p 3)+ p 1p 3(1-p 2)+ p 2p 3(1-p 1) = p 1p 2+ p 1p 3+ p 2p 3-3p 1p 2p 3p(=3)=p(A 1· A 2·A 3)= p 1p 2p 3∴=1×p(=1)+2×p(=2)+3×p(=3)= p 1+p 2+p 3注:要充分运用分类讨论的思想,分别求出三台仪器中有一、二、三台发生故障的概率后再求期望4.一个袋子里装有大小相同的3个红球和2个黄球,从中同时取出2个,含红球个数的数学期望是 1.22.13.026.011.00=⨯+⨯+⨯=∴ξE5. 、两个代表队进行乒乓球对抗赛,每队三名队员,队队员是,队队员是,按以往多次比赛的统计,对阵队员之间胜负概率如下:现按表中对阵方式出场,每场胜队得1分,负队得0分,设队,队最后所得分分别为,(1)求,的概率分布; (2)求,解:(Ⅰ),的可能取值分别为3,2,1,0()()()()2535353310,525253315352315353321,75285253325252315352322,2785252323=⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯+⨯⨯+⨯⨯===⨯⨯==ξξξξP P P P 根据题意知,所以()()()()()()()()25303,5212,752821,75830================ξηξηξηξηP P P P P P P P (Ⅱ)15222530521752827583=⨯+⨯+⨯+⨯=ξE ; 因为,所以七、板书设计(略) 八、课后记:2019-2020年高中数学 第一章 概率与统计(第4课)离散型随机变量的期望与方差(2)教案 湘教版选修2教学目的:1了解离散型随机变量的方差、标准差的意义,会根据离散型随机变量的分布列求出方差或标准差.2.了解方差公式“D (a ξ+b )=a 2D ξ”,以及“若ξ~Β(n ,p ),则D ξ=np (1—p )”,并会应用上述公式计算有关随机变量的方差 教学重点:离散型随机变量的方差、标准差教学难点:比较两个随机变量的期望与方差的大小,从而解决实际问题 授课类型:新授课 课时安排:2课时教 具:多媒体、实物投影仪 内容分析:数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平,表示了随机变量在随机实验中取值的平均值,所以又常称为随机变量的平均数、均值.今天,我们将对随机变量取值的稳定与波动、集中与离散的程度进行研究.其实在初中我们也对一组数据的波动情况作过研究,即研究过一组数据的方差.回顾一组数据的方差的概念:设在一组数据,,…,中,各数据与它们的平均值得差的平方分别是,,…,,那么++…+叫做这组数据的方差教学过程:一、复习引入:1.随机变量:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫做随机变量随机变量常用希腊字母ξ、η等表示2. 离散型随机变量:对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量3.连续型随机变量:对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量4.离散型随机变量与连续型随机变量的区别与联系:离散型随机变量与连续型随机变量都是用变量表示随机试验的结果;但是离散型随机变量的结果可以按一定次序一一列出,而连续性随机变量的结果不可以一一列出5.分布列:6. 分布列的两个性质:⑴i≥0,=1,2,...;⑵1+2+ (1)7.二项分布:ξ~B(n,p),并记=b(k;n,p).8.9.数学期望: 一般地,若离散型随机变量ξ的概率分布为则称……10. 数学期望是离散型随机变量的一个特征数,它反映了离散型随机变量取值的平均水平11 平均数、均值:在有限取值离散型随机变量ξ的概率分布中,令…,则有…,…,所以ξ的数学期望又称为平均数、均值12. 期望的一个性质:13.若ξB (n,p ),则E ξ=np 二、讲解新课:1. 方差: 对于离散型随机变量ξ,如果它所有可能取的值是,,…,,…,且取这些值的概率分别是,,…,,…,那么, =++…++…称为随机变量ξ的均方差,简称为方差,式中的是随机变量ξ的期望.2. 标准差:的算术平方根叫做随机变量ξ的标准差,记作.3.方差的性质:(1);(2);(3)若ξ~B (n ,p ),则np (1-p ) 4.其它:⑴随机变量ξ的方差的定义与一组数据的方差的定义式是相同的;⑵随机变量ξ的方差、标准差也是随机变量ξ的特征数,它们都反映了随机变量取值的稳定与波动、集中与离散的程度;⑶标准差与随机变量本身有相同的单位,所以在实际问题中应用更广泛 三、讲解范例:例1.设随机变量ξ的分布列为求D ξ解:(略)121-n D 21n E 2=ξ+=ξ离散型随机变量的概率分布为求这两个随机变量期望、均方差与标准差 解:47177127111=⨯+⋅⋅⋅+⨯+⨯=ξE ; 471)47(71)42(71)41(2221=⨯-+⋅⋅⋅+⨯-+⨯-=ξD ;4713.4718.3717.32=⨯+⋅⋅⋅+⨯+⨯=ξE ; =0.04, .点评:本题中的和都以相等的概率取各个不同的值,但的取值较为分散,的取值较为集中.,,,方差比较清楚地指出了比取值更集中.=2,=0.02,可以看出这两个随机变量取值与其期望值的偏差例3. 甲、乙两射手在同一条件下进行射击,分布列如下:射手甲击中环数8,9,10的概率分别为0.2,0.6,0.2;射手乙击中环数8,9,10的概率分别为0.4,0.2,0.24用击中环数的期望与方差比较两名射手的射击水平解:180.290.6100.29E ξ=⨯+⨯+⨯=221(89)0.2(99)0.6D ξ=-⨯+-⨯+(10-9);同理有由上可知,,所以,在射击之前,可以预测甲、乙两名射手所得的平均环数很接近,均在9环左右,但甲所得环数较集中,以9环居多,而乙得环数较分散,得8、10环地次数多些.点评:本题中,和所有可能取的值是一致的,只是概率的分布情况不同.=9,这时就通过=0.4和=0.8来比较和的离散程度,即两名射手成绩的稳定情况例4.A 、B 两台机床同时加工零件,每生产一批数量较大的产品时,出次品的概率如下表所示:A 机床B 机床问哪一台机床加工质量较好解: E ξ1=0×0.7+1×0.2+2×0.06+3×0.04=0.44,E ξ2=0×0.8+1×0.06+2×0.04+3×0.10=0.44.它们的期望相同,再比较它们的方差D ξ1=(0-0.44)2×0.7+(1-0.44)2×0.2+(2-0.44)2×0.06+(3-0.44)2×0.04=0.6064,D ξ2=(0-0.44)2×0.8+(1-0.44)2×0.06+(2-0.44)2 ×0.04+(3-0.44)2×0.10=0.9264.∴D ξ1< D ξ2 故A 机床加工较稳定、质量较好.四、课堂练习:1 .已知()~,,8, 1.6B n p E D ξξξ==,则的值分别是( )A .;B .;C .;D .答案:1.D2. 一盒中装有零件12个,其中有9个正品,3个次品,从中任取一个,如果每次取出次品就不再放回去,再取一个零件,直到取得正品为止.求在取得正品之前已取出次品数的期望.分析:涉及次品率;抽样是否放回的问题.本例采用不放回抽样,每次抽样后次品率将会发生变化,即各次抽样是不独立的.如果抽样采用放回抽样,则各次抽样的次品率不变,各次抽样是否抽出次品是完全独立的事件.解:设取得正品之前已取出的次品数为ξ,显然ξ所有可能取的值为0,1,2,3当ξ=0时,即第一次取得正品,试验停止,则P (ξ=0)=当ξ=1时,即第一次取出次品,第二次取得正品,试验停止,则P (ξ=1)=当ξ=2时,即第一、二次取出次品,第三次取得正品,试验停止,则 P (ξ=2)=当ξ=3时,即第一、二、三次取出次品,第四次取得正品,试验停止,则P (ξ=3)=所以,E ξ=10322013220924491430=⨯+⨯+⨯+⨯ 3. 有一批数量很大的商品的次品率为1%,从中任意地连续取出200件商品,设其中次品数为ξ,求E ξ,D ξ分析:涉及产品数量很大,而且抽查次数又相对较少的产品抽查问题.由于产品数量很大,因而抽样时抽出次品与否对后面的抽样的次品率影响很小,所以可以认为各次抽查的结果是彼此独立的.解答本题,关键是理解清楚:抽200件商品可以看作200次独立重复试验,即ξB (200,1%),从而可用公式:E ξ=np ,D ξ=npq(这里q=1-p)直接进行计算解:因为商品数量相当大,抽200件商品可以看作200次独立重复试验,所以ξB (200,1%)因为E ξ=np ,D ξ=npq ,这里n=200,p=1%,q=99%,所以,E ξ=200×1%=2,D ξ=200×1%×99%=1.984. 设事件A 发生的概率为p ,证明事件A 在一次试验中发生次数ξ的方差不超过1/4分析:这是一道纯数学问题.要求学生熟悉随机变量的期望与方差的计算方法,关键还是掌握随机变量的分布列.求出方差D ξ=P(1-P)后,我们知道Dξ是关于P(P ≥0)的二次函数,这里可用配方法,也可用重要不等式证明结论证明:因为ξ所有可能取的值为0,1且P (ξ=0)=1-p,P(ξ=1)=p, 所以,E ξ=0×(1-p)+1×p=p则 D ξ=(0-p )2×(1-p)+(1-p) 2×p=p(1-p)其中ξA 、ξB 分别表示A 、B 两种钢筋的抗拉强度.在使用时要求钢筋的抗拉强度不低于120,试比较A 、B 两种钢筋哪一种质量较好分析: 两个随机变量ξA 和ξB &都以相同的概率0.1,0.2,0.4,0.1,0.2取5个不同的数值.ξA 取较为集中的数值110,120,125,130,135;ξB 取较为分散的数值100,115,125,130,145.直观上看,猜想A 种钢筋质量较好.但猜想不一定正确,需要通过计算来证明我们猜想的正确性解:先比较ξA 与ξB 的期望值,因为E ξA =110×0.1+120×0.2+125×0.4+130×0.1+135×0.2=125, E ξB =100×0.1+115×0.2+125×0.4十130×0.1+145×0.2=125.所以,它们的期望相同.再比较它们的方差.因为D ξA =(110-125)2×0.1+(120-125) 2 ×0.2+(130-125) 2×0.1+(135-125) 2×0.2=50,D ξB =(100-125)2×0.1+(110-125) 2 ×0.2+(130-125) 2×0.1+(145-125) 2×0.2=165.所以,D ξA < D ξB .因此,A 种钢筋质量较好6. 在有奖摸彩中,一期(发行10000张彩票为一期)有200个奖品是5元的,20个奖品是25元的,5个奖品是100元的.在不考虑获利的前提下,一张彩票的合理价格是多少元?分析:这是同学们身边常遇到的现实问题,比如福利彩票、足球彩票、奥运彩票等等.一般来说,出台各种彩票,政府要从中收取一部分资金用于公共福利事业,同时也要考虑工作人员的工资等问题.本题的“不考虑获利”的意思是指:所收资金全部用于奖品方面的费用解:设一张彩票中奖额为随机变量ξ,显然ξ所有可能取的值为0,5,25,100依题2.02000100500255054000E =⨯+⨯+⨯+⨯=ξ 答:一张彩票的合理价格是0.2元.五、小结 :⑴求离散型随机变量ξ的方差、标准差的步骤:①理解ξ的意义,写出ξ可能取的全部值;②求ξ取各个值的概率,写出分布列;③根据分布列,由期望的定义求出E ξ;④根据方差、标准差的定义求出、.若ξ~B (n ,p ),则不必写出分布列,直接用公式计算即可.⑵对于两个随机变量和,在和相等或很接近时,比较和,可以确定哪个随机变量的性质更适合生产生活实际,适合人们的需要六、课后作业:1.设~B(n 、p)且E=12 D=4,求n 、p解:由二次分布的期望与方差性质可知E=np D= np (1-p )∴ ∴⎪⎩⎪⎨⎧==3218p n 2.已知随机变量服从二项分布即~B(6、)求b (2;6,)解:p(=2)=c 62()2()43.已知甲、乙两名射手在一次射击中的得分为两个相互独立的随机变量和,已知和 的分布列如下:(注得分越大,水平越高)试分析甲、乙技术状况解:由0.1+0.6+a+1a=0.30.3+0.3+b=1a=0.4∴E=2.3 , E=2.0D=0.81 , D=0.6七、板书设计(略)八、课后记:。
学辅教育成功就是每天进步一点点!概率分布以及期望和方差上课时间 :上课教师:上课重点 :掌握两点分布、超几何分布、二项分布、正态分布的概率分布及其期望和方差上课规划:解题技巧和方法一两点分布知识内容⑴两点分布如果随机变量X 的分布列为X1 0P p q其中 0 p 1 , q 1 p ,则称离散型随机变量X服从参数为p的二点分布.二点分布举例:某次抽查活动中,一件产品合格记为 1,不合格记为 0 ,已知产品的合格率为 80% ,随机变量 X 为任意抽取一件产品得到的结果,则 X 的分布列满足二点分布.X100.8 0.2P两点分布又称 0 1 分布,由于只有两个可能结果的随机试验叫做伯努利试验,所以这种分布又称为伯努利分布.(2)典型分布的期望与方差:二点分布:在一次二点分布试验中,离散型随机变量X 的期望取值为p ,在 n 次二点分布试验中,离散型随机变量X 的期望取值为np .典例分析学辅教育成功就是每天进步一点点!,针尖向上;1、在抛掷一枚图钉的随机试验中,令 X1,如果针尖向上的,针尖向下 .概率为 p ,试写出随机变量X 的概率分布.2、从装有 6 只白球和 4 只红球的口袋中任取一只球,用X 表示“取到的白,当取到白球时,球个数”,即X1,求随机变量 X 的概率分布. ,当取到红球时,3、若随机变量 X 的概率分布如下:X1P23 8C9C C试求出 C ,并写出 X 的分布列.3、抛掷一颗骰子两次,定义随机变量0,(当第一次向上一面的点 数不等于第二次向上一 面的点数 )1, (当第一次向上一面的点数等于第二次向上一面的点数 )试写出随机变量 的分布列.4、篮球运动员比赛投篮,命中得1分,不中得 0 分,已知运动员甲投篮命中率的概率为 P .⑴记投篮1次得分X,求方差D ( X )的最大值;⑵当⑴中 D ( X ) 取最大值时,甲投3次篮,求所得总分Y的分布列及Y的期望与方差.二超几何分布知识内容将离散型随机变量X 所有可能的取值x i与该取值对应的概率p i (i 1, 2,, n)列表表示:X x1x2P p1p2⋯⋯x ip i⋯⋯x np n一般地,设有总数为N 件的两类物品,其中一类有M 件,从所有物品中任取 n 件 ( n ≤ N ) ,这 n 件中所含这类物品件数X 是一个离散型随机变量,它取值为 m 时的概率为P( X m)C M m C n N m M≤ l ,l为 n 和M中较小的一个 ) .C n N(0≤ m我们称离散型随机变量X 的这种形式的概率分布为超几何分布,也称X 服从参数为 N , M ,n的超几何分布.在超几何分布中,只要知道 N , M 和n,就可以根据公式求出 X 取不同值时的概率P( X m),从而列出 X 的分布列.超几何分布的期望和方差:若离散型随机变量 X 服从参数为N,M,n的超几何分布,则 E(X)nM,n(N n)( N M )M.ND(X)2(N 1)N典例分析例题:一盒子内装有 10 个乒乓球,其中 3 个旧的,7 个新的,从中任意取 4 个,则取到新球的个数的期望值是.练习 1. 某人参加一次英语口语考试,已知在备选的10道试题中,能答对其中的 6 题,规定每次考试都从备选题中随机抽出 5 题进行测试,每题分数为20分,求他得分的期望值.练习 2. 以随机方式自 5 男 3 女的小群体中选出 5 人组成一个委员会,求该委员会中女性委员人数的概率分布、期望值与方差.练习 3. 在12个同类型的零件中有2 个次品,抽取 3 次进行检验,每次任取一个,并且取出不再放回,若以和分别表示取出次品和正品的个数.求,的期望值及方差.三二项分布知识内容若将事件 A 发生的次数设为X ,事件 A 不发生的概率为q 1 p ,那么在 n 次独立重复试验中,事件 A 恰好发生k 次的概率是P( X k)C kn pk q n k,其中k0 , 1, 2 , n, .于是得到X的分布列X01⋯k⋯nP C 0n p0q n C1n p1q n 1⋯C n k p k q n k⋯C n n p n q0由于表中的第二行恰好是二项展开式(q p)n C0n p0 q n C1n p1q n 1C k n p k q n k C n n p n q0各对应项的值,所以称这样的散型随机变量X 服从参数为n,p 的二项分布,记作 X ~ B(n , p) .二项分布的均值与方差:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则E ( X ) np , D (x) npq (q1 p) .二项分布:若离散型随机变量X 服从参数为 n 和 p 的二项分布,则 E( X ) np ,D ( x) npq (q 1 p) .典例分析二项分布的概率计算1例题:已知随机变量服从二项分布, ~ B(4 , ) ,则 P(2)等于.练3习 1.甲乙两人进行围棋比赛,比赛采取五局三胜制,无论哪一方先胜三局则比赛结束,假定甲每局比赛获胜的概率均为2,则甲以 3:1 的比分获胜的3概率为( )A .8B .64C .4D .8278199练习 2.某篮球运动员在三分线投球的命中率是1,他投球 10 次,恰好投2进 3 个球的概率.(用数值表示)练习 3. 某人参加一次考试, 4 道题中解对 3 道则为及格,已知他的解题正确率为 0.4 ,则他能及格的概率为 _________(保留到小数点后两位小数)接种某疫苗后,出现发热反应的概率为0.80,现有 5 人接种了该疫苗,至少有 3 人出现发热反应的概率为.(精确到 0.01)例题 :从一批由 9 件正品, 3 件次品组成的产品中,有放回地抽取 5 次,每次抽一件,求恰好抽到两次次品的概率(结果保留2 位有效数字).练习 1. 一台X型号的自动机床在一小时内不需要人照看的概为0.8000 ,有四台这种型号的自动机床各自独立工作,则在一小时内至多有 2 台机床需要工人照看的概率是()A.0.1536B.0.1808C.0.5632D.0.9728练习 2. 设在 4 次独立重复试验中,事件A发生的概率相同,若已知事件A至少发生一次的概率等于65,求事件A在一次试验中发生的概率.81例题:某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审.假设评审结果为“支持”或“不支持”的概率都学辅教育成功就是每天进步一点点!是1.若某人获得两个“支持,”则给予 10万元的创业资助;若只获得一个“支2持”,则给予 5 万元的资助;若未获得“支持”,则不予资助.求:⑴ 该公司的资助总额为零的概率;⑵该公司的资助总额超过15万元的概率.练习 1. 某商场经销某商品,顾客可采用一次性付款或分期付款购买.根据以往资料统计,顾客采用一次性付款的概率是 0.6 ,经销一件该商品,若顾客采用一次性付款,商场获得利润 200 元;若顾客采用分期付款,商场获得利润250 元.⑴求3位购买该商品的顾客中至少有1位采用一次性付款的概率;⑵求3位位顾客每人购买1件该商品,商场获得利润不超过650元的概率.练习 2. 某万国家具城进行促销活动,促销方案是:顾客每消费1000元,便可获得奖券一张,每张奖券中奖的概率为1,若中奖,则家具城返还顾客5现金 200 元.某顾客消费了 3400 元,得到3张奖券.⑴求家具城恰好返还该顾客现金 200元的概率;⑵求家具城至少返还该顾客现金 200元的概率.例题:设飞机 A 有两个发动机,飞机 B 有四个发动机,如有半数或半数以上的发动机没有故障,就能够安全飞行,现设各个发动机发生故障的概率p 是t的函数p 1 e t ,其中t为发动机启动后所经历的时间,为正的常数,试讨论飞机 A 与飞机 B 哪一个安全?(这里不考虑其它故障).练习 1. 假设飞机的每一台发动机在飞行中的故障率都是1 P,且各发动机互不影响.如果至少50% 的发动机能正常运行,飞机就可以顺利地飞行.问对于多大的 P 而言,四发动机飞机比二发动机飞机更安全?练习 2. 一名学生每天骑车上学,从他家到学校的途中有 6 个交通岗,假设他在各个交通岗遇到红灯的事件是相互独立的,并且概率都是1 .3⑴设为这名学生在途中遇到红灯的次数,求的分布列;⑵设为这名学生在首次停车前经过的路口数,求的分布列;⑶求这名学生在途中至少遇到一次红灯的概率.二项分布的期望与方差例题 :已知X ~ B(10,0.8),求E( X )与D(X ).练习 1. 已知X ~ B(n,p),E ( X )8, D(X ) 1.6 ,则 n 与p的值分别为()A.10和0.8B.20和0.4C.10和 0.2D.100和 0.8练习 2.已知随机变量 X 服从参数为6,0.4的二项分布,则它的期望E(X ),方差 D(X).练习 3. 已知随机变量X服从二项分布,且E ( ) 2.4 ,D( ) 1.44 ,则二项分布的参数 n ,p的值分别为,.练习 4. 一盒子内装有10个乒乓球,其中3个旧的,7个新的,每次取一球,取后放回,取 4 次,则取到新球的个数的期望值是.例题:甲、乙、丙 3 人投篮,投进的概率分别是1,2,1.352⑴现 3 人各投篮 1 次,求 3 人都没有投进的概率;⑵用表示乙投篮 3 次的进球数,求随机变量的概率分布及数学期望.练习 1. 抛掷两个骰子,当至少有一个2点或3点出现时,就说这次试验成功.⑴ 求一次试验中成功的概率;⑵求在4次试验中成功次数X 的分布列及 X 的数学期望与方差.练习 2. 某寻呼台共有客户3000人,若寻呼台准备了100份小礼品,邀请客户在指定时间来领取.假设任一客户去领奖的概率为 4% .问:寻呼台能否向每一位顾客都发出奖邀请?若能使每一位领奖人都得到礼品,寻呼台至少应准备多少礼品?四正态分布知识内容概率密度曲线:样本数据的频率分布直方图,在样本容量越来越大时,直方图上面的折线所接近的曲线.在随机变量中,如果把样本中的任一数据看作随机变量 X ,则这条曲线称为 X 的概率密度曲线.曲线位于横轴的上方,它与横轴一起所围成的面积是1,而随机变量X 落在指定的两个数a,b 之间的概率就是对应的曲边梯形的面积.2.正态分布⑴定义:如果随机现象是由一些互相独立的偶然因素所引起的,而且每一个偶然因素在总体的变化中都只是起着均匀、微小的作用,则表示这样的随机现象的随机变量的概率分布近似服从正态分布.服从正态分布的随机变量叫做正态随机变量,简称正态变量.yx=μO x1( x)2正态变量概率密度曲线的函数表达式为f (x) e 22,x R ,其中,2π是参数,且0 , .式中的参数 和 分别为正态变量的数学期望和标准差. 期望为 、标准差为 的正态分布通常记作N ( ,2) .正态变量的概率密度函数的图象叫做正态曲线.⑵标准正态分布: 我们把数学期望为0 ,标准差为 1的正态分布叫做标准正态分布.①正态变量在区间( ,),(2 ,2 ),(3 ,3 )内,取值的概率分别是 68.3% , 95.4% , 99.7% .②正态变量在 (,) 内的取值的概率为 1,在区间 ( 3 ,3 ) 之外的取值的概率是 0.3% ,故正态变量的取值几乎都在距 x三倍标准差之内,这就是正态分布的3 原则.若 ~N(, 2) , f ( x) 为其概率密度函数,则称 F (x)P( ≤ x)xf (t )dt 为概率分布函数,特别的,,2x1t 2dt 为标准正态分布函数.2~ N (0 1 ) ,称 ( x)e2πP(x) (x) .标准正态分布的值可以通过标准正态分布表查得.典例分析(一)正态曲线(正态随机变量的概率密度曲线)1.下列函数是正态分布密度函数的是()1 ( x r ) 22 πe A . f ( x )B . f ( x )e22π2 πx 221 ( x1) 21 x 2ee2C . f ( x )4D . f ( x )22π2π2.若正态分布密度函数 f ( x)1( x 1) 2e 2( x R ) ,下列判断正确的是()2πA .有最大值,也有最小值B .有最大值,但没最小值C .有最大值,但没最大值D .无最大值和最小值3.对于标准正态分布 N 0 ,1 1 x 2的概率密度函数2 ,下列说法不正确f xe2 π的是()A.f x为偶函数B.f x最大值为12πC.f x在x0 时是单调减函数,在x ≤ 0 时是单调增函数D.f x关于x 1对称4.设的概率密度函数为1( x 1) 2e2f ( x)2πA.P(1) P(1)C.f (x)的渐近线是x0,则下列结论错误的是()B.P( 1≤ ≤1) P(11) D.1~ N(0 ,1)(二)求,的取值以及概率例题:设 X ~ N ( ,2 ) ,且总体密度曲线的函数表达式为:f (x)1x2 2 x 1e4,2πx R .⑴求,;⑵求 P(| x 1|2) 及 P(1 2 x 1 2 2) 的值.练习 1.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布,其密度函数为 f ( x)1( x 80)2,则下列命题中不正确的是()200e102A.该市这次考试的数学平均成绩为80 分B.分数在 120 分以上的人数与分数在60 分以下的人数相同C.分数在 110 分以上的人数与分数在50 分以下的人数相同D.该市这次考试的数学标准差为10(三)正态分布的性质及概率计算例题 :设随机变量服从正态分布N (0 ,1) ,a0 ,则下列结论正确的个数是____ .⑴ P(||a )P(||a)P(| | a)⑵ P(||a )2P(a)1⑶ P(||a )12P(a)⑷ P(||a )1P(||a)练习 1. 已知随机变量 X 服从正态分布 N (3 ,a 2 ) ,则 P( X 3)()A .1B .1C .1D .15 432练习 2. 在某项测量中,测量结果 X 服从正态分布 N 1, 20 ,若X 在 0,1内取值的概率为 0.4 ,则 X 在 0 ,2 内取值的概率为.练习 3.已知随机变量 X 服从正态分布 N (2 , 2) , P( X ≤ 4) 0.84 ,则 P(X ≤ 0)A . 0.16B . 0.32C . 0.68D . 0.84练习4.已知X~N( 1,2 ),若 P( 3≤ X ≤-1) 0.4,则 P( 3≤ X ≤1) ()A . 0.4B . 0.8C . 0.6D .无法计算加强训练:1 设随机变量 服从正态分布 N (2 ,9) ,若 P( c 2)P( c 2) ,则 c_______.2 设 ~ N(0 1),且 P(| | b) a(0 a 1 b 0) ,则 P(b) 的值是_______(用 a 表,,≥示).3 正态变量 X ~ N (1, 2 ) , c 为常数, c0 ,若 P(c X2c) P(2c X 3c ) 0.4,求P( X ≤ 0.5) 的值.4 某种零件的尺寸服从正态分布N (0 ,4) ,则不属于区间 ( 4 ,4) 这个尺寸范围的零件约占总数的.(四)正态分布的数学期望及方差例题:如果随机变量~ N( , 2),ED1,求 P( 1 1)的值.(五)正态分布的 3 原则例题 :灯泡厂生产的白炽灯寿命(单位: h ),已知 ~ N (1000 ,302 ) ,要使灯泡的平均寿命为1000h 的概率为 99.7% ,则灯泡的最低使用寿命应控制在_____ 小时以上.练习 1.一批电池(一节)用于手电筒的寿命服从均值为35.6 小时、标准差为4.4 小时的正态分布,随机从这批电池中任意取一节,问这节电池可持续使用不少于 40小时的概率是多少?练习 2. 某班有48名同学,一次考试后的数学成绩服从正态分布,平均分为80 ,标准差为 10,理论上说在 80 分到 90 分的人数是 ______.杂题(拓展相关:概率密度,分布函数及其他)练习 3. 以F x表示标准正态总体在区间, x 内取值的概率,若随机变量服从正态分布N ,2,则概率P等于()A.F F B.F1F1C.F 1D.2F练习 4.甲、乙两人参加一次英语口语考试,已知在备选的10 道题中,甲能答对其中的 6 题,乙能答对其中的 8 题.规定每次考试都从备选题中随机抽出 3 题进行测试,至少答对 2 题才算合格.⑴求甲答对试题数X的分布列、数学期望与方差;⑵ 求甲、乙两人至少有一人考试合格的概率.课后练习1、一个袋子里装有大小相同的 3 个红球和 2 个黄球,从中同时取出 2 个,则其中含红球个数的数学期望是_________.(用数字作答)2.、同时抛掷4枚均匀硬币80次,设4枚硬币正好出现2枚正面向上,2枚反面向上的次数为,则的数学期望是()A.20B.25C.30D.403、某服务部门有n个服务对象,每个服务对象是否需要服务是独立的,若每个服务对象一天中需要服务的可能性是p ,则该部门一天中平均需要服务的对象个数是()A.np(1 p)B.np C.n D.p(1 p)4、同时抛掷4枚均匀硬币 80次,设 4 枚硬币正好出现 2枚正面向上, 2 枚反面向上的次数为,则的数学期望是()A、20B.25C.30D.405、一个袋中有若干个大小相同的黑球、白球和红球.已知从袋中任意摸出 1个球,得到黑球的概率是2;从袋中任意摸出2个球,至少得到1个白5球的概率是7.9⑴若袋中共有 10 个球,从袋中任意摸出 3 个球,求得到白球的个数的数学期望;⑵求证:从袋中任意摸出 2 个球,至少得到 1 个黑球的概率不大于7 .并10指出袋中哪种颜色的球个数最少.5.某厂生产电子元件,其产品的次品率为5% ,现从一批产品中的任意连续取出 2 件,求次品数的概率分布列及至少有一件次品的概率.某单位为绿化环境,移栽了甲、乙两种大树各 2 株.设甲、乙两种大树移栽的成活率分别为5和4,且各株大树是否成活互不影响.求移栽的 4 株65大树中:⑴至少有 1 株成活的概率;⑵两种大树各成活 1 株的概率.6.一个口袋中装有n 个红球(n≥5且n N *)和5个白球,一次摸奖从中摸两个球,两个球颜色不同则为中奖.⑴试用 n 表示一次摸奖中奖的概率p ;⑵若 n 5 ,求三次摸奖(每次摸奖后放回)恰有一次中奖的概率;⑶记三次摸奖(每次摸奖后放回)恰有一次中奖的概率为P .当n取多少时, P 最大?7.袋子 A 和 B 中装有若干个均匀的红球和白球, 从 A 中摸出一个红球的概率是 1,从 B 中摸出一个红球的概率为p .3⑴从 A 中有放回地摸球,每次摸出一个,有 3 次摸到红球即停止.①求恰好摸 5 次停止的概率;②记 5 次之内(含 5 次)摸到红球的次数为,求随机变量 的分布.⑵若 A ,B 两个袋子中的球数之比为 1: 2 ,将 A ,B 中的球装在一起后,从中摸出一个红球的概率是 2,求 p 的值.58、一个质地不均匀的硬币抛掷 5 次,正面向上恰为 1次的可能性不为 0 ,而且与正面向上恰为2 次的概率相同.令既约分数i为硬币在 5 次抛掷中有 3j次正面向上的概率,求ij .9、某气象站天气预报的准确率为80% ,计算(结果保留到小数点后面第 2位)⑴5 次预报中恰有2次准确的概率;⑵ 5 次预报中至少有 2 次准确的概率;⑶5 次预报中恰有2次准确,且其中第3次预报准确的概率;10 、某大厦的一部电梯从底层出发后只能在第18,19,20层可以停靠.若该电梯在底层载有 5 位乘客,且每位乘客在这三层的每一层下电梯的概率均为1,求至少有两位乘客在 20 层下的概率.311、10 个球中有一个红球,有放回的抽取,每次取一球,求直到第n 次才取得 k(k ≤ n) 次红球的概率.12 、已知甲投篮的命中率是0.9,乙投篮的命中率是0.8,两人每次投篮都不受影响,求投篮 3 次甲胜乙的概率.(保留两位有效数字)13 、若甲、乙投篮的命中率都是p 0.5,求投篮n次甲胜乙的概率.( n N,n ≥ 1 )14、省工商局于某年 3 月份,对全省流通领域的饮料进行了质量监督抽查,结果显示,某种刚进入市场的 x 饮料的合格率为80%,现有甲,乙,丙3人聚会,选用 6 瓶x饮料,并限定每人喝 2 瓶,求:⑴甲喝 2 瓶合格的x饮料的概率;⑵甲,乙,丙 3 人中只有 1 人喝 2 瓶不合格的x饮料的概率(精确到0.01).15、在一次考试中出了六道是非题,正确的记“√”号不,正确的记“×”号若.某考生随手记上六个符号,试求:⑴全部是正确的概率;⑵正确解答不少于 4 道的概率;⑶至少答对 2 道题的概率.17、某大学的校乒乓球队与数学系乒乓球队举行对抗赛,校队的实力比系队强,当一个校队队员与系队队员比赛时,校队队员获胜的概率为0.6 .现在校、系双方商量对抗赛的方式,提出了三种方案:⑴双方各出 3人;⑵双方各出 5 人;⑶双方各出 7 人.三种方案中场次比赛中得胜人数多的一方为胜利.问:对系队来说,哪一种方案最有利?18、某地区为下岗人员免费提供财会和计算机培训,以提高下岗人员的再就业能力,每名下岗人员可以选择参加一项培训、参加两项培训或不参加培训,已知参加过财会培训的有60% ,参加过计算机培训的有75% ,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.⑴任选 1 名下岗人员,求该人参加过培训的概率;⑵任选 3 名下岗人员,记为3人中参加过培训的人数,求的分布和期望.19、设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为 0.6 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.记表示进入商场的 3 位顾客中至少购买甲、乙两种商品中的一种的人数,求的分布及期望.20、某班级有n人,设一年365天中,恰有班上的m(m≤n)个人过生日的天数为 X ,求 X 的期望值以及至少有两人过生日的天数的期望值.21、购买某种保险,每个投保人每年度向保险公司交纳保费a元,若投保人在购买保险的一年度内出险,则可以获得10000元的赔偿金.假定在一年度内有 10000人购买了这种保险,且各投保人是否出险相互独立.已知保险。
61随机变量的概率分布、期望与⽅差1如皋市薛窑中学2011届⾼三理科数学⼀轮复习61随机变量的概率分布、期望与⽅差【考点解读】离散型随机变量及其分布列:A;超⼏何分布:A;条件概率及相互独⽴事件:A;n次独⽴重复试验的模型及⼆项分布:B;离散型随机变量的均值与⽅差:B【复习⽬标】1?了解取有限值的离散型随机变量及其分布列的概念,了解分布列对于刻画随机现象的重要性;会求某些简单的离散型随机变量的分布列。
2?了解超⼏何分布及其导出过程,并能进⾏简单的应⽤。
3?了解条件概率和两个事件相互独⽴的概念( 对条件概率的应⽤题不作要求 )。
4 ?理解n次独⽴重复试验的模型及⼆项分布,并能解决⼀些简单的实际问题。
5?了解取有限值的离散型随机变量的均值、⽅差的意义,会根据离散型随机变量的分布列求出期望值、⽅差。
活动⼀:基础知识1. 随机变量:1) 定义: _________________________________________________________ 。
2) ____________________________________ 表⽰⽅法:。
2. 随机变量分布列的定义:假定随机变量X有n个不同的取值,它们分别是X1,X2丄X n且P(X=x i)=p i ,i=1,2, -n,①称①为随机变量X 的概率分布列,简称X 的分布列3. 概率分布表将①⽤表的形式表⽰如下:4. 分布列的性质:概率分布列中P(i 1,2L n)满⾜以下两个条件:(1) ______________________________(2) ______________________________5. 两点分布如果随机变量X只取两个可能值_0 和__________ 1 ___ ,则称该随机变量X服从0-1分布或两点分布并记为X?0-1或X?两点分布.其概率分布表为:其中⼁min{ M , n},且n N,M N,n,M,N N .称分布列(2)说明:①超⼏何分布的模型是不放回抽样;②超⼏何分布种的参数是(n, M , N);③记号H (r; n, M , N)中各个字母的含义: _________________________ 7. n 次独⽴重复试验定义:⼀般地,由n 次试验构成,且每次试验相互独⽴完成,每次试验的结果仅有两种对⽴的状态即A 与A ,每次试验中P(A) p 0,我们将这样的试验称为n 次独⽴重复试验.思考:n 次独⽴重复试验必须具备哪些条件? &⼆项分布定义:(1 )在n 次独⽴重复试验中,事件 A 恰好发⽣k ( 0 k n )次的概率为(2)若随机变量X 的分布列为P(X k) C ;p k q n k ,0 p 1, p q 1,k 0,1,2丄n ,则称X 服从参数为n, p 的⼆项分布,记作 X ~ B n, p . 9.随机变量的均值离散型随机变量的均值:般地,则称 _____________________________ 为随机变量X 的均值或数学期望,记为E(X)或其中X i 是随机变量X 的可能取值,p 是概率,P i 0,i 1,2,L , n, P 1P 2 L ⼏110.随机变量的⽅差与标准差 (1 )定义:离散型随机变量X 的分布列为则(X E(X))2描述了 X i (i 1,2丄,n)相对于均值E(X)的偏离程度. n⽽ V(X) (x EX)2p ii 1为这些偏离程度的加权平均,刻画了随机变量与其均值 E(X)的平均偏离程度,我们称 V(X)为随机变量X 的⽅差,其算数平⽅根为随机变量 X 的标准差. (2)⽅差的意义:⽅差是⼀个常⽤来体现随机变量 X 取值分散程度的量,如果 V(X)值⼤,表⽰X 取值分散程度⼤,E(X)的代表性差;⽽如果V(X)值⼩,表⽰X 取值分散程度⼩,E(X)的代表性好.(3 )离散型随机变量⽅差的计算:n①利⽤定义计算: V(X)X i 2 P i 2,其中P i 是X 的分布列.i 1②利⽤公式计算:V(X)E(X 2)(E(X))2.活动⼆:基础练习1 .袋中有⼤⼩相同的红球 6个、⽩球 5个,从袋中每次任意取岀1个球,直到取岀的球是⽩球时为⽌,所需要的取球次数为随机变量,则的可能值为答案 1 , 2,…,7为超⼏何分布列.如果随机变量(n, M,N)的超⼏何分布,记为并将P(Xr n r C M C N Mr)"C —JC NX 的分布列为超⼏何分布列,则称随机变量 X ~ H(n ,M ,N),0,1,2,L ,l 记为 H (r; n,M, N)X 服从参数为2.已知随机变量X的分布列为P (X=i)=丄 (i=1, 2, 3),则P (X=2)= .2a ----------------- 答案133?如果?B 15,丄,则使P ( =k)取最⼤值的k值为4 --------------答案3或44. 已知的概率分布则在下列式⼦中,① E ( ) =- 1;② V (3)=空;③ P( =0)= 1 .273正确的个数是.答案25.已知的分布列为=-1,0,1,对应P=!.2,1 , 1,且设=26 3+1,则的期望是答案236.甲、⼄两⼈轮流投篮直⾄某⼈投中为⽌,已知甲投篮每次投中的概率为0.4,⼄每次投篮投中的概率为0.6,各次投篮互不影响.设甲投篮的次数为,若⼄先投,且两⼈投篮次数之和不超过4次,求的概率分布.解因为⼄先投,且次数之和不超过4次,所以,甲投篮次数的随机变量可以是0, 1,2三个.由于⼄先投,若⼄第⼀次就投中,则甲就不再投,/? P ( =0) =0.6.当=1时,它包含两种情况.第⼀种:甲第1次投中,这种情况的概率为P1=0.4 X 0.4=0.16.第⼆种:甲第1次未投中,⼄第2次投中,这种情况的概率为P2=0.4 X 0.6 X 0.6=0.144 , /? P ( =1) =P!+P2=0.304.当=2时,投篮终⽌,/? P ( =2) =0.4 X 0.6 X 0.4=0.096.的概率分布为2活动三:典型例题例1某商场举⾏抽奖促销活动,抽奖规则是:从装有9个⽩球、1个红球的箱⼦中每次随机地摸出⼀个球,记下颜⾊后放回,摸出⼀个红球可获得奖⾦10元;摸出两个红球可获得奖⾦ 50元.现有甲、⼄两位顾客,规定:甲摸⼀次,⼄摸两次,令 X 表⽰甲、⼄两⼈摸球后获得的奖⾦总额 .求: (1) X 的概率分布; (2) X 的均值.9 19P(X =50)=兀X 孑=贡故X 的概率分布为X0 10 20 50 60 P729 243 18 9 1 1 0001 0001 0001 0001 000729 243 1891⑵ E (X ) =0X 帀+10X r^+20X 茴+50X 贡+60X 贡=3?3(元).⽴的,并且概率都是 1.3(1 )设X 为这名学⽣在途中遇到红灯的次数,求 X 的分布列;设Y 为这名学⽣在⾸次停车前经过的路⼝数,求 Y 的概率分布;(3 )求这名学⽣在途中⾄少遇到⼀次红灯的概率解 (1)将通过每个交通岗看做⼀次试验,则遇到红灯的概率为 1,且每次试验结果是相互独⽴的,故 X ?B ( 6,3所以X 的分布列为kP (X=k ) = C (5 - 35分(1) X 的所有可能取值为0,10,20,50,60.9 P (X=0)=— 10 3= 7291 000P (X=10) =— X10 9 10 + — X C 2X — X10 109 = 2431 000P(X=20)=10 C2 X丄X ?=旦10 10 1 000P(X=60)=110311 000 例2 ⼀名学⽣每天骑车上学,从他家到学校的途中有6个交通岗,假设他在各个交通岗遇到红灯的事件是相互独2 6,k=0,1,2, 3,4, 5,6.(2)由于Y表⽰这名学⽣在⾸次停车时经过的路⼝数,显然Y是随机变量,其取值为0, 1, 2, 3, 4, 5.其中:{Y=k} (k=0, 1, 2, 3, 4, 5)表⽰前k个路⼝没有遇上红灯,但在第k+1个路⼝遇上红灯,故各概率应按独⽴事件同时发⽣计算.k2P (Y=k)=-3⽽{ Y=6}表⽰⼀路没有遇上红灯,26 故其概率为P (Y=6)=-.38分因此Y的概率分布为:Y0123231121212P——■—3333333Y456456P 12122 33333(3)这名学⽣在途中⾄少遇到⼀次红灯的事件为{X> 1}={ X=1 或X=2 或…或X=6},分所以其概率为6P (X> 1) = P(X k) 1 P(X o)k 16=1- 2= 665?0.912.3 729分例3 甲、⼄两个野⽣动物保护区有相同的⾃然环境,且野⽣动物的种类和数量也⼤致相等,⽽两个保护区每个季度发现违反保护条例的事件次数的概率分布分别为0123P0.30.30.20.212 分1416试评定这两个保护区的管理⽔平 . 解甲保护区的违规次数的数学期望和⽅差为E( )=0 X 0.3+1 X 0.3+2 X 0.2+3 X 0.2=1.3;V()=(0-1.3)2X 0.3+(1-1.3)2X 0.3+(2-1.3)2X 0.2+(3-1.3)2X 0.2=1.21.⼄保护区的违规次数的数学期望和⽅差为E( )=0 X 0.1+0.5+2 X 0.4=1.3;V( )=(0-1.3) 2X 0.1+(1-1.3) 2X 0.5+(2-1.3) 2X 0.4=0.41.因为E( )=E(), V( ) >V(),所以两个保护区内每个季度发⽣的违规事件的平均次数相同,但甲保护区的违规事件次数相对分散和波动,⼄保护区内的违规事件次数更集中和稳定.活动四:⾃主检测答案 p (1-p )2.若某⼀射⼿射击所得环数 X 的概率分布如下:则此射⼿“射击⼀次命中环数 X > 7"的概率是 ____________ .3 .设 ?B ( n, p ),若有E( )=12 , V( )=4,则n 、p 的值分别为答案18,24.设随机变量X 的概率分布为:5. 有甲、⼄、丙、丁四名⽹球运动员,通过对过去战绩的统计,在⼀场⽐赛中,甲对⼄、丙、丁取胜的概率分别为 0.6,0.8,0.9.(1) 若甲和⼄之间进⾏三场⽐赛,求甲恰好胜两场的概率;(2) 若四名运动员每两⼈之间进⾏⼀场⽐赛,求甲恰好胜两场的概率; (3) 若四名运动员每两⼈之间进⾏⼀场⽐赛,设甲获胜场次为,求随机变量的概率分布. 解 (1)甲和⼄之间进⾏三场⽐赛,甲恰好胜两场的概率为 P=c 3 X 0.6 2X 0.4=0.432.(2)记“甲胜⼄”,“甲胜丙”,“甲胜丁"三个事件分别为A ,B ,。
概率与统计【题集】1. 条件概率与相互独立事件1.盒子中有个白球和个红球,现从盒子中依次不放回地抽取个球,那么在第一次抽出白球的条件下,第二次抽出红球的概率是 .【答案】【解析】设事件为第一次抽取的为白球;设事件为第二次抽到红球,∴;∴第一次抽到白球条件下,第二次抽到红球的概率为.故答案为:.【标注】【知识点】超几何分布;条件概率A.B.C.D.2.甲、乙两人进行围棋比赛,约定先连胜两局者直接赢得比赛.若赛完局仍未出现连胜,则判定获胜局数多者赢得比赛.假设每局甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立.则甲在局以内(含局)赢得比赛的概率为( ).【答案】A【解析】用表示“甲在局以内(含局)赢得比赛”,表示“第局甲胜”,表示“第局乙胜”,则,,,,,,,∴.故选项.【标注】【知识点】相互独立事件的概率乘法公式;互斥事件的概率加法公式2. 离散型随机变量的分布列、期望与方差A.B.C.D.3.设是一个服从两点分布的离散型随机变量,其分布列为:则的值为().【答案】A 【解析】,∴,∴.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列A.B.C.D.4.已知随机变量的分布列如表(其中为常数)则等于( ).【答案】C【解析】由概率之和等于可知,∴.故选.【标注】【知识点】离散型随机变量的分布列;概率的基本性质5.若随机变量的概率分布如表,则表中的值为 .【答案】【解析】由随机变量的概率分布表得:,解得.故答案为:.【标注】【知识点】概率的基本性质;互斥事件的概率加法公式A. B.C.D.6.设离散型随机变量的分布列为().若离散型随机变量满足,则下列结果正确的有( ).【答案】AC【解析】由离散型随机变量的分布列的性质得︰,则,,即,离散型随机变量满足,∴,故结果正确的有.故选.【标注】【知识点】期望与方差的性质3. 两点分布7.已知随机变量服从两点分布,且,设,那么.【答案】【解析】∵随机变量服从两点分布,且,∴,∴,设,则.【标注】【知识点】离散型随机变量的数学期望;两点分布A. B. C. D.8.设某项试验的成功率是失败率的倍,用随机变量去描述次试验的成功次数,则().【答案】C【解析】设失败率为,则成功率为.∴的分布列为:则“”表示试验失败,“”表示试验成功,∴由,得,即.故选.【标注】【知识点】离散型随机变量的分布列9.若的分布列为:其中,则,.【答案】 ;【解析】,,故答案为:,.【标注】【知识点】离散型随机变量的分布列A.和 B.和 C.和 D.和10.若随机变量服从两点分布,其中,则和的值分别是().【答案】D【解析】∵随机变量服从两点分布,且,∴,∴,,∴,.故选.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的方差A. B. C. D.11.某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为().【答案】D【解析】某电视台夏日水上闯关节目中的前三关的过关率分别为,,,只有通过前一关才能进入下一关,且通过每关相互独立.一选手参加该节目,则该选手只闯过前两关的概率为:.故选:.【标注】【知识点】两点分布;离散型随机变量的分布列;相互独立事件的概率乘法公式4. 次独立重复实验与二项分布A.,B.,C.,D.,12.已知随机变量服从二项分布,即,且,,则二项分布的参数,的值为().【答案】D【解析】由二项分布的期望和方差公式,,则,∴,,∴,∴.故选.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.13.已知服从二项分布的随机变量满足,则()的值为().【答案】B【解析】.故选.【标注】【知识点】n次独立重复试验与二项分布14.一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,则.【答案】【解析】∵一批产品的次品率为,从这批产品中每次随机取一件,有放回地抽取次,表示抽到的次品件数,∴,∴,故答案为:.【标注】【知识点】n次独立重复试验与二项分布15.某大厦的一部电梯从底层出发后只能在第,,层停靠,若该电梯在底层载有位乘客,且每位乘客在这三层的每一层下电梯的概率均为,用表示这位乘客在第层下电梯的人数,则.【答案】【解析】服从二项分布,即,∴.【标注】【知识点】n次独立重复试验与二项分布A. B. C. D.16.新冠肺炎病毒可以通过飞沫传染,佩戴口罩可以预防新冠肺炎病毒传染,已知,,三人与新冠肺炎病人甲近距离接触,由于,,三人都佩戴了某种类型的口罩,若佩戴了该种类型的口罩,近距离接触病人被感染的概率为,记,,三人中被感染的人数为,则的数学期望().【答案】B【解析】,,,,故.故选.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望(1)(2)17.在天猫进行大促期间,某店铺统计了当日所有消费者的消费金额(单位:元),如图所示:人数消费金额元将当日的消费金额超过元的消费者称为“消费达人”,现从所有“消费达人”中随机抽取人,求至少有位消费者,当日的消费金额超过元的概率.该店铺针对这些消费者举办消费返利活动,预设有如下两种方案:方案:按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”给予奖励金,每人分别为元、元和元.方案:每位会员均可参加线上翻牌游戏,每轮游戏规则如下:有张牌,背面都是相同的喜羊羊头像,正面有张笑脸、张哭脸,将张牌洗匀后背面朝上摆放,每次只能翻一张且每翻一次均重新洗牌,共翻三次.每翻到一次笑脸可得元奖励金.如果消费金额不超过元的消费者均可参加轮翻牌游戏;超过元且不超过元的消费者均可参加轮翻牌游戏;元以上的消费者均可参加轮翻牌游戏(每次、每轮翻牌的结果相互独立).以方案的奖励金的数学期望为依据,请你预测哪一种方案投资较少?并说明理由.【答案】(1)(2).方案投资较少;证明见解析.【解析】(1)记“在抽取的人中至少有位消费者消费超过元”为事件,由图可知,去年消费金额在内的有人,在内的有人,消费金额超过元的“消费达人”共有(人),从这人中抽取人,共有种不同方法,其中抽取的人中没有位消费者消费超过元,(2)共有种不同方法,所以.方案按分层抽样从消费金额在不超过元,超过元且不超过元,元以上的消费者中总共抽取位“幸运之星”,则“幸运之星”中的人数分别为:,,,按照方案奖励的总金额为:(元),方案设表示参加一轮翻牌游戏所获得的奖励金,则的可能取值为,,,,由题意,每翻牌次,翻到笑脸的概率为:,所以,,,,所以的分布列为:数学期望为:(元),按照方案奖励的总金额为:(元),因为由,所以施行方案投资较少.【标注】【知识点】组合;离散型随机变量的分布列;n次独立重复试验与二项分布;古典概型18.(1)(2)(3)年月,我国武汉地区爆发了新冠肺炎疫情,为了预防疫情蔓延,全国各地的学校都推迟年的春季线下开学,并采取了“停课不停学”的线上授课措施,某校为了解学生对线上课程的满意程度,随机抽取了学校中的名学生对线上课程进行评价打分,其得分情况的频率分布直方图如下:若根据频率分布直方图得到的评分不低于分的概率估计值为.频率组距评分求直方图中的,值,若评分的平均值不低于分视为满意,判断该校学生对线上课程是否满意?并说明理由.若采用分层抽样的方法,从评分在和内的学生中共抽取人,再从这人中随机抽取人检验他们的网课学习效果,求抽取到的人中至少一人评分在内的概率.若从该校学生中随机抽取人,记评分标准在的人数为,用频率估计概率,求随机变量的分布列与数学期望.【答案】(1)(2)(3)满意,证明见解析..的分布列为:.【解析】(1)(2)由已知得,解得,又,∴,评分的平均值为:,因此该校学生对线上课程满意.由题知评分在和内的频率分别为和,则抽取的人中,评分在内的为人,评分在的有人,记评分在的位学生为 , , ,(3)评分在内的位学生为,,则从人中任选人的所有可能结果为:,,,,,,,,,,共种,其中,评分在内的可能结果为,,,共种,∴这人中至少一人评分在的概率为.学生在分的频率为,用频率估计概率,则每个学生评分在分的概率为,据题意知,的可能取值为,,,,所以,,,,,那么的分布列为:则数学期望,或知.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望;古典概型;用样本的数字特征估计总体的数字特征问题;众数、中位数、平均数;频率分布直方图;分层随机抽样19.改革开放年来,体育产业蓬勃发展反映了“健康中国”理念的普及.下图是我国年至年体育产业年增加值及年增速图.其中条形图为体育产业年增加值(单位:亿元),折线图为体育产业年增长率().(1)(2)(3)体育产业增加值体育产业年增长率从年至年随机选择年,求该年体育产业年增加值比前一年的体育产业年增加值多亿元以上的概率.从年至年随机选择年,设是选出的三年中体育产业年增长率超过的年数,求的分布列与数学期望.由图判断,从哪年开始连续三年的体育产业年增长率方差最大?从哪年开始连续三年的体育产业年增加值方差最大?(结论不要求证明)【答案】(1)(2)(3).分布列为:期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【解析】(1)(2)设表示事件“从年至年随机选出年,该年体育产业年增加值比前一年的体育产业年增加值多亿元以上”.由题意可知,年,年,年,年满足要求,故.由题意可知,的所有可能取值为,,,,且;;;.(3)所以的分布列为:故的期望值.从年或年开始连续三年的体育产业年增长率方差最大.从年开始连续三年的体育产业增加值方差最大.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)20.已知某同学每次投篮的命中率为,且每次投篮是否命中相互独立,该同学投篮次.求至少有次投篮命中的概率.设投篮命中的次数为,求的分布列和期望.【答案】(1)(2).的分布列为:.【解析】(1)(2)设次投篮至少有次投篮命中为事件,则,∴至少有次投篮命中的概率为.由题意知的可能取值为,,,,,,,,,,,,∴的分布列为:∵,∴.【标注】【知识点】离散型随机变量的分布列;n次独立重复试验与二项分布;离散型随机变量的数学期望5. 超几何分布A. B. C. D.21.某小组有名男生,名女生,从中任选名同学参加活动,若表示选出女生的人数,则().【答案】C【解析】名男生,名女生中任选名参加活动,则女生人数为人时,女生人数为人时,,∴,∴故答案选.【标注】【素养】数学运算;逻辑推理【知识点】超几何分布(1)(2)22.已知箱中装有个白球和个黑球,且规定:取出一个白球得分,取出一个黑球得分.现从该箱中任取(无放回,且每球取到的机会均等)个球,记随机变量为取出球所得分数之和.求的分布列;求的数学期望.【答案】(1)(2)分布列为.【解析】(1)(2)的可能取值有:45.,故所求的分布列为所求的数学期望为.【标注】【知识点】超几何分布,,,(1)(2)23.某学校组织一项益智游戏,要求参加该益智游戏的同学从道题目中随机抽取道回答,至少答对道可以晋级.已知甲同学能答对其中的道题.设甲同学答对题目的数量为,求的分布列及数学期望.求甲同学能晋级的概率.【答案】(1)(2)的分布列为数学期望..【解析】(1)(2)可取,,,,则,,,,的分布列为.甲同学能晋级的概率.【标注】【知识点】离散型随机变量的数学期望;离散型随机变量的分布列(1)(2)24.在某年级的联欢会上设计一根摸奖游戏,在一个口袋中装有个红球和个白球,这些球除颜色外完全相同,一次从中摸出个球,表示摸出红球的个数.求的分布列.(用数字作答)至少摸到个红球就中奖,求中奖的概率.(用数字作答)【答案】(1)(2).【解析】(1)(2)的取值为,,,,设摸出个红球的概率为,,,,.中奖的概率为.【标注】【知识点】超几何分布;离散型随机变量的数学期望;离散型随机变量的分布列25.年突如其来的新冠疫情,不仅是一场危机,更是一场考验,给人民的生命财产,身体健康和经济社会发展都带来了巨大的挑战.在党中央的坚强领导下,国内疫情防控取得了阶段性的成果.某企业在此期间积极应对疫情带来的影响,拓展线上经营业务,创造就业机会.该企业招聘员工,其中、、、、五种岗位的应聘人数、录用人数和录用比例(精确到)如下:岗位男性应聘人数男性录用人数男性录用比例女性应聘人数女性录用人数女性录用比例(1)(2)(3)总计从表中所有应聘人员中随机选择人,试估计此人被录用的概率.从应聘岗位的人中随机选择人.记为这人中被录用的人数,求的分布列和数学期望.表中、、、、各岗位的男性、女性录用比例都接近(二者之差的绝对值不大于),但男性的总录用比例却明显高于女性的总录用比例.研究发现,若只考虑其中某四种岗位,则男性、女性的总录用比例也接近,请写出这四种岗位.(只需写出结论)【答案】(1)(2)(3).的分布列为:.,,,【解析】(1)(2)(3)由表可得:应聘人员总数为:,被录用的人数为:,所以从表中所有应聘人员中随机选择人,此人被录用的概率为:.可能的取值为,,,∵岗位的人中,被录用的有人,未被录用的有人,∴,,,∴的分布列为:∴.取掉岗位,男性录用比例为:,女性录用比例为:,∴去掉岗位后,男女比例接近,∴这四种岗位是:,,,.【标注】【知识点】离散型随机变量的分布列;古典概型;分层随机抽样频率组距重量克(1)(2)(3)26.某食品厂为了检查一条自动包装流水线的生产情况,随机抽取该流水线上的件产品作为样本并称出它们的重量(单位:克),重量的分组区间为,,,,,由此得到样本的频率分布直方图,如图所示.求的值.在上述抽取的件产品中任取件,设为重量超过克的产品数量,求的分布列.用这件产品组成的样本中各组产品出现的频率估计概率,现在从流水线上任取件产品,求恰有件产品的重量超过克的概率.【答案】(1)(2)(3)..【解析】(1)(2)频率分布直方图中每个矩形面积之和为,可得,解得.件产品中任取件重量超过克的产品数量为:,的所有取值为,,;,(3),,从流水线上任取件产品,重量超过克的概率为,重量不超过克的概率为,恰有件产品的重量超过克的概率.【标注】【知识点】离散型随机变量的分布列;n 次独立重复试验与二项分布;频率分布直方图(1)(2)27.从名演员中选人参加表演.求甲在乙前表演的概率.若甲参加表演,门票收入会增长万元,若乙参加表演,门票收入会增长万元,若甲乙都参加演出,门票收入会增加万元,记门票增长为(万元),求的分布列和数学期望.【答案】(1)(2)..【解析】(1)(2)记“甲在乙前表演”为事件,∴,∴甲在乙前表演的概率是.可能取值有,,,,∴,,,,∴的分布列为:∴.【标注】【知识点】离散型随机变量的数学期望;古典概型(1)(2)(3)28.新生婴儿性别比是指在某段时间内新生儿中男婴人数与女婴人数的比值的倍.下表是通过抽样调查得到的某地区年到年的年新生婴儿性别比.年份新生婴儿性别比根据样本数据,估计从该地区年的新生儿中随机选取人为女婴的概率(精确到).从年到年这五年中,随机选取两年,用表示该地区的新生婴儿性别比高于的年数,求的分布列和数学期望.根据样本数据,你认为能否否定“生男孩和生女孩是等可能的”这个判断?并说明理由.【答案】(1)(2)(3).的分布列为的数学期望.可以否定,证明见解析;不能否定,证明见解析;无法判断,证明见解析.【解析】(1)(2)设“从该地区年的新生儿中随机选取人为女婴”为事件,则.的可能取值为,,,,,,所以的分布列为(3)所以的数学期望.答案一:可以否定;从样本数据看这五年的男婴在新生儿中的比例都高于,由样本估计总体,所以可以否定“生男孩和生女孩是等可能的”这个判断;答案二:不能否定;尽管从样本数据看这五年的男婴在新生儿中的比例都高于,但由于抽样调查本身存在一定的随机性,且从数据上看,男女婴在新生儿中的比例都近似于,所以不能否定“生男孩和生女孩是等可能的”这个判断;答案三:无法判断;由于样本容量未知,如果样本容量较小,那么通过样本数据不能“否定生男孩和生女孩是等可能的”这个判断,如果样本容量足够大,那么根据样本数据,可以否定“生男孩和生女孩是等可能的”这个判断.【标注】【知识点】古典概型;离散型随机变量的数学期望;超几何分布;离散型随机变量的分布列(1)(2)(3)29.年月份,我国湖北武汉出现了新型冠状病毒,人感染后会出现发热、咳嗽、气促和呼吸困难等,严重的可导致肺炎甚至危及生命.为了增强居民防护意识,增加居民防护知识,某居委会利用网络举办社区线上预防新冠肺炎知识答题比赛,所有居民都参与了防护知识网上答卷,最终甲、乙两人得分最高进入决赛,该社区设计了一个决赛方案:①甲、乙两人各自从个问题中随机抽个.已知这个问题中,甲能正确回答其中的个,而乙能正确回答每个问题的概率均为,甲、乙两人对每个问题的回答相互独立、互不影响;②答对题目个数多的人获胜,若两人答对题目个数相同,则由乙再从剩下的道题中选一道作答,答对则判乙胜,答错则判甲胜.求甲、乙两人共答对个问题的概率.试判断甲、乙谁更有可能获胜?并说明理由.求乙答对题目数的分布列和期望.【答案】(1)(2)(3).乙胜出的可能性更大,证明见解析.分布列为:期望.【解析】(1)(2)(3)推出两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个.然后求解甲、乙两名学生共答对个问题的概率.甲、乙共答对个问题分别为:两人共答题,甲答对个,乙答对个,两人共答题,甲答对个,乙答对个,所以甲、乙两名学生共答对个问题的概率﹔.故答案为:.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,然后求解概率;设乙获胜为事件,则,为对立事件,求出的概率,得到结论.设甲获胜为事件,则事件包含“两人共答题甲获胜”和“两人共答题甲获胜”两类情况,其中第一类包括甲乙答对题个数比为,,,,,六种情况,第二类包括前三题甲乙答对题个数比为,,三种情况,所以甲胜的概率,设乙获胜为事件,则,为对立事件,所以,,所以乙胜出的可能性更大.设学生乙答对的题数为,则的所有可能取值为,,,,,求出概率,得到随机变量的分布列,然后求解期望.设学生乙答对的题数为,则的所有可能取值为,,,,,,,,,,所以随机变量的分布列为:所以期望.【标注】【知识点】离散型随机变量的分布列;离散型随机变量的数学期望;古典概型的概率计算(涉及计数原理)6. 正态分布A. B. C. D.30.已知随机变量,若,,则=().【答案】D【解析】根据题意,,∵随机变量,∴,故选:.【标注】【知识点】正态分布31.已知随机变量服从正态分布,若,则.【答案】【解析】因为,所以.【标注】【知识点】正态分布A.B.C.D.32.下列有关说法正确的是( ).的展开式中含项的二项式系数为的展开式中含项的系数为已知随机变量 服从正态分布,,则已知随机变量 服从正态分布,,则【答案】ACD【解析】、选项:对于二项式的展开式中项为,∴系数为,二次项系数为,故正确,错误;、选项:对于随机变量服从正态分布,∵,∴,∴,又∵对于随机变量服从正态分布且正态分布为∴,故正确、正确.故选.【标注】【知识点】求二项式展开式的特定项;求项的系数或二项式系数;正态分布33.在某市年月份的高三质量检测考试中,所有学生的数学成绩服从正态分布,现任取一名学生,则他的数学成绩在区间内的概率为 .(附:若,则,.)【答案】【解析】∵学生的数学成绩服从正态分布,∴,.故答案为.【标注】【知识点】正态分布A.B.C.D.34.在一次数学测验中,学生的成绩服从正态分布,其中分为及格线,分为优秀线.下面说法正确的是( ).附:;;.学生数学成绩的期望为学生数学成绩的标准差为学生数学成绩及格率超过学生数学成绩不及格的人数和优秀的人数大致相等【答案】AC 【解析】,,∴,显然正确,错误;.,故正确;.,故错误.故选.【标注】【知识点】正态分布35.已知随机变量,,其正态分布的密度曲线如图所示,则下列说法错误的是( ).A.B.C.D.的取值比的取值更集中于平均值左右两支密度曲线与轴之间的面积均为【答案】B【解析】A 选项:B 选项:C 选项:D 选项:因为,,故正确;由图可知,故错误;因为正态分布曲线越瘦高,数据越集中,故正确;根据正态分布曲线的性质可知,故正确.故选 B .【标注】【知识点】正态分布(1)(2)(3)36.某市需对某环城快速道路进行限速,为了调查该道路的车速情况,于某个时段随机对辆车的速度进行取样,根据测量的车速制成下表:车速频数经计算,样本的平均值,标准差,以频率作为概率的估计值.已知车速过慢与过快都被认为是需矫正速度,现规定车速小于或车速大于需矫正速度.从该快速车道上的所有车辆中任取辆,求该车辆需矫正速度的概率.从样本中任取辆车,求这辆车均需矫正速度的概率.从该快速车道上的所有车辆中任取辆,记其中需矫正速度的车辆数为.求的分布列和数学期望.【答案】(1).(2)(3).分布列:,.【解析】(1)(2)(3),,∴小于有辆,大于有辆,∴所求概率..,,,∴,,,∴分布列:,∴.【标注】【知识点】正态分布;离散型随机变量的数学期望;古典概型(1)1(2)37.为了解某市高三数学复习备考情况,该市教研机构组织了一次检测考试,并随机抽取了部分高三理科学生数学成绩绘制如图所示的频率分布直方图:分数频率组距根据频率分布直方图,估计该市此次检测理科数学的平均成绩.精确到个位)研究发现,本次检测的理科数学成绩近似服从正态分布(,约为),按以往的统计数据,理科数学成绩能达到自主招生分数要求的同学约占.2估计本次检测成绩达到自主招生分数要求的理科数学成绩大约是多少分?(精确到个位)从该市高三理科学生中随机抽取人,记理科数学成绩能达到自主招生分数要求的人数为,求的分布列及数学期望.(说明:表示的概率.参考数据(,)【答案】(1)12(2)..分布列为:∴.【解析】(1)12(2).设本次检测成绩达到自主招生分数要求的理科数学成绩为,则,∴,∴,解得.由题意可知,∴,,,,,,∴的分布列为:∴.【标注】【知识点】n 次独立重复试验与二项分布;离散型随机变量的数学期望38.《山东省高考改革试点方案》规定:从年秋季高中入学的新生开始,不分文理科;年高考总成绩由语数外三门统考科目和物理,化学等六门选考科目组成,将每门选考科目的考生原始成绩从高到低划分为、,,,、、、共个等级,参照正态分布原则,确定各等级人。
第九节 离散型随机变量的期望与方差、正态分布1.均值与方差理解取有限个值的离散型随机变量均值、方差的概念,能计算简单 离散型随机变量的均值、方差,并能解决一些实际问题. 2.正态分布利用实际问题的直方图,了解正态分布曲线的特点及曲线所表示的 意义. 知识点一 均值1.一般地,若离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则称E (X )=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为随机变量X 的均值或数学期望,它反映了离散型随机变量取值的平均水平.2.若Y =aX +b ,其中a ,b 为常数,则Y 也是随机变量,且E (aX +b )=aE (X )+b . 3.(1)若X 服从两点分布,则E (X )=p . (2)若X ~B (n ,p ),则E (X )=np .易误提醒 理解均值E (X )易失误,均值E (X )是一个实数,由X 的分布列唯一确定,即X 作为随机变量是可变的,而E (X )是不变的,它描述X 值的取值平均状态.[自测练习]1.已知X 的分布列为X -1 0 1 P121316设Y =2X +3,则E (Y )A.73 B .4 C .-1D .1 解析:E (X )=-12+16=-13,E (Y )=E (2X +3)=2E (X )+3=-23+3=73.答案:A知识点二 方差1.设离散型随机变量X 的分布列为:X x 1 x 2 … x i … x n Pp 1p 2…p i…p n则(x i -E (X ))2描述了x i (i =1,2,…,n )相对于均值E (X )的偏离程度,而D (X )=∑ni =1(x i -E (X ))2p i 为这些偏离程度的加权平均,刻画了随机变量X 与其均值E (X )的平均偏离程度.称D (X )为随机变量X 的方差,其算术平方根D (X )为随机变量X 的标准差.2.D (aX +b )=a 2D (X ).3.若X 服从两点分布,则D (X )=p (1-p ). 4.若X ~B (n ,p ),则D (X )=np (1-p ).易误提醒 (1)D (ξ)表示随机变量ξ对E (ξ)的平均偏离程度.D (ξ)越大,表明平均偏离程度越大,说明ξ的取值越分散.反之D (ξ)越小,ξ的取值越集中在E (ξ)附近.统计中常用标准差D (ξ) 来描述ξ的分散程度.(2)D (ξ)与E (ξ)一样也是一个实数,由ξ的分布列唯一确定.(3)D (ξ)的单位与随机变量ξ的单位不同,而E (ξ)、D (ξ) 与ξ的单位相同. (4)注意E (aX +b )=aE (X )+b ,D (aX +b )=a 2D (X ).[自测练习]2.已知随机变量ξ的分布列为P (ξ=k )=13,k =1,2,3,则D (3ξ+5)=( )A .6B .9C .3D .4解析:由E (ξ)=13(1+2+3)=2,得D (ξ)=23,D (3ξ+5)=32×D (ξ)=6. 答案:A3.有一批产品,其中有12件正品和4件次品,从中有放回地任取3件,若X 表示取到次品的次数,则D (X )=________.解析:∵X ~B ⎝⎛⎭⎫3,14,∴D (X )=3×14×34=916. 答案:916知识点三 正态分布 1.正态曲线的特点(1)曲线位于x 轴上方,与x 轴不相交. (2)曲线是单峰的,它关于直线x =μ对称. (3)曲线在x =μ处达到峰值1σ2π.(4)曲线与x 轴之间的面积为1.(5)当σ一定时,曲线随着μ的变化而沿x 轴平移.(6)当μ一定时,曲线的形状由σ确定.σ越小,曲线越“瘦高”,表示总体的分布越集中;σ越大,曲线越“矮胖”,表示总体的分布越分散.2.正态分布的三个常用数据 (1)P (μ-σ<X ≤μ+σ)=0.682_6. (2)P (μ-2σ<X ≤μ+2σ)=0.954_4. (3)P (μ-3σ<X ≤μ+3σ)=0.997_4.易误提醒 一个随机变量如果是众多的、互不相干的、不分主次的偶然因素作用结果之和,它就服从或近似服从正态分布.[自测练习]4.若随机变量ξ~N (2,1),且P (ξ>3)=0.158 7,则P (ξ>1)=________.解析:由ξ~N (2,1),得μ=2,因为P (ξ>3)=0.158 7,所以P (ξ<1)=0.158 7,所以P (ξ>1)=1-0.158 7=0.841 3.答案:0.841 3考点一 离散型随机变量的均值|(2015·高考安徽卷)已知2件次品和3件正品混放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束.(1)求第一次检测出的是次品且第二次检测出的是正品的概率;(2)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).[解] (1)记“第一次检测出的是次品且第二次检测出的是正品”为事件A ,P (A )=A 12A 13A 25=310.(2)X 的可能取值为200,300,400. P (X =200)=A 22A 25=110,P (X =300)=A 33+C 12C 13A 22A 35=310,P (X =400)=1-P (X =200)-P (X =300)=1-110-310=610.故X 的分布列为X 200 300 400 P110310610E (X )=200×110+300×310+400×610=350.求离散型随机变量均值的步骤(1)理解随机变量X 的意义,写出X 可能取得的全部值. (2)求X 的每个值的概率. (3)写出X 的分布列. (4)由均值定义求出E (X ).1.(2016·合肥模拟)某校在全校学生中开展物理和化学实验操作大比拼活动,活动要求:参加者物理、化学实验操作都必须参加,有50名学生参加这次活动,评委老师对这50名学生实验操作进行评分,每项操作评分均按等级采用5分制(只打整数分),评分结果统计如表:学生数物理得分y化学得分x1分2分3分4分5分1分 1 3 1 0 1 2分 1 0 7 5 1 3分 2 1 0 9 3 4分 1 2 6 0 1 5分1133分”的学生被抽取的概率;(2)从这50名参赛学生中任取1名,其物理实验与化学实验得分之和为ξ,求ξ的数学期望.解:(1)从表中可以看出,“化学实验得分为4分且物理实验得分为3分”的学生有6名,所以“化学实验得分为4分且物理实验得分为3分”的学生被抽取的概率为650=325.(2)ξ所有可能的取值为2、3、4、5、6、7、8、9、10,则ξ的分布列为:ξ 2 3 4 5 6 7 8 9 10 P1504503509508501650450250350∴E (ξ)=2×150+3×450+4×350+5×950+6×850+7×1650+8×450+9×250+10×350=31150.考点二 方差问题|设袋子中装有a 个红球,b 个黄球,c 个蓝球,且规定:取出一个红球得1分,取出一个黄球得2分,取出一个蓝球得3分.(1)当a =3,b =2,c =1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量X 为取出此2球所得分数之和,求X 的分布列;(2)从该袋子中任取(每球取到的机会均等)1个球,记随机变量Y 为取出此球所得分数.若E (Y )=53,D (Y )=59,求a ∶b ∶c .[解] (1)由题意得X =2,3,4,5,6. 故P (X =2)=3×36×6=14,P (X =3)=2×3×26×6=13,P (X =4)=2×3×1+2×26×6=518,P (X =5)=2×2×16×6=19,P (X =6)=1×16×6=136.所以X 的分布列为X 2 3 4 5 6 P141351819136(2)由题意知Y 的分布列为Y 1 2 3 Paa +b +cba +b +cca +b +c所以E (Y )=a a +b +c +2b a +b +c +3c a +b +c =53,D (Y )=⎝⎛⎭⎫1-532·a a +b +c +⎝⎛⎭⎫2-532·b a +b +c +⎝⎛⎭⎫3-532·c a +b +c =59. 化简得⎩⎪⎨⎪⎧ 2a -b -4c =0,a +4b -11c =0.解得⎩⎪⎨⎪⎧a =3c ,b =2c .故a ∶b ∶c =3∶2∶1.利用均值、方差进行决策的两个方略(1)当均值不同时,两个随机变量取值的水平可见分晓,可对问题作出判断.(2)若两随机变量均值相同或相差不大,则可通过分析两变量的方差来研究随机变量的离散程度或者稳定程度,进而进行决策.2.有甲、乙两种棉花,从中各抽取等量的样品进行质量检验,结果如下:X 甲 28 29 30 31 32 P 0.1 0.15 0.5 0.15 0.1 X 乙 28 29 30 31 32 P0.130.170.40.170.13其中X 表示纤维长度(单位:mm),根据纤维长度的均值和方差比较两种棉花的质量. 解:由题意,得E (X 甲)=28×0.1+29×0.15+30×0.5+31×0.15+32×0.1=30, E (X 乙)=28×0.13+29×0.17+30×0.4+31×0.17+32×0.13=30.又D (X 甲)=(28-30)2×0.1+(29-30)2×0.15+(30-30)2×0.5+(31-30)2×0.15+(32-30)2×0.1=1.1,D (X 乙)=(28-30)2×0.13+(29-30)2×0.17+(30-30)2×0.4+(31-30)2×0.17+(32-30)2×0.13=1.38,所以E (X 甲)=E (X 乙),D (X 甲)<D (X 乙),故甲种棉花的质量较好.考点三 正态分布|1.(2015·高考湖北卷)设X ~N (μ1,σ21),Y ~N (μ2,σ22),这两个正态分布密度曲线如图所示.下列结论中正确的是( )A .P (Y ≥μ2)≥P (Y ≥μ1)B .P (X ≤σ2)≤P (X ≤σ1)C .对任意正数t ,P (X ≥t )≥P (Y ≥t )D .对任意正数t ,P (X ≤t )≥P (Y ≤t )解析:由正态分布密度曲线的性质可知,X ~N (μ1,σ21),Y ~N (μ2,σ22)的密度曲线分别关于直线x =μ1,x =μ2对称,因此结合题中所给图象可得,μ1<μ2,所以P (Y ≥μ2)<P (Y ≥μ1),故A 错误.又X ~N (μ1,σ21)的密度曲线较Y ~N (μ2,σ22)的密度曲线“瘦高”,所以σ1<σ2,所以P (X ≤σ2)>P (X ≤σ1),B 错误.对任意正数t ,P (X ≤t )≥P (Y ≤t ),P (X ≥t )<P (Y ≥t ),C 错误,D 正确.答案:D2.(2015·高考山东卷)已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ-σ<ξ<μ+σ)=68.26%,P (μ-2σ<ξ<μ+2σ)=95.44%.)A .4.56%B .13.59%C .27.18%D .31.74%解析:由已知μ=0,σ=3.所以P (3<ξ<6)=12[P (-6<ξ<6)-P (-3<ξ<3)]=12(95.44%-68.26%)=12×27.18%=13.59%.故选B.答案:B正态总体在某个区间内取值的概率求法(1)熟记P (μ-σ<X ≤μ+σ),P (μ-2σ<X ≤μ+2σ),P (μ-3σ<X ≤μ+3σ)的值; (2)充分利用正态曲线的对称性和曲线与x 轴之间面积为1.①正态曲线关于直线x =μ对称,从而在关于x =μ对称的区间上概率相等. ②P (X <a )=1-P (X ≥a ),P (X <μ-a )=P (X ≥μ+a ).10.离散型随机变量的均值的综合问题的答题模板【典例】 (12分)(2015·高考山东卷)若n 是一个三位正整数,且n 的个位数字大于十位数字,十位数字大于百位数字,则称n 为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.(1)写出所有个位数字是5的“三位递增数”; (2)若甲参加活动,求甲得分X 的分布列和数学期望EX .[思路点拨] (1)根据题意明确“三位递增数”的定义,从而得到个位数字是5的“三位递增数”.(2)首先根据题意确定随机变量X 的所有可能取值,然后求出每个取值对应事件的概率,列出分布列,从而求得数学期望.[规范解答] (1)个位数是5的“三位递增数”有 125,135,145,235,245,345.(4分)(2)由题意知,全部“三位递增数”的个数为C 39=84, 随机变量X 的取值为:0,-1,1,因此 P (X =0)=C 38C 39=23,P (X =-1)=C 24C 39=114,P (X =1)=1-114-23=1142.(8分)所以X 的分布列为则EX =0×23+(-1)×114+1×1142=421.(12分)[模板形成]理解题意求相应事件的概率↓由条件写出随机变量的取值↓求出每个取值对应事件的概率↓列出分布列并求均值↓反思解题过程注意规范化[跟踪练习] 据《中国新闻网》报道,全国很多省、市将英语考试作为高考改革的重点,一时间“英语考试该如何改”引起广泛关注.为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了 3 600人就是否应该“取消英语听力”的问题进行调查,调查统计的结果如下表:(1)现用分层抽样的方法在所有参与调查的人中抽取360人进行问卷访谈,则应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人平均分成两组进行深入交流,求第一组中在校学生人数ξ的分布列和数学期望E (ξ).解:(1)∵抽到持“应该保留”态度的人的概率为0.05, ∴120+x3 600=0.05,解得x =60. ∴持“无所谓”态度的人数为3 600-2 100-120-600-60=720. ∴应在持“无所谓”态度的人中抽取720×3603 600=72(人).(2)由(1)知持“应该保留”态度的一共有180人,∴在所抽取的6人中,在校学生有120180×6=4(人),社会人士有60180×6=2(人),于是第一组的在校学生人数ξ的所有可能取值为1,2,3.P (ξ=1)=C 14C 22C 36=15,P (ξ=2)=C 24C 12C 36=35,P (ξ=3)=C 34C 02C 36=15,即ξ的分布列为∴E (ξ)=1×15+2×35+3×15=2.A 组 考点能力演练1.若离散型随机变量X 的分布列为则X 的数学期望E (X )=( ) A .2 B .2或12C.12D .1 解析:因为分布列中概率和为1,所以a 2+a 22=1,即a 2+a -2=0,解得a =-2(舍去)或a =1,所以E (X )=12.故选C.答案:C2.(2016·长春质量监测)已知随机变量ξ服从正态分布N (1,σ2),若P (ξ>2)=0.15,则P (0≤ξ≤1)=( )A .0.85B .0.70C .0.35D .0.15解析:P (0≤ξ≤1)=P (1≤ξ≤2)=0.5-P (ξ>2)=0.35.故选C. 答案:C3.(2016·九江一模)已知随机变量X 服从正态分布N (5,4),且P (X >k )=P (X <k -4),则k 的值为( )A .6B .7C .8D .9解析:∵(k -4)+k 2=5,∴k =7,故选B.答案:B4.在某次数学测试中,学生成绩ξ服从正态分布N (100,σ2)(σ>0),若ξ在(80,120)内的概率为0.8,则ξ在(0,80)内的概率为( )A .0.05B .0.1C .0.15D .0.2解析:根据正态曲线的对称性可知,ξ在(80,100)内的概率为0.4,因为ξ在(0,100)内的概率为0.5,所以ξ在(0,80)内的概率为0.1,故选B.答案:B5.设随机变量X ~B (8,p ),且D (X )=1.28,则概率p 的值是( ) A .0.2 B .0.8 C .0.2或0.8D .0.16解析:由D (X )=8p (1-p )=1.28,∴p =0.2或p =0.8. 答案:C6.一枚质地均匀的正六面体骰子,六个面上分别刻着1点到6点,一次游戏中,甲、乙二人各掷骰子一次,若甲掷得的向上的点数比乙大,则甲掷得的向上的点数的数学期望是________.解析:共有36种可能,其中,甲、乙掷得的向上的点数相等的有6种,甲掷得的向上的点数比乙大的有15种,所以所求期望为6×5+5×4+4×3+3×2+215=143.答案:1437.(2016·贵州七校联考)在我校2015届高三11月月考中理科数学成绩ξ~N (90,σ2)(σ>0),统计结果显示P (60≤ξ≤120)=0.8,假设我校参加此次考试有780人,那么试估计此次考试中,我校成绩高于120分的有________人.解析:因为成绩ξ~N (90,σ2),所以其正态曲线关于直线x =90对称.又P (60≤ξ≤120)=0.8,由对称性知成绩在120分以上的人数约为总人数的12(1-0.8)=0.1,所以估计成绩高于120分的有0.1×780=78(人).答案:788.设随机变量ξ服从正态分布N (3,4),若P (ξ<2a -3)=P (ξ>a +2),则a 的值为________. 解析:因为随机变量ξ服从正态分布N (3,4),P (ξ<2a -3)=P (ξ>a +2),所以2a -3+a +2=6,解得a =73.答案:739.市一中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求直方图中x 的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X ,求X 的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20x +0.025×20+0.006 5×20+0.003×2×20=1,所以x =0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以估计1 200名新生中有144名学生可以申请住宿. (3)X 的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为14,P (X =0)=⎝⎛⎭⎫344=81256,P (X =1)=C 14×14×⎝⎛⎭⎫343=2764,P (X =2)=C 24×⎝⎛⎭⎫142×⎝⎛⎭⎫342=27128,P (X =3)=C 34×⎝⎛⎭⎫143×34=364,P (X =4)=⎝⎛⎭⎫144=1256.所以X 的分布列为E (X )=0×81256+1×2764+2×27128+3×364+4×1256=1(或E (X )=4×14=1).所以X 的数学期望为1.10.(2016·郑州模拟)某商场每天(开始营业时)以每件150元的价格购入A 商品若干件(A 商品在商场的保鲜时间为10小时,该商场的营业时间也恰好为10小时),并开始以每件300元的价格出售,若前6小时内所购进的商品没有售完,则商场对没卖出的A 商品将以每件100元的价格低价处理完毕(根据经验,4小时内完全能够把A 商品低价处理完毕,且处理完毕后,当天不再购进A 商品).该商场统计了100天A 商品在每天的前6小时内的销售量,制成如下表格(注:视频率为概率).(其中x +y =70)前6小时内的销售量t (单位:件)4 5 6 频数30xy(1)若某天该商场共购入6件该商品,在前6个小时中售出4件.若这些商品被6名不同的顾客购买,现从这6名顾客中随机选2人进行服务回访,则恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客的概率是多少?(2)若商场每天在购进5件A 商品时所获得的平均利润最大,求x 的取值范围. 解:(1)设“恰好一个是以300元价格购买的顾客,另一个是以100元价格购买的顾客”为事件A ,则P (A )=C 14C 12C 26=815.(2)设销售A 商品获得的利润为ξ(单位:元),依题意,视频率为概率,为追求更多的利润,则商场每天购进的A 商品的件数取值可能为4件,5件,6件. 当购进A 商品4件时,E (ξ)=150×4=600,当购进A 商品5件时,E (ξ)=(150×4-50)×0.3+150×5×0.7=690, 当购进A 商品6件时,E (ξ)=(150×4-2×50)×0.3+(150×5-50)×x100+150×6×70-x100=780-2x ,由题意780-2x ≤690,解得x ≥45,又知x ≤100-30=70,所以x 的取值范围为[45,70],x ∈N *.B 组 高考题型专练1.(2015·高考湖南卷)在如图所示的正方形中随机投掷10 000个点,则落入阴影部分(曲线C 为正态分布N (0,1)的密度曲线)的点的个数的估计值为( ) A .2 386 B .2 718 C .3 413D.4 772附:若X~N(μ,σ2),则P(μ-σ<X≤μ+σ)=0.682 6,P(μ-2σ<X≤μ+2σ)=0.954 4.解析:由题意可得,P(0<x≤1)=12P(-1<x≤1)=0.341 3,设落入阴影部分的点的个数为n,则P=S阴影S正方形=0.341 31=n10 000,则n=3 413,选C.答案:C2.(2015·高考福建卷)某银行规定,一张银行卡若在一天内出现3次密码尝试错误,该银行卡将被锁定.小王到该银行取钱时,发现自己忘记了银行卡的密码,但可以确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则结束尝试;否则继续尝试,直至该银行卡被锁定.(1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X,求X的分布列和数学期望.解:(1)设“当天小王的该银行卡被锁定”的事件为A,则P(A)=56×45×34=12.(2)依题意得,X所有可能的取值是1,2,3.又P(X=1)=16,P(X=2)=56×15=16,P(X=3)=56×45×1=23.所以X的分布列为所以E(X)=1×16+2×16+3×23=52.3.(2015·高考陕西卷)设某校新、老校区之间开车单程所需时间为T,T只与道路畅通状况有关,对其容量为100的样本进行统计,结果如下:(1)求T(2)刘教授驾车从老校区出发,前往新校区做一个50分钟的讲座,结束后立即返回老校区,求刘教授从离开老校区到返回老校区共用时间不超过120分钟的概率.解:(1)由统计结果可得T的频率分布为以频率估计概率得从而ET=25×0.2+30(2)设T1,T2分别表示往、返所需时间,T1,T2的取值相互独立.且与T的分布列相同.设事件A表示“刘教授共用时间不超过120分钟”,由于讲座时间为50分钟,所以事件A对应于“刘教授在路途中的时间不超过70分钟”.法一:P(A)=P(T1+T2≤70)=P(T1=25,T2≤45)+P(T1=30,T2≤40)+P(T1=35,T2≤35)+P(T1=40,T2≤30)=0.2×1+0.3×1+0.4×0.9+0.1×0.5=0.91.法二:P(A)=P(T1+T2>70)=P(T1=35,T2=40)+P(T1=40,T2=35)+P(T1=40,T2=40)=0.4×0.1+0.1×0.4+0.1×0.1=0.09.故P(A)=1-P(A)=0.91.。
离散型随机变量的期望值和方差●知识梳理1.期望:若离散型随机变量ξ,当ξ=x i 的概率为P (ξ=x i )=P i (i =1,2,…,n ,…),则称E ξ=∑x i p i 为ξ的数学期望,反映了ξ的平均值.2.方差:称D ξ=∑(x i -E ξ)2p i 为随机变量ξ的均方差,简称方差. D 叫标准差,反映了ξ的离散程度.3.性质:(1)E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ(a 、b 为常数). (2)若ξ~B (n ,p ),则E ξ=np ,D ξ=npq (q =1-p ). ●点击双基1.设投掷1颗骰子的点数为ξ,则ξ=,D ξ=ξ=,D ξ=1235 ξ=,D ξ=ξ=,D ξ=1635 解析:ξ可以取1,2,3,4,5,6.P (ξ=1)=P (ξ=2)=P (ξ=3)=P (ξ=4)=P (ξ=5)=P (ξ=6)=61, ∴E ξ=1×61+2×61+3×61+4×61+5×61+6×61=, D ξ=[(1-)2+(2-)2+(3-)2+(4-)2+(5-)2+(6-)2]×61=65.17=1235. 答案:B2.设导弹发射的事故率为,若发射10次,其出事故的次数为ξ,则下列结论正确的是ξ=ξ=(ξ=k )=·-k(ξ=k )=C k10··-k解析:ξ~B (n ,p ),E ξ=10×=. 答案:A3.已知ξ~B (n ,p ),且E ξ=7,D ξ=6,则p 等于 A.71B.61 C.51 D.41 解析:E ξ=np =7,D ξ=np (1-p )=6,所以p =71. 答案:A4.一牧场有10头牛,因误食含有病毒的饲料而被感染,已知该病的发病率为.设发病的牛的头数为ξ,则D ξ等于解析:D ξ=10××=. 答案:C5.有两台自动包装机甲与乙,包装重量分别为随机变量ξ1、ξ2,已知E ξ1=E ξ2,D ξ1>D ξ2,则自动包装机________的质量较好.解析:E ξ1=E ξ2说明甲、乙两机包装的重量的平均水平一样.D ξ1>D ξ2说明甲机包装重量的差别大,不稳定.∴乙机质量好.答案:乙●典例剖析【例1】 设ξ是一个离散型随机变量,其分布列如下表,试求E ξ、D ξ.ξ-10 1 P1-2qq 2剖析:应先按分布列的性质,求出q 的值后,再计算出E ξ、D ξ.解:因为随机变量的概率非负且随机变量取遍所有可能值时相应的概率之和等于1,所以⎪⎪⎩⎪⎪⎨⎧≤≤-≤=+-+,1,1210,1212122q p q q 解得q =1-22. 于是,ξ的分布列为ξ-11P2-123-2 所以E ξ=(-1)×21+0×(2-1)+1×(23-2)=1-2, D ξ=[-1-(1-2)]2×21+(1-2)2×(2-1)+[1-(1-2)]2×(23-2)=2-1.评述:解答本题时,应防止机械地套用期望和方差的计算公式,出现以下误解:E ξ=(-1)×21+0×(1-2q )+1×q 2=q 2-21. 拓展提高既要会由分布列求E ξ、D ξ,也要会由E ξ、D ξ求分布列,进行逆向思维.如:若ξ是离散型随机变量,P (ξ=x 1)=53,P (ξ=x 2)=52,且x 1<x 2,又知E ξ=57,D ξ=256.求ξ的分布列. 解:依题意ξ只取2个值x 1与x 2,于是有 E ξ=53x 1+52x 2=57, D ξ=53x 12+52x 22-E ξ2=256. 从而得方程组⎪⎩⎪⎨⎧=+=+.1123,723222121x x x x 解之得⎩⎨⎧==2,121x x 或⎪⎪⎩⎪⎪⎨⎧==.54,5921x x而x 1<x 2,∴x 1=1,x 2=2. ∴ξ的分布列为ξ12P【例2】 人寿保险中(某一年龄段),在一年的保险期内,每个被保险人需交纳保费a 元,被保险人意外死亡则保险公司赔付3万元,出现非意外死亡则赔付1万元.经统计此年龄段一年内意外死亡的概率是p 1,非意外死亡的概率为p 2,则a 需满足什么条件,保险公司才可能盈利?剖析:要使保险公司能盈利,需盈利数ξ的期望值大于0,故需求E ξ. 解:设ξ为盈利数,其概率分布为ξa a -30000a -10000P1-p 1-p 2p 1p 2且E ξ=a (1-p 1-p 2)+(a -30000)p 1+(a -10000)p 2=a -30000p 1-10000p 2. 要盈利,至少需使ξ的数学期望大于零,故a >30000p 1+10000p 2. 评述:离散型随机变量的期望表征了随机变量取值的平均值.思考讨论本题中D ξ有什么实际意义?【例3】 把4个球随机地投入4个盒子中去,设ξ表示空盒子的个数,求E ξ、D ξ.剖析:每个球投入到每个盒子的可能性是相等的.总的投球方法数为44,空盒子的个数可能为0个,此时投球方法数为A 44=4!,∴P (ξ=0)=44!4=646;空盒子的个数为1时,此时投球方法数为C 14C 24A 33, ∴P (ξ=1)=6436. 同样可分析P (ξ=2),P (ξ=3). 解:ξ的所有可能取值为0,1,2,3.P (ξ=0)=4444A =646,P (ξ=1)=43324144A C C =6436,P (ξ=2)=422242424244A C C C C =6421,P (ξ=3)=4144C =641. ∴ξ的分布列为 ξ123P∴E ξ=6481,D ξ=264. 评述:本题的关键是正确理解ξ的意义,写出ξ的分布列.特别提示求投球的方法数时,要把每个球看成不一样的.ξ=2时,此时有两种情况:①有2个空盒子,每个盒子投2个球;②1个盒子投3个球,另1个盒子投1个球.●闯关训练 夯实基础1.设服从二项分布B (n ,p )的随机变量ξ的期望和方差分别是与,则二项分布的参数n 、p 的值为 =4,p = =6,p = =8,p ==24,p =解析:由E ξ==np ,D ξ==np (1-p ),可得 1-p =4.244.1=,p =,n =4.04.2=6. 答案:B2.一射手对靶射击,直到第一次命中为止每次命中的概率为,现有4颗子弹,命中后的剩余子弹数目ξ的期望为解析:ξ=0,1,2,3,此时P (ξ=0)=,P (ξ=1)=×,P (ξ=2)=×,P (ξ=3)=,E ξ=. 答案:C3.设一次试验成功的概率为p ,进行100次独立重复试验,当p =________时,成功次数的标准差的值最大,其最大值为________.解析:D ξ=npq ≤n (2q p +)2=4n ,等号在p =q =21时成立,此时,D ξ=25,σξ=5. 答案:215 4.甲从学校乘车回家,途中有3个交通岗,假设在各交通岗遇红灯的事件是相互独立的,并且概率都是52,则甲回家途中遇红灯次数的期望为________. 解析:设甲在途中遇红灯次数为ξ,则ξ~B (3,52), 所以E ξ=3×52=. 答案:5.一次单元测试由50个选择题构成,每个选择题有4个选项,其中恰有1个是正确答案.每题选择正确得2分,不选或错选得0分,满分是100分.学生甲选对任一题的概率为,求他在这次测试中成绩的期望和标准差.解:设学生甲答对题数为ξ,成绩为η,则ξ~B (50,),η=2ξ,故成绩的期望为E η=E (2ξ)=2E ξ=2×50×=80(分);成绩的标准差为ση=ηD =)2(ξD =ξD 4=22.08.050⨯⨯=42≈(分).6.袋中有4只红球,3只黑球,今从袋中随机取出4只球.设取到一只红球得2分,取到一只黑球得1分,试求得分ξ的概率分布和数学期望.解:直接考虑得分的话,情况较复杂,可以考虑取出的4只球颜色的分布情况: 4红得8分,3红1黑得7分,2红2黑得6分,1红3黑得5分,故P (ξ=5)=473314C C C =354, P (ξ=6)=472324C C C =3518,P (ξ=7)=471334C C C =3512, P (ξ=8)=470344C C C =351,E ξ=5×354+6×3518+7×3512+8×351=35220=744. 培养能力7.一台设备由三大部件组成,在设备运转中,各部件需要调整的概率相应为,和.假设各部件的状态相互独立,以ξ表示同时需要调整的部件数,试求ξ的数学期望E ξ和方差D ξ.解:设A i ={部件i 需要调整}(i =1,2,3),则P (A 1)=,P (A 2)=,P (A 3)=. 由题意,ξ有四个可能值0,1,2,3.由于A 1,A 2,A 3相互独立,可见 P (ξ=0)=P (1A 2A 3A )=××=;P (ξ=1)=P (A 12A 3A )+P (1A A 23A )+P (1A 2A A 3)=××+××+××=; P (ξ=2)=P (A 1A 23A )+P (A 12A A 3)+P (1A A 2A 3)=××+××+××=; P (ξ=3)=P (A 1A 2A 3)=××=. ∴E ξ=1×+2×+3×=,D ξ=E ξ2-(E ξ)2=1×+4×+9×-=-=. 8.证明:事件在一次实验中发生的次数的方差不超过41. 证明:设事件在一次试验中发生的次数为ξ,ξ的可能取值为0或1,又设事件在一次试验中发生的概率为p ,则P (ξ=0)=1-p ,P (ξ=1)=p ,E ξ=0×(1-p )+1×p =p ,D ξ=(1-p )·(0-p )2+p (1-p )2=p (1-p )≤(21p p -+)2=41. 所以事件在一次试验中发生的次数的方差不超过41. 探究创新9.将数字1,2,3,4任意排成一列,如果数字k 恰好出现在第k 个位置上,则称之为一个巧合,求巧合数的数学期望.解:设ξ为巧合数,则P (ξ=0)=44A 9=249,P (ξ=1)=4414A 2C ⨯=31,P (ξ=2)=4424A C =41,P (ξ=3)=0,P (ξ=4)=4444A C =241, 所以E ξ=0×249+1×31+2×41+3×0+4×241=1. 所以巧合数的期望为1. ●思悟小结1.离散型随机变量的期望和方差都是随机变量的重要的特征数,期望反映了随机变量的平均值,方差反映了随机变量取值的稳定与波动、集中与离散的程度.2.求离散型随机变量的期望与方差,首先应明确随机变量的分布列,若分布列中的概率值是待定常数,应先求出这些待定常数后,再求其期望与方差.3.离散型随机变量的期望和方差的计算公式与运算性质: E ξ=∑∞=1i x i p i,D ξ=∑∞=1i (x i-E ξ)2p i,E (a ξ+b )=aE ξ+b ,D (a ξ+b )=a 2D ξ.4.二项分布的期望与方差:若ξ~B (n ,p ),则E ξ=np ,D ξ=np (1-p ).5.对求离散型随机变量的期望和方差的应用问题,首先应仔细地分析题意,当概率分布不是一些熟知的类型时,应全面地剖析各个随机变量所包含的各种事件,并准确判断各事件的相互关系,从而求出各随机变量相应的概率.●教师下载中心 教学点睛1.期望是算术平均值概念的推广,是概率意义下的平均.E ξ由ξ的分布列唯一确定.ξ表示ξ对E ξ的平均偏离程度,D ξ越大表示平均偏离程度越大,说明ξ的取值越分散.3.要培养学生运用期望与方差的意义解决实际问题的能力.拓展题例【例1】 若随机变量A 在一次试验中发生的概率为p (0<p <1),用随机变量ξ表示A 在1次试验中发生的次数.(1)求方差D ξ的最大值; (2)求ξξE D 12-的最大值. 剖析:要求D ξ、ξξE D 12-的最大值,需求D ξ、E ξ关于p 的函数式,故需先求ξ的分布列. 解:随机变量ξ的所有可能取值为0,1,并且有P (ξ=1)=p ,P (ξ=0)=1-p ,从而E ξ=0×(1-p )+1×p =p ,D ξ=(0-p )2×(1-p )+(1-p )2×p =p -p 2.(1)D ξ=p -p 2=-(p -21)2+41, ∵0<p <1, ∴当p =21时,D ξ取得最大值为41. (2)ξξE D 12-=p p p 1)(22--=2-(2p +p1),∵0<p <1,∴2p +p1≥22. 当且仅当2p =p1,即p =22时,ξξE D 12-取得最大值2-22.评述:在知识的交汇点处出题是高考的发展趋势,应引起重视.【例2】 袋中装有一些大小相同的球,其中有号数为1的球1个,号数为2的球2个,号数为3的球3个,…,号数为n 的球n 个.从袋中任取一球,其号数作为随机变量ξ,求ξ的概率分布和期望.解:ξ的概率分布为E ξ=1×)1(n n ++2×)1(n n ++3×)1(+n n +…+n ×)1(+n n=)1(2n n +(12+22+32+…+n 2)=312+n .。
1.采用系统抽样方法从960人中抽取32人做问卷调查,为此将他们随机编号为1,2,……,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A ,编号落入区间[451,750]的人做问卷B ,其余的人做问卷C.则抽到的人中,做问卷B 的人数为 (A )7 (B ) 9 (C ) 10 (D )15解:采用系统抽样方法从960人中抽取32人,将整体分成32组,每组30人,即30=l ,第k 组的号码为930)1(+-k ,令750930)1(451≤+-≤k ,而z k ∈,解得2516≤≤k ,则满足2516≤≤k 的整数k 有10个,故答案应选C 。
2.某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校 高中三个年级的学生中抽取容量为50的样本,则应从高二年级抽取 15 名学生.解:分层抽样又称分类抽样或类型抽样。
将总体划分为若干个同质层,再在各层内随机抽样或机械抽样,分层抽样的特点是将科学分组法与抽样法结合在一起,分组减小了各抽样层变异性的影响,抽样保证了所抽取的样本具有足够的代表性。
因此,由350=15334⨯++知应从高二年级抽取15名学生。
3、某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了了解该单位职工的健康情况,用分层抽样的方法从中抽取样本 . 若样本中的青年职工为7人,则样本容量为B (A )7 (B )15 (C )25 (D )35 解:青年职工、中年职工、老年职工三层之比为7:5:3,所以样本容量为715715=4、从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图)。
由图中数据可知a = 0.030 。
若要从身高在[ 120 , 130),[130 ,140) , [140 , 150]三组内的学生中,用分层抽样的方法选取18人参加一项活动,则从身高在[140 ,150]内的学生中选取的人数应为 3 。
5. 从甲乙两个城市分别随机抽取16台自动售货机,对其销售额进行统计,统计数据用茎叶图表示(如图所示),设甲乙两组数据的平均数分别为x 甲,x 乙,中位数分别为m 甲,m 乙,则( B )A .x x <甲乙,m 甲>m 乙B .x x <甲乙,m 甲<m 乙C .x x >甲乙,m 甲>m 乙D .x x >甲乙,m 甲<m 乙解:经计算得:x 甲=21.5625,x 乙=28.5625,m 甲=20,m 乙=29,故选B6.样本(12,,,n x x x )的平均数为x ,样本(12,,m y y y )的平均数为()y x y ≠,若样本(12,,,n x x x ,12,,m y y y )的平均数(1)z a x a y =+-,其中102α<<,则n ,m 的大小关系为( A )A .n m <B .n m >C .n m =D .不能确定由统计学知识,可得1212,n m x x x n x y y y m y +++=+++= ,()()()12121n m x x x y y y m n z m n x y αα⎡⎤+++++++=+=++-⎣⎦ ()()()1m n x m n yαα=+++-,所以()()()1n x m y m n x m n y αα+=+++-.所以()()(),1.n m n m m n αα=+⎧⎪⎨=+-⎪⎩故()[(1)]()(21)n m m n m n ααα-=+--=+-.因为102α<<,所以210α-<.所以0n m -<.即n m <.7.变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1).1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则 ( C )A.012<<r rB. 120r r <<C.120r r <<D. 12r r =解:由 ()()()()∑∑∑===----=ni ini ini i iyyxxyy x xr 12121知,第一组变量正相关,第二组变量负相关.8.设1122(,),(,)x y x y ,…,(,)n n x y 是变量x 和y 的n 个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归方程(如图),以下结论中正确的是 ( D ) A.x 和y 的相关系数为直线l 的斜率 B.x 和y 的相关系数在0到1之间 C.当n 为偶数时,分布在l 两侧的样本点的个数一定相同 D.直线l 过点(,)x y9.设某大学的女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i=1,2,…,n ),用最小二乘法建立的回归方程为 y =0.85x-85.71,则下列结论中不正确的是D A.y 与x 具有正的线性相关关系 B.回归直线过样本点的中心(x ,y )C.若该大学某女生身高增加1cm ,则其体重约增加0.85kgD.若该大学某女生身高为170cm ,则可断定其体重比为58.79kg解:由回归方程为 y =0.85x-85.71知y 随x 的增大而增大,所以y 与x 具有正的线性相关关系,由最小二乘法建立的回归方程得过程知ˆ()y bx a bx y bx a y bx =+=+-=-,所以回归直线过样本点的中心(x ,y ),利用回归方程可以预测估计总体,所以D 不正确.10.某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差___2=s .165解:可以先把这组数都减去6再求方差,可求得方差为165.11.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个.若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_35______.【解】所取出的2个球颜色不同的概率113225C C 233C105P ⨯===.12. 从个位数与十位数之和为奇数的两位数中任取一个,其个位数为0的概率是( D )()A 49()B 13()C 29()D 19①个位数为1,3,5,7,9时,十位数为2,4,6,8,个位数为0,2,4,6,8时,十位数为1,3,5,7,9,共45个 ②个位数为0时,十位数为1,3,5,7,9,共5个别个位数为0的概率是51459=13.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是___13__.解:由古典概型的概率公式得24213P C==.14.现有10个数,它们能构成一个以1为首项,3-为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是35.解:∵以1为首项,3-为公比的等比数列的10个数为1,-3,9,-27,···其中有5个负数,1个正数1计6个数小于8,∴从这10个数中随机抽取一个数,它小于8的概率是63=105。
15.三位同学参加跳高、跳远、铅球项目的比赛,若每人都选择其中两个项目,则有且仅有两人选择的项目完全相同的概率是32 (结果用最简分数表示).解一共有27种取法,其中有且只有两个人选择相同的项目的取法共有18种,所以根据古典概型得到此种情况下的概率为32.16.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率是B A.15B.25C.35D.45解:由古典概型的概率公式得522155222233232222=+-=A A A A A A A P .#练.某艺校在一天的6节课中随机安排语文、数学、外语三门文化课和其他三门艺术课各1节,则在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为 3____5(用数字作答).解:概率为语文、数学、英语三门文化课间隔一节艺术课,排列有种排法,语文、数学、英语三门文化课相邻有3344A A 种排法,语文、数学、英语三门文化课两门相邻有3312122223A C C A C 种排法。
故所有的排法种数有在课表上的相邻两节文化课之间最多间隔1节艺术课的概率为3517.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为A A.13B.12C.23D.3418.甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是 ( D ) A.136B.19C.536D.16【解】 甲乙两人各自独立任选4个景点的情形共有4466A A ⋅(种);最后一小时他们同在一个景点的情形有33556A A ⋅⨯(种),所以33554466616A A P A A ⋅⨯==⋅.19、两个实习生每人加工一个零件.加工为一等品的概率分别为23和34,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为B (A )12(B)512 (C)14 (D)16解:记两个零件中恰好有一个一等品的事件为A ,则P(A)=P(A 1)+ P(A 2)=211335+=43412⨯⨯20、某篮球队员在比赛中每次罚球的命中率相同,且在两次罚球中至多命中一次的概率为1625,则该队员每次罚球的命中率为____________ 解:由251612=-p 得53=p21、投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A,“骰子向上的点数是3”为事件B,则事件A ,B 中至少有一件发生的概率是 C A512B12C712D3422.如图,矩形A B C D 中,点E 为边C D 的中点,若在矩形A B C D 内部随机取一个点Q ,则点Q 取自ΔABE 内部的概率等于 ( C ). A .14B .13C .12D .23【解】因为Δ12ABE ABC D S S =,则点Q 取自ΔABE 内部的概率Δ12ABE ABC DS P S ==.故选C . 24.如图所示,在边长为1的正方形OABC 中任取一点P ,则点P 恰好取自阴影部分的概率为( C )A .41 B .51 C .61 D .71DCBEA解:111)(=⨯=ΩS ,⎰-=1)()(dx x x A S 61|)2132(10223=-=x x 。