全等三角形教学案例
- 格式:doc
- 大小:27.00 KB
- 文档页数:3
2教案全等三角形教师版范文大全第一篇:2教案全等三角形教师版2.全等三角形知识考点:掌握用三角形全等的判定定理来解决有关的证明和计算问题,灵活运用三角形全等的三个判定定理来证明三角形全等。
精典例题:【例1】如图,已知AB⊥BC,DC⊥BC,E在BC上,AE=AD,AB=BC。
求证:CE=CD。
分析:作AF⊥CD的延长线(证明略)评注:寻求全等的条件,在证明两条线段(或两个角)相等时,若它们所在的两个三角形不全等,就必须添加辅助线,构造全等三角形,常见辅助线有:①连结某两个已知点;②过已知点作某已知直线的平行线;③延长某已知线段到某个点,或与已知直线相交;④作一角等于已知角。
AFDA34E1A12CEBBD2PCBEC例1图例2图问题一图【例2】如图,已知在△ABC中,∠C=2∠B,∠1=∠2,求证:AB =AC+CD。
分析:采用截长补短法,延长AC至E,使AE=AB,连结DE;也可在AB上截取AE=AC,再证明EB=CD(证明略)。
探索与创新:【问题一】阅读下题:如图,P是△ABC中BC边上一点,E是AP 上的一点,若EB=EC,∠1=∠2,求证:AP⊥BC。
证明:在△ABE和△ACE中,EB=EC,AE=AE,∠1=∠2 ∴△ABE≌△ACE(第一步)∴AB=AC,∠3=∠4(第二步)∴AP⊥BC(等腰三角形三线合一)上面的证明过程是否正确?若正确,请写出每一步的推理依据;若不正确,请指出关键错在哪一步,并写出你认为正确的证明过程。
略解:不正确,错在第一步。
正确证法为:∵BE=CE∴∠EBC=∠ECB 又∵∠1=∠2∴∠ABC=∠ACB,AB=AC∴△ABE≌△ACE(SAS)∴∠3=∠4又∵AB=AC∴AP⊥BC 评注:本题是以考查学生练习中常见错误为阅读材料设计而成的阅读性试题,其目的是考查学生阅读理解能力,证明过程中逻辑推理的严密性。
阅读理解题是近几年各地都有的新题型,应引起重视。
【问题二】众所周知,只有两边和一角对应相等的两个三角形不一定全等,你能想办法安排和外理这三个条件,使这两个三角形全等吗?请同学们参照下面的方案(1)导出方案(2)(3)(4)。
《12.1 全等三角形》教学设计课题:12.1 全等三角形课型:新授课课时:第一课时【教学过程】一、情境引入同学们,几何中把“一模一样”的图形叫做”全等图形“,如果是三角形呢?又该怎么判断是不是全等三角形呢?今天我们将一起来学习——全等三角形!二、探究把一块三角尺按在纸板上,画下图形,照图形裁下来的纸板和三角尺的形状、大小完全一样吗?重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.对应顶点的字母写在对应的位置上.记作:“△ABC ≌△DEF”,读作:“△ABC 全等于△DEF”能够完全重合的两个三角形叫做全等三角形.三、练习1、若△AOC△△BOD,AC= BD;△A=△B。
2、若△ABD△△ACE,BD=CE,△BDA=△CEA。
3、若△ABC△△CDA,AB= CD,△BAC=△DCA。
四、探究想一想:(1)把△ABC沿直线BC平移,得到△DEF,(2)把△ABC沿直线BC翻折180°,得到△DBC,(3)把△ABC绕点A旋转,得到△ADE.各图中的两个三角形全等吗?平移、翻折、旋转,变换前后的图形全等五、练习已知:如图,△ABC与△DEF是全等三角形,则图中相等的线段的组数是(B )A.3B.4C.5D.6解析:∵△ABC≌△DEF,∴AB=DE,AC=DF,BC=EF,∴BC﹣EC=EF﹣EC,即BE=CF,有四组相等线段,故选B.六、应用提高如图,△ACB△△A′CB′,△ACA′=30°,则△BCB′的度数为(B)A.20°B.30°C.35°D.40°解析:△△ACB△△A′CB′,△△ACB=△A′CB′,△△ACB-△A′CB=△A′CB′-△A′CB,即△BCB′=△ACA′,又△ACA′=30°,△△BCB′=30°,故选:B.七、达标测试1.如图,已知△ABC△△EDF,下列结论正确的是(A)A.△A=△E B.△B=△DFEC.AC=ED D.BF=DF解析:△△ABC△△EDF,△△A=△E,A正确;△B=△FDE,B错误;AC=EF,C错误;BF=DC,D错误;故选:A.2.如图,已知ΔABC△ΔFED, BC=ED, 求证:AB△EF证明:△ΔABC△ΔFED, BC=ED △BC与ED是对应边△△A=△F(全等三角形的对应角相等)△AB△EF八、布置作业教材33页习题12.1第1、2题.。
数学全等三角形教案8篇(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作汇报、述职报告、发言致辞、心得体会、规章制度、应急预案、合同协议、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays for everyone, such as work reports, job reports, speeches, insights, rules and regulations, emergency plans, contract agreements, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!数学全等三角形教案8篇下面是本店铺收集的数学全等三角形教案8篇(全等三角形的讲课教案),供大家赏析。
全等三角形教学设计优秀4篇全等三角形教案篇一一、教学内容分析本节课选自北师大版《七年级数学下册》第五章第四节探索三角形全等的条件第一课时,本节课探索第一种判定方法—边边边,为了使学生更好地掌握这一部分内容,遵循启发式教学原则,用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验,为以后的证明打下基础。
二、学生学习情况分析学生的知识技能基础:学生在前几节中,已经了解了三角形的有关概念(内角、外角、中线、高、角平分线),以及三角形三边之间的关系、图形的全等,对本节课要学习的三角形全等条件中的“边边边”和三角形的稳定性来说已经具备了一定的知识技能基础。
学生活动经验基础:在相关知识的学习过程中,学生已经经历了一些探索图形全等的活动,通过拼图、折纸等方式解决了一些简单的现实问题,获得了一些数学活动经验的基础;同时在以前的数学学习中学生已经经历了很多合作学习的过程,具有了一定的合作学习的经验,具备了一定的合作与交流的能力。
三、设计思想我们所在的学校处于市区,教学设备齐全,学生学习基础较好,在这之前他们已了解了图形全等的概念及特征,掌握了全等图形的对应边、对应角的关系,这为探究三角形全等的条件做好了知识上的准备。
另外,学生也基本具备了利用已知条件拼出三角形的能力,具备探索的热情和愿望,这使学生能主动参与本节课的操作、探究。
遵循启发式教学原则,采用引探式教学方法。
用设问形式创设问题情景,设计一系列实践活动,引导学生操作、观察、探索、交流、发现、思维,真正把学生放到主体位置,发展学生的空间观念,体会分析问题、解决问题的方法。
四、教学目标1.知识与技能目标:掌握三角形全等的“边边边”条件,了解三角形的稳定性。
2.过程与方法目标:在探索三角形全等的条件及其运用的过程中,体会利用操作、归纳获得数学结论的过程,初步形成解决问题的基本策略。
全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。
三角形全等教学案例
(简记成‘边角边’或‘SAS’)”
赵玉教师在设计教案时,应想方设法让学生掌握公理语言叙述的结构:并不是“两边和一个角对应相等的两三角形全等”,这里的角是有限制的,那就是这个对应角是两组相等对应边的夹角,而不是任意角.如此,就与易混淆的假命题:“两边及其中一边对角对应相等的两三角形全等.”进行了比较严格的区别.向学生提供如图1,△ABC≌△DEF,但是△ABC与△DEG不是全等三角形,尽管在△ABC和△DEG中,条件AB=DE,AC=DG,∠ABC=∠DEF.这样就可以使学生能更直观地认识这一问题。
要辨别清楚公理结构与其混淆形式命题结构的本质区别在于公理的条件是“两边和它们的夹角”,而混淆形式命题条件是“两边和其中一边的对角”.
一、公理应用中条件的逐步确定
在应用定理(公理)进行逻辑推理证明命题入门阶段,“SAS”初步应用,教科书所设置的练习题要学生寻找三组对应元素中,比较容易获得两组对应元素(边、角)相等,第三组对应元素(角或边)相等,往往需要依据“两边夹一角”的条件结构来确定出判定公理所需要的第三个条件,这就是“需知A”,它作为一个“中途点”来调控寻找满足它的已知条件.这时,就应该引导学生挖掘题设中隐含条件,公理成立的第三个条件是一定会找到的,它们又可以分为以下的两种情形:
其二,当题设条件中有两组对应边相等时,只要找出这两组相等对应边夹角也对应相等,这样就满足“边角边”公理的条件了.
例1(p.29,例4)①已知:如图2,AB=AD,AC=AE,∠BAD=∠CAE.求证:△ABC≌△ADE.
分析要证明△ABC≌△ADE,由于AB=AD,AC=AE,可知△ABC和△ADE有两组对应边相等了.由“边角边”公理条件结构要求,知需要找寻到AB、AC的夹角∠BAC与AD、AE的夹角∠DAE也对应相等,即只要证明出了∠BAC=∠DAE(这是“中途点”)就找到了满足“边角边”公理的“两边夹一角对应相等”的条件了.由∠BAD=∠CAE,知∠BAC=∠BAE+∠EAC=∠BAD+∠EAB=∠DAE.这就是∠BAC=∠DAE.
当要证明全等的一对三角形中,已经有两组对应边相等.在这种情况下,配合“边角边”公理的条件结构要求,就逐步确定出了要找寻对应相等的两组对
应边所组成夹角也对应相等,这就确定出了一个“中途点”,从而由“中途点”来代替原来结论.如果从已知条件中得出了这一个“中途点”,那么“边角边”公理中的三个条件就都得到了,问题便已经解决了.如此,我们便找到了解决这种问题的“线性”推进的方法:从已给的条件——经过“中途点”——到要证明的结论,同时也寻找到了解决问题的突破口,使学生能从诸多条件与结论纠缠在一起所形成的茫无头绪的混沌中解脱出来.
其三,当题设条件中有一组对应角相等,且夹这组对应角的两组对应边中有一组对应边相等时,只要找到夹这组对应角的另一组边也对应相等,这样,就满足了“边角边”公理的三个条件了.
例2(p.30,第2题)已知:如图3,点A、E、F、C在同一条直线上,AD=BC,∠1=∠2,AE=CF.求证:∠B=∠D.
分析要证明∠B=∠D,我们会想到全等三角形性质:“全等三角形对应角相等”,于是便想在图3中,寻找到一对全等三角形,使∠B、∠D成为一组对应角,就达到目的了.而图3很简单,只有两个三角形,于是试图找到△BCE≌△DAF(这是第一个“中途点”).由∠1=∠2,AD=BC,知所要证明的这一对三角形已经有一组对应角相等了,并且还有夹这组对应角的一组对应边相等.于是,由“边角边”公理条件结构要求,知只要寻找到夹∠1、∠2这组对应角另一组对应边CE与AF也对应相等,即要证明CE=AF(这是第二个“中途点”)就达到目的了.因为,CF=AE,所以,CE=CF+EF=AE+EF=AF,问题已经解决了.
在含有三角形的题设图形中,常常利用全等三角形性质证明线段相等或角相等,找寻出一对三角形,作为一个“中途点”;而在要证明的两个全等三角形中,当已知条件中有一组对应角相等,且夹这组对应角的两组对应边中也有一组对应边相等时,由“边角边”公理条件结构,只要找夹这组对应角的另一组对应边也相等,作为一个“中途点”.例2就由两个“中途点”所组成,由这两个“中途点”便能使解决问题的思路过程变成了围绕“中途点”的“线性”推进.这样,降低了学生推理的难度.
其四,一般三角形全等公理(定理)教学
有了“边角边”公理的样板,学生对另外两个公理与一个推论及其简单应用的学习就容易多了.当他们学习了这些公理和推论之后,教师要即时总结与归纳在解决较为复杂习题时(往往不只是应用一个判定公理),如何应用全等三角形的这些判定.其实就是在较为复杂问题中怎样找寻“中途点”,并利用这些
“中途点”来调控从已知条件到所要证明结论的路径.在实践中,可以如下的设计:
其五,当已知条件中出现两组对应边相等,此时,只要找出第三组对应边相等,或者找出两组对应边夹角相等,就可以用“边边边”或者“边角边”公理来论证两个三角形全等.
例3(p.41,第1题)已知:如下页图4所示,点B、E、C、F在同一条直线上,AB=DE,AC=DF,BE=CF.求证:∠A=∠D.
分析要证明∠A=∠D,我们选择证明以∠A、∠D为对应角的一对三角形全等,通过观察已知图形可知,需要证明△ABC≌△DEF(第一个“中途点”).由在△ABC与△DEF中,有条件AB=DE,AC=DF这两组对应边相等了,现在只要找到由这两组相等对应边所夹的一组角也对应相等,就是需要证明AB、AC的夹角∠BAC与DE、DF的夹角∠EDF即要证明∠BAC=∠EDF,就可以应用“边角边”公理了,但这正是我们所要证明的命题结论,有了它,整个问题便都已经解。