螺旋离心泵的设计
- 格式:pdf
- 大小:428.61 KB
- 文档页数:17
螺杆泵的基本原理螺杆泵是一种用来输送高黏度液体或固体颗粒悬浮物的离心泵。
它的主要工作原理是通过旋转的螺杆将液体或颗粒物质沿螺杆轴线方向推进。
在本文中,我们将详细解释螺杆泵的基本原理,包括结构构造、工作过程、工作原理和应用领域。
1. 结构构造螺杆泵主要由以下几个组成部分构成:1.1 螺杆螺杆是螺杆泵最重要的组成部分,通常由一根长螺杆和一个短螺杆组成。
长螺杆又称为主动螺杆,短螺杆又称为从动螺杆。
螺杆通常呈圆柱形,由多个螺旋线圈组成,线圈间距相等。
长螺杆和短螺杆互相啮合,形成螺旋状的空腔。
1.2 泵体泵体是螺杆泵的外壳,通常由钢铁或铸铁制成。
泵体内部有一个呈圆筒形的螺旋槽,用于容纳螺杆。
1.3 进出口螺杆泵有一个液体进口和一个液体出口。
液体进口通常位于泵体的一侧,用于引入待输送的液体。
液体出口通常位于泵体的另一侧,用于排出已输送的液体。
2. 工作过程螺杆泵的工作过程可以分为吸入、运输和排出三个阶段。
2.1 吸入阶段当螺杆泵开始运转时,螺杆开始旋转。
在吸入阶段,液体在液体进口处形成一个真空区域。
这个真空区域使得液体被迫进入泵体内部。
2.2 运输阶段在运输阶段,液体被螺杆推进,并沿着螺旋槽的螺旋线圈向前流动。
螺旋线圈的逐渐变长和变宽,使得螺旋槽的容积也逐渐增大。
因此,在螺旋槽内的液体压力逐渐降低,从而创建了一个负压区域。
2.3 排出阶段在排出阶段,液体被推送到液体出口处,并被排出。
当螺杆继续旋转时,新的液体被引入液体进口,整个工作过程循环重复。
3. 工作原理螺杆泵的工作原理基于以下几个关键点:3.1 螺杆运动螺杆在泵体内部的旋转运动是螺杆泵工作的核心。
螺杆的旋转推动液体沿螺杆轴线方向移动,并建立了一个控制液体流动的螺旋槽。
3.2 负压效应螺杆旋转时,在螺旋槽内液体压力逐渐降低,形成一个负压区域。
这个负压区域促使周围液体被迫进入螺旋槽,实现了液体的吸入。
3.3 螺杆结构螺杆的结构设计决定了液体在泵体内部的输送能力。
XXXXX 学院毕业设计(论文) 题目学生姓名年级专业学号指导教师起止日期20 年月日XXXXX学院毕业设计 (论文)任务书机电工程系班级()姓名学号北海职业学院学生毕业设计(论文)成绩鉴定表综述离心泵的完好标准泵与风机、压缩机是流体机械的重要组成部分,一直是制冷与空调专业人士学习的基本科目。
泵是输送液体或使液体增压的机械。
它将原动机的机械能或其他外部能量传送给液体,使液体能量增加。
泵主要用来输送液体包括水、油、酸碱液、乳化液、悬乳液和液态金属等,也可输送液体、气体混合物以及含悬浮固体物的液体。
离心泵就是根据设计高速旋转的叶轮叶片带动水转动,将水甩出,从而达到输送的目的. 离心泵有好多种.从使用上可以分为民用与工业用泵,从输送介质上可以分为清水泵、杂质泵、耐腐蚀泵等。
一离心泵的分类方式类型特点一览表二、离心泵基本构造离心泵的基本构造是由六部分组成的,分别是:叶轮,泵体,泵轴,轴承,密封环,填料函。
1、叶轮是离心泵的核心部分,它转速高输出力大,叶轮上的叶片又起到主要作用,叶轮在装配前要通过静平衡实验。
叶轮上的内外表面要求光滑,以减少水流的摩擦损失。
2、泵体也称泵壳,它是水泵的主体。
起到支撑固定作用,并与安装轴承的托架相连接。
3、泵轴的作用是借联轴器和电动机相连接,将电动机的转距传给叶轮,所以它是传递机械能的主要部件。
4、轴承是套在泵轴上支撑泵轴的构件,有滚动轴承和滑动轴承两种。
滚动轴承使用牛油作为润滑剂加油要适当一般为2/3~3/4的体积太多会发热,太少又有响声并发热!滑动轴承使用的是透明油作润滑剂的,加油到油位线。
太多油要沿泵轴渗出并且漂*,太少轴承又要过热烧坏造成事故!在水泵运行过程中轴承的温度最高在85度一般运行在60度左右,如果高了就要查找原因(是否有杂质,油质是否发黑,是否进水)并及时处理!5、密封环又称减漏环。
叶轮进口与泵壳间的间隙过大会造成泵内高压区的水经此间隙流向低压区,影响泵的出水量,效率降低!间隙过小会造成叶轮与泵壳摩擦产生磨损。
第一节离心泵的工作原理和基本构造一、离心泵的工作原理我们可以作一个这样的实验向一个敞口圆筒内灌注一定高度的水,并使其做等速旋转这时圆筒内的水面呈从中心到边壁逐渐升高的旋转抛物面。
圆筒半径越大,水流旋转得越快则水面沿筒壁上升的高度就越大。
离心泵就是基于这一原理,利用叶轮旋转时对水产生的离心力来工作的。
图1所示为离心泵的工作原理示意图。
蜗壳型的泵壳内装有靠泵轴带动旋转的叶轮,泵壳的吸水口与泵的进水管相连,出水口与泵的出水管相接。
在开始抽水前,将泵内和进水管内灌满水(也可用真空泵或射流泵将泵体和进水管内抽成真空引水),以使叶轮旋转时能够产生足够的离心力。
之后,驱动动力机,当动力机通过泵轴带动叶轮高速旋转时,叶轮中的水随之旋转,在离心力的驱动下被甩出叶轮,汇集到泵壳内,流经扩散锥管减速增压后流入出水管道。
在水流被甩出叶轮的同时,叶轮进口处形成真空,与进水池水面形成压力差,进水池中的水便在大气压力的作用下,沿进水管流入叶轮。
叶轮不停的旋转,水流就源源不断地被吸入和甩出,形成水泵的连续抽水。
二、离心泵的分类离心泵的分类方法很多,根据常用的分类方法可将离心泵分为如下类型。
根据泵轴的装置方式可分为卧式泵和立式泵;根据水流进入叶轮的方式可分为单吸泵和双吸泵;根据轴上安装叶轮的个数可分为单级泵和多级泵。
现就各类离心泵的结构特点和性能范围分述如下:1. 单级单吸卧式离心泵其结构特点是水流从叶轮的一侧吸入,泵轴为卧式且轴上只有一个叶轮,叶轮固定在泵轴的一端,泵的进出水口互相垂直,其性能特点是流量小、扬程高。
老型号的B型和BA型单级单吸式离心泵已被国家标准规定为淘汰产品。
IS系列泵是我国水泵行业首批采用国际标准设计的单级单吸清水离心泵,其性能和规格均有较大扩展和改进。
该系列泵共有29种基本型号,51个规格,6种口径。
其性能范围是:流量6.3~400m3/h,扬程5~125m,配套电机功率0.55~110kw,转速有1450r/min和2900r/min两种。
离心泵叶轮设计范文离心泵是一种常见的流体机械设备,广泛应用于工农业生产、城市供水和排水等领域。
其工作原理是利用叶轮受离心力作用,将流体加速并转化为压力能,从而实现输送的目的。
离心泵的叶轮是其核心部件,直接关系到泵的性能和效率。
叶轮的设计需要考虑多个因素,包括流体的流动特性、流量需求、扬程要求、泵的转速、叶轮材料等。
在离心泵叶轮的设计过程中,首先需要确定泵的工况参数,包括流量Q、扬程H、泵的转速N等。
这些参数可以通过工程实际需要来确定,也可以根据已有的类似泵的性能曲线来选择。
接下来,需要确定叶轮的进出口直径D1和D2,以及出口角β2、进口直径D1一般根据泵的流量来确定,而出口直径D2则常常使用等速线绘制法来确定。
该法通过绘制流速三角形和散失系数曲线来确定出口直径,从而使得出口速度恒定。
然后,需要根据进口和出口直径来确定叶轮的元素形状。
叶轮通常采用流线型的设计,使得流体能够顺利进入和流出。
叶轮的元素形状可以使用叶片角、曲率半径和叶片厚度等参数来描述。
在确定叶轮的元素形状后,还需要进行叶轮的流场分析。
这可以通过CFD仿真等方法来实现,以验证叶轮是否满足设计要求,以及是否能够提供理想的流体流动状态。
另外,还需要进行叶轮的强度和动力分析。
叶轮的强度分析主要包括静力学和动力学两个方面,以确保叶轮在工作过程中能够承受流体的压力和惯性力。
动力分析则主要是考虑叶轮的转动惯量和动力平衡等问题。
最后,在叶轮设计完成后,需要进行叶轮的制造和装配。
制造时需要考虑叶轮的材料选择和加工工艺,保证叶轮的质量和精度。
装配时需要注意叶轮与轴的连接方式,以及叶轮与泵壳等配合关系。
总之,离心泵叶轮的设计是一项综合性的工程,需要综合考虑多个因素,从而得到理想的叶轮形状和性能。
随着计算机技术的发展,仿真分析在叶轮设计中的应用越来越广泛,可以提高设计效率和精度。
在实际应用中,还需要根据具体情况进行不断的优化和改进,以满足不同领域和需求的泵的要求。