离心泵的设计叶轮的设计
- 格式:pdf
- 大小:143.43 KB
- 文档页数:9
离心泵叶轮的设计
离心泵的水力设计主要是设计叶轮和泵壳,下面我们了解下其中的叶轮。
离心泵产生的理论压头计算:
离心泵常被认为是一种动能机器。
叶轮的旋转使叶轮中的流体高速旋转,从而将能量传递给液体,这个概念可以用数学等式表示出来:
H i=u2x c u2/g
式中H i——离心泵产生的理论压头,ft;
u2——叶轮外直径处的旋转速度,ft/s;
c u2——液体离开叶轮的旋转速度,ft/s;
g——重力加速度,ft/s2。
下面是3种基本的叶轮设计:
1)封闭式叶轮,在叶轮的前后面都有封闭罩(旋转壳体);
2)半开放式叶轮,只在一边有封闭护罩,并且紧密地和另外一边静止壳体相连;
3)开放式叶轮,只在一边有或者没有封闭罩(如图)。
离心泵中液体的转速:
流体进入离心泵吸入管时没有旋转速度,当流体进入叶轮的旋转管路中时,它开始以叶轮的旋转速度旋转。
液体被挤出叶轮中心,并且它的旋转速度与叶轮直径成比例。
可以用下面方式算出任何直径的液体叶轮转速:
u=D X N/229
式中u——液体旋转速度,ft/s;
D——速度计算点的直径,in;
N——叶轮旋转速度,r/min;
1/229——单位换算系数。
叶轮里压头损失通常包括摩擦损失、涡流损失、流体再循环损失、入口耗损和出口损失。
在壳体会发生附加损失。
应当注意的是,离心泵产生的压头取决于流体速度而不是被泵吸入的流体。
离心泵的水力设计讲解离心泵的水力设计步骤如下:1.根据设计参数计算比转速ns;2.确定进出口直径;3.进行汽蚀计算;4.确定效率;5.确定功率;6.选择叶片数和进出口安放角;7.计算叶轮直径D2;8.计算叶片出口宽度b2;9.精算叶轮外径D2以满足要求;10.绘制模具图。
在设计离心泵之前,需要详细了解该泵的性能参数、使用场合、特殊要求等。
下表为本章中叶轮水力设计教程中使用的一组性能要求。
确定泵的进口直径时,应考虑泵吸入口的流速,一般取为3m/s左右。
大型泵的流速可以取大些,以减小泵的体积,提高过流能力;而对于高汽蚀性能要求的泵,应减小吸入流速。
本设计例题追求高效率,取Vs=2.2m/s,Ds=80.对于低扬程泵,出口直径可取与吸入口径相同。
高扬程泵,为减小泵的体积和排出管直径,可小于吸入口径。
本设计例题中,取Dd=0.81Ds=65.泵进出口直径都取了标准值,速度有所变化,需要重新计算。
本设计例题中,进口速度为Vs=2.05,出口速度为3.10.汽蚀是水力机械特有的一种现象,当流道中局部液流压力降低到接近某极限值时,液流中就开始发生空泡。
在确定泵转速时,需要考虑汽蚀条件的限制,选择C值,按给定的装置汽蚀余量和安装高度确定转速。
转速增大,过流不见磨损快,易产生振动和噪声。
汽蚀是液流中空泡发生、扩大、溃灭过程中涉及的物理、化学现象,会导致噪音、振动、甚至对流道材料产生侵蚀作用。
这些现象统称为汽蚀现象,一直是流体机械研究的热点和难点。
为了避免汽蚀带来的负面影响,需要计算汽蚀条件下允许的转速,并采用小于该转速的转速。
在计算汽蚀条件下的转速时,需要先计算汽蚀余量NPSHa,而NPSHa的计算需要知道泵的安装高度和设计要求中的数值。
例如,设计要求中给出的安装高度为3.3m,那么计算得到NPSHa为6.29m。
同时,还需要计算NPSHr,可以通过NPSHa除以1.3得到,例如计算得到NPSHr为2.54m。
比转速是一个综合性参数,它说明着流量、扬程、转数之间的相互关系。
离心泵的设计与选型1.引言1.1 概述离心泵是一种广泛应用于各个领域的流体传输设备,其工作原理是利用叶轮的旋转运动将液体带入泵体,并通过离心力将液体从泵体的中心推到出口,从而实现流体的输送。
离心泵具有结构简单、运行稳定、流量大、压力高等特点,已广泛应用于工业领域的冷却水循环、供水系统、石油化工、农业灌溉等领域。
在设计离心泵时,需要考虑一系列要点。
首先,泵的结构设计应合理,包括叶轮、泵体、轴承等部分的选择和设计,以确保泵能够正常运行并具有较长的使用寿命。
其次,泵的性能参数,如流量、扬程、效率等,应满足实际应用的需求。
同时,还需要考虑泵的工作环境和工作介质的特性,选择适合的材料和密封方式,以确保泵的运行安全可靠。
此外,对于大型离心泵,还需要考虑泵的运行成本和能耗情况,进行经济性分析,从而选型合适的离心泵。
综上所述,离心泵的设计与选型是一个综合性的工作,需要考虑多个因素的综合影响。
设计人员应充分了解离心泵的基本原理和设计要点,结合实际应用需求,合理选型,并根据具体情况提出设计与选型建议,以提高离心泵的工作效率和可靠性。
文章结构部分的内容可以是对整篇文章的组织和布局进行介绍,以引导读者了解文章的结构和内容安排。
可以按照以下方式编写文章1.2文章结构的内容:文章结构:本文将按照以下结构进行论述和分析离心泵的设计与选型:1. 引言:首先,我们将对离心泵的概述进行介绍,包括离心泵的定义和应用领域。
接着,我们将说明本文的目的,即为读者提供关于离心泵设计与选型的详细指导。
2. 正文:在正文部分,我们将详细阐述离心泵的基本原理,包括其工作原理和结构特点。
同时,我们还将重点讨论离心泵的设计要点,涵盖了功率计算、叶轮设计、进出口截面积的确定等关键问题。
通过深入分析这些要点,读者能够更好地理解离心泵的设计与选型过程。
3. 结论:最后,我们将总结本文的主要内容和结论。
在总结部分,我们将回顾离心泵的基本原理和设计要点,并给出相应的设计与选型建议。
离心泵 - 设计和应用
离心泵是一种常见的动力泵,通过离心力将液体从低压区域输送到高压区域。
下面是离心泵的设计和应用的一些基本信息:
设计要点:
1.叶轮设计:离心泵的关键部分是叶轮。
叶轮设计会影响泵的
能效、流量和扬程等性能指标。
叶轮通常采用单吸入式或双吸入式,叶片形状和数量的选择取决于具体需求。
2.泵壳和进出口管道:泵壳应具备充分的强度和密封性能,以
承受泵的工作压力。
进出口管道的设计应考虑液体进出泵的流畅性和减少能量损失。
3.轴封和轴承:泵的轴封和轴承需要具备耐腐蚀性和高可靠性。
常用的轴封形式包括填料密封、机械密封和磁力密封。
4.驱动装置:离心泵可以由电动机、内燃机或其他动力源驱动。
选用合适的驱动装置需要考虑功率、转速和机械耦合等因素。
应用领域:
1.工业领域:离心泵广泛应用于工业过程中的液体输送、冷却
系统、供水循环、化工生产等。
不同的行业有不同的需求,如石油化工、矿山、造纸业等。
2.建筑行业:离心泵在建筑行业中常用于供水、排水、消防系
统、暖通空调等。
它们可提供稳定的水压和流量。
3.农业领域:农业灌溉系统、污水处理、渔业养殖等需要液体
输送的农业领域也常用到离心泵。
4.能源行业:离心泵在能源行业中用于输送原油、天然气、煤
浆等,以及核电站中的循环水系统。
5.生活领域:离心泵也应用于居民区的供水、水循环系统、游
泳池等。
总而言之,离心泵由于其结构简单、稳定可靠以及广泛的应用领域而备受青睐。
根据具体需求,可以选择合适的离心泵类型和规格,以满足不同应用的要求。
主要设计参数本设计给定的设计参数为: 流量Q=33500.01389mmhs=,扬程H=32m ,功率P=15Kw ,转速1450minrn =。
确定比转速s n根据比转速公式343.65145046.3632s n ⨯=== 叶轮主要几何参数的计算和确定1. 轴径与轮毂直径的初步计算1.1. 泵轴传递的扭矩3159.5510955098.81450t P M N m n =⨯=⨯=⋅其中P ——电机功率。
1.2泵的最小轴径对于35号调质钢,取[]5235010Nm τ=⨯,则最小轴径0.02424d m mm ==== 根据结构及工艺要求,初步确定叶轮安装处的轴径为40B d mm =,而轮毂直径为(1.2~1.4)h B d d =,取51h d mm = 2. 叶轮进口直径jD 的初步计算取叶轮进口断面当量直径系数0 4.5K =,则0 4.50.09696D K m mm ====对于开式单级泵,096j D D mm == 3. 叶片进口直径1D 的初步计算由于泵的比转速为46.36,比较小,故1k 应取较大值。
不妨取10.85k =,则110.859682j D k D mm ==⨯=4. 叶片出口直径2D 的初步计算220.50.5246.369.359.3513.7310010013.730.292292s D D n K D K m mm --⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====5. 叶片进口宽度1b 的初步计算()002221114/4//v vm j j hvQ Q V V D D d Q b DV ηηππηπ===-=所以 220111144j j v V D D b V D K D ==其中,10v V K V =,不妨取0.8v K =,则22118535.42440.863.75jv D b mm K D ===⨯⨯6. 叶片出口宽度2b 的初步计算225/65/6246.360.640.640.33731001000.33730.00727.2s b b n K b K m mm ⎛⎫⎛⎫==⨯= ⎪⎪⎝⎭⎝⎭====7. 叶片出口角2β的确定取2β=15°8. 叶片数Z 的计算与选择取叶片数Z=8,叶片进口角0155.8β=。
简述离心泵叶轮水力设计时,速度系数法和模型相似换算法的区别概述说明1. 引言1.1 概述离心泵是一种常用的液体输送设备,其工作原理是通过叶轮的旋转产生离心力,将液体从低压区域转移到高压区域。
在离心泵的设计过程中,叶轮的水力设计是非常重要的一部分。
而叶轮水力设计方法中,速度系数法和模型相似换算法是两种常用的计算方法。
1.2 文章结构本文将分为以下几个部分来详细介绍离心泵叶轮水力设计时的速度系数法和模型相似换算法及其区别。
首先会对速度系数法进行简要介绍,包括其原理和计算方法。
然后会对模型相似换算法进行类似的介绍。
之后会比较这两种方法存在的区别,包括相似性原理差异、计算方法差异以及适用性分析。
最后会通过工程实际应用案例对比分析来加深对这两种方法区别的理解。
1.3 目的本文旨在全面了解并比较离心泵叶轮水力设计时的速度系数法和模型相似换算法,并明确它们之间存在的差异。
通过对比分析,可以更好地选择合适的方法用于离心泵叶轮水力设计,在实际工程应用中提高设计的效果和质量。
同时,本文还希望能够为相关领域的研究者和从业人员提供有价值的参考和指导。
2. 离心泵叶轮水力设计时的速度系数法:2.1 简介:离心泵是一种常见的水力机械设备,在许多工程领域中被广泛应用。
离心泵的性能参数主要包括流量、扬程和效率等。
其中,叶轮是离心泵中最关键的部件之一,其水力设计对于泵的性能至关重要。
2.2 原理及计算方法:速度系数法是一种常用于离心泵叶轮水力设计的方法。
该方法基于流体动量守恒原理,通过选择适当的叶轮出口径向速度分布来满足设计要求。
主要包括以下步骤:1. 设定目标流量和扬程。
2. 根据所选定的叶轮进口径向速度分布形式和角动量平衡原理,确定出口径向速度。
3. 通过展开叶片并考虑角速度差等因素,得到切线方向上瞬时相对流速。
4. 根据相对流速与切线方向的夹角以及转子出口直径确定绝对流速。
5. 根据绝对流速的大小确定叶片出口角度,并进行修正以满足稳态工况要求。
离心泵叶轮设计范文离心泵是一种常见的流体机械设备,广泛应用于工农业生产、城市供水和排水等领域。
其工作原理是利用叶轮受离心力作用,将流体加速并转化为压力能,从而实现输送的目的。
离心泵的叶轮是其核心部件,直接关系到泵的性能和效率。
叶轮的设计需要考虑多个因素,包括流体的流动特性、流量需求、扬程要求、泵的转速、叶轮材料等。
在离心泵叶轮的设计过程中,首先需要确定泵的工况参数,包括流量Q、扬程H、泵的转速N等。
这些参数可以通过工程实际需要来确定,也可以根据已有的类似泵的性能曲线来选择。
接下来,需要确定叶轮的进出口直径D1和D2,以及出口角β2、进口直径D1一般根据泵的流量来确定,而出口直径D2则常常使用等速线绘制法来确定。
该法通过绘制流速三角形和散失系数曲线来确定出口直径,从而使得出口速度恒定。
然后,需要根据进口和出口直径来确定叶轮的元素形状。
叶轮通常采用流线型的设计,使得流体能够顺利进入和流出。
叶轮的元素形状可以使用叶片角、曲率半径和叶片厚度等参数来描述。
在确定叶轮的元素形状后,还需要进行叶轮的流场分析。
这可以通过CFD仿真等方法来实现,以验证叶轮是否满足设计要求,以及是否能够提供理想的流体流动状态。
另外,还需要进行叶轮的强度和动力分析。
叶轮的强度分析主要包括静力学和动力学两个方面,以确保叶轮在工作过程中能够承受流体的压力和惯性力。
动力分析则主要是考虑叶轮的转动惯量和动力平衡等问题。
最后,在叶轮设计完成后,需要进行叶轮的制造和装配。
制造时需要考虑叶轮的材料选择和加工工艺,保证叶轮的质量和精度。
装配时需要注意叶轮与轴的连接方式,以及叶轮与泵壳等配合关系。
总之,离心泵叶轮的设计是一项综合性的工程,需要综合考虑多个因素,从而得到理想的叶轮形状和性能。
随着计算机技术的发展,仿真分析在叶轮设计中的应用越来越广泛,可以提高设计效率和精度。
在实际应用中,还需要根据具体情况进行不断的优化和改进,以满足不同领域和需求的泵的要求。