控轧控冷1
- 格式:ppt
- 大小:1.69 MB
- 文档页数:57
控制轧制、控制冷却工艺技术————————————————————————————————作者:————————————————————————————————日期:控制轧制、控制冷却工艺技术1.1 控制轧制工艺控制轧制工艺包括把钢坯加热到适宜的温度,在轧制时控制变形量和变形温度以及轧后按工艺要求来冷却钢材。
通常将控制轧制工艺分为三个阶段,如图1。
1所示[2]:(1)变形和奥氏体再结晶同时进行阶段,即钢坯加热后粗大化了的γ呈现加工硬化状态,这种加工硬化了得奥氏体具有促使铁素体相变形变形核作用,使相变后的α晶粒细小;(2)(γ+α)两相区变形阶段,当轧制温度继续降低到Ar3温度以下时,不但γ晶粒,部分相变后的α晶粒也要被轧制变形,从而在α晶粒内形成亚晶,促使α晶粒的进一步细化.图1。
1控制轧制的三个阶段(1)—变形和奥氏体再结晶同时进行阶段;(2)—低温奥氏体变形不发生再结晶阶段;(3)—(γ+α)两相区变形阶段。
1.2 控制轧制工艺的优点和缺点控制轧制的优点如下:1.可以在提高钢材强度的同时提高钢材的低温韧性。
采用普通热轧生产工艺轧制16Mn钢中板,以18mm厚中板为例,其屈服强度σs≤330MPa,—40℃的冲击韧性A k≤431J,断口为95%纤维状断口.当钢中加入微量铌后,仍然采用普通热轧工艺生产时,当采用控制轧制工艺生产时,—40℃的A k值会降低到78J以下,然而采用控制轧制工艺生产时。
然而采用控制轧制工艺生产时—40℃的A k值可以达到728J以上。
在通常热轧工艺下生产的低碳钢α晶粒只达到7~8级,经过控制轧制工艺生产的低碳钢α晶粒可以达到12级以上(按ASTM标准),通过细化晶粒同时达到提高强度和低温韧性是控轧工艺的最大优点。
2.可以充分发挥铌、钒、钛等微量元素的作用。
在普通热轧生产中,钢中加入铌或钒后主要起沉淀强化作用,其结果使热轧钢材强度提高、韧性变差,因此不少钢材不得不进行正火处理后交货。
控轧控冷工艺的发展及应用摘要控轧控冷工艺是把钢坯加热到适宜的温度,轧制时控制变形量和变形温度及轧后按工艺要求来冷却钢材。
控轧主要用于轧制细晶粒结构钢,主要原理是在终轧后当钢板在轧机上运行至“再结晶”完成的温度时,选用合适水冷方式获得理想延展性和韧性。
关键词变形量变形温度再结晶1 前言1.1 控轧控冷就是控制轧制和控制冷却,也叫TMCP(热机械变形轧制)+ACC。
比较适合于低碳微合金钢,特别是Nb、V 、Ti复合的。
1.2 控制轧制:是在调整钢的化学成分的基础上,通过控制加热温度、开轧温度,轧制过程温度、变形制度等工艺参数,控制奥氏体状态和相变产物的组织状态,从而达到控制钢材组织性能的目的.1.3 控制冷却:是通过控制热轧钢材轧后的冷却条件来控制奥氏体组织状态、控制相变条件、控制碳化物析出行为、控制相变后钢的组织和性能。
1.4 TMCP:控制轧制和控制冷却技术结合起来,能够进一步提高钢材的强韧性和获得合理的综合性能,并能够降低合金元素含量和碳含量,降低生产成本。
通过控轧控冷生产工艺可以使钢板的抗拉强度和屈服强度平均提高约40~60MPa,在低温韧性、焊接性能、节能、降低碳当量、节省合金元素以及冷却均匀性、保持良好板形方面都有无可比拟的优越性。
2 发展历程2.1 控轧控冷工艺主要是用于生产板材的技术。
该技术的核心是在轧制过程中通过控制加热温度、轧制过程、冷却条件等工艺参数,改善钢材的强度、韧性、焊接性能。
2.2 控制轧制工艺主要用于含有微量元素的低碳钢种,钢中常含有铌、钒、钛,其总量一般小于0.1%。
依据《塑性变形和轧制原理》控制轧制的内容是控制轧制参数,包括温度、变形量等,以控制再结晶过程,获得所要求的组织和性能。
根据塑性变形、再结晶和相变条件,控制轧制可分为三阶段,如下所述。
(1)在奥氏体再结晶区控制轧制:适用于轧制低碳优质钢普通碳素钢低合金高强度钢。
(2)在奥氏体未再结晶区控制轧制:适用于轧制含有微量合金元素的低碳钢,如含铌钛钒得低碳钢。
钢材的控制轧制和控制冷却一、名词解释:1、控制轧制:在热轧过程中通过对金属的加热制度、变形制度、温度制度的合理控制,使热塑性变形与固态相变结合,以获得细小晶粒组织,使钢材具有优异的综合力学性能。
2、控制冷却:控制轧后钢材的冷却速度、冷却温度,可采用不同的冷却路径对钢材组织及性能进行调控。
3、形变诱导相变:由于热轧变形的作用,使奥氏体向铁素体转变温度Ar3上升,促进了奥氏体向铁索体的转变。
在奥氏体未再结晶区变形后造成变形带的产生和畸变能的增加,从而影响Ar3温度。
4、形变诱导析出:在变形过程中,由于产生大量位错和畸变能增加,使微量元素析出速度增大。
两相区轧制后的组织中既有由变形未再结晶奥氏体转变的等轴细小铁素体晶粒,还有被变形的细长的铁素体晶粒。
同时在低温区变形促进了含铌、钒、钛等微量合金化钢中碳化物的析出。
5、再结晶临界变形量:在一定的变形速率和变形温度下,发生动态再结晶所必需的最低变形量。
6、二次冷却:相变开始温度到相变结束温度范围内的冷却控制。
二、填空:1、再结晶的驱动力是储存能,影响其因素可以分为:一类是工艺条件,主要有变形量、变形温度、变形速度。
另一类是材料的内在因素,主要是材料的化学成分和冶金状态。
2、控制冷却主要控制轧后钢材冷却过程的(冷却温度)、(冷却速度)等工艺条件,达到改善钢材组织和性能的目的。
3、固溶体的类型有(间隙式固溶)和(置换式固溶),形成(间隙式)固溶体的溶质元素固溶强化作用更大。
4、根据热轧过程中变形奥氏体的组织状态和相变机制不同,将控制轧制划分为三个阶段,即奥氏体再结晶型控制轧制、奥氏体未再结晶型控制轧制、在A+F两相区控制轧制。
5、以珠光体为主的中高碳钢,为达到珠光体团直径减小,则要细化奥氏体晶粒,必须采用(奥氏体再结晶)型控制轧制。
6、控制轧制是在热轧过程中通过对金属的(加热制度)、(变形制度)、(温度制度)的合理控制,使热塑性变形与固态相变结合使钢材具有优异的综合力学性能。