三角函数式的求值
- 格式:doc
- 大小:183.00 KB
- 文档页数:4
)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β;(5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β. 2.二倍角的正弦、余弦、正切公式.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α;(3)T 2α:tan 2α=2tan α1-tan 2α. 3.有关公式的逆用、变形等.有关公式的逆用、变形等(1)tan α±tan β=tan(α±β)(1∓tan_αtan_β);(2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2,1-sin 2α=(sin α-cos α)2,sin α±cos α=2sin èæøöα±π4. =α+β2-α-β2;α-β2=èæøöα+β2-èæøöα2+β.原则: 用已知表示待求用已知表示待求 (2) 化简技巧:切化弦、“1”的代换等.的代换等. 6 三个变化三个变化(1)变角:目的是沟通题设条件与结论中所涉及的角,其手法通常是“配凑”. (2)变名:变名:通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,通过变换函数名称达到减少函数种类的目的,其手法通常有其手法通常有“切化弦”、“升幂与降幂”等.等.(3)等.等.二 典型题目1 三角函数式的化简【例1】►化简2cos 4x -2cos 2x +122tan èæøöπ4-x sin 2èæøöπ4+x. 【训练1】 化简 (sin cos 1)(sin cos 1)sin 2a a a a a+--+:. 1三角三角函数式函数式的化简求值训练 一.重要公式与方法技巧:1 两角和与差的两角和与差的正弦正弦、余弦、正切公式、余弦、正切公式(1)C (α-β):cos(α-β4.函数f (α)=a cos α+b sin α(a ,b 为常数),可以化为f (α)=a 2+b 2sin(α+φ)或f (α)=a 2+b 2c os(α-φ),其中φ可由a ,b 的值唯一确定.的值唯一确定. 5两个技巧两个技巧(1)拆角、拼角技巧:2α=(α+β)+(α-β);α=(α+β)-β;β变式:根据式子的结构特征进行变形,使其更贴近某个公式或某个期待的目标,其手法通常有:“常值代换”、“逆用变用公式”、“通分约分”、“分解与分解与组合组合”、“配方与配方与平方平方”<π2<α<π,且cos èæøöα-β2=-19,sin èæøöα2-β=23,求cos(α+β)的值.的值.【训练2】 已知α,β∈èæøö0,π2,sin α=45,tan(α-β)=-13,求cos β的值.的值.三 三角函数的求角问题三角函数的求角问题【例3】►已知cos α=17,cos(α-β)=1314,且0<β<α<π2,求β. 【训练3】 已知α,β∈èæøö-π2+33x +4=0的两个根,求α+β的值.的值.四 三角函数的综合应用三角函数的综合应用【例4】►已知函数f (x )=2cos 2x +sin 2x .(1)求f èæø-π62二 三角三角函数式函数式的求值的求值【例2】►已知0<β,π2,且tan α,tan β是方程x 2öπ3的值;(2)求f (x )的最大值和最小值.和最小值.【训练4】 已知函数f (x )=2sin(π-x )cos x . (1)求f (x )的最小正周期;的最小正周期;(2)求f (x )在区间ëéûù,π2上的最大值和最小值.上的最大值和最小值.一、给值求值一、给值求值一般是给出某些角的三角函数式的值,求另外一些角的求另外一些角的三角函数值三角函数值,解题的关键在于“变角”,如α=(α+β)-β,2α=(α+β)+(α-β)等,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,求解时要注意角的范围的讨论.角的范围的讨论.3【示例】►已知tan èæøöx +π4=2,则tan =12,tan β,π2. (1)求sin θ和cos θ的值;的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2,求cos φ的值.的值.【课后巩固】1.81cos sin =×a a ,且4p <a <2p,则a a sin cos -的值为:的值为:A 、23B 、23-C 、43D 、43-2.已知a a aa a cos 3sin 2cos sin ,2tan +--=则的值是的值是A 、-1 B 、1 C 、-3 D 、3 3.已知=-=+-=-)sin(,21sin cos ,43cos sin a b b a b a 则A 、3219B 、3219-C 、0 D 、1916-4.已知 5.已知3sin(),45x p -=则sin 2x 的值为的值为 ( )A.1925 B.1625 C.1425 D.7256.已知1sin cos 5q q -=,则sin 2q 的值是的值是A 、45B 、45-C 、2425D 、-24257.已知54)cos(-=-b a 54)cos(=+b a ),2(p p b a Î-)2,23(p p b a Î+则cos2a =( ) xtan 2x 的值为________.二、给值求角二、给值求角“给值求角”:实质上也转化为“给值求值”,关键也是变角,把所求角用含已知角的式把所求角用含已知角的式子表示子表示,由所得的函数值结合该函数的单调由所得的函数值结合该函数的单调区间区间求得角.求得角.【示例】►已知tan(α-β)=-17,且α,β∈(0,π),求2α-β的值.的值. ▲三角恒等变换与▲三角恒等变换与向量向量的综合问题的综合问题 两角和与差的两角和与差的正弦正弦、余弦、正切公式作为解题工具,是每年余弦、正切公式作为解题工具,是每年高考高考的必考内容,常在选择题中以条件求值的形式考查.近几年该部分内容与向量的综合问题常出现在解答题中,并且成为高考的一个新考查方向.高考的一个新考查方向.【示例】► 已知向量a =(sin θ,-2)与b =(1,cos θ)互相互相垂直垂直,其中θ∈èæøö0q tam 和)4(q p-tam 是方程02=++q px x 的两根,则p 、q 间的关系是:间的关系是: A 、01=+-q p B 、01=++q p C 、01=-+q p D 、01=--q p4A 、257-B 、257C 、1-D 、1 8.22cos 75cos 15cos75cos15++ 的值等于(的值等于( ) A 、62 B 、32 C 、54D 、1+349.已知tan(α+β)=52,tan(β-4p )=41,那么tan(α+4p )的值是的值是A .1813 B .223 C .2213 D .18310.若,(0,)2pa b Î,3cos()22ba -=,1sin()22a b -=-,则cos()a b +的值等于 (A )32-(B )12- (C )12(D )32 11、已知tan 2a =,求2212sin cos cos sin a a a a +-12.求tan200+tan400+3tan200tan400的值. 13.已知3110,tan 4tan 3pa p a a<<+=-(Ⅰ)求tan a的值;(Ⅱ)求225sin 8sin cos 11cos 822222sin 2a a a a p a ++-æö-ç÷èø 14.已知40,sin 25pa a <<=(Ⅰ)求22sin sin 2cos cos 2a a a a++的值;(Ⅱ)求5tan()4pa -的值。
非特殊三角函数求值公式
三角函数是数学中重要的概念之一,它在数学、物理、工程等
领域中都有着广泛的应用。
在三角函数中,除了常见的正弦、余弦、正切等特殊三角函数外,还存在一些非特殊的三角函数,它们的求
值公式可能不太为人熟知,但同样具有重要的意义。
非特殊三角函数包括诸如余切(cot)、正割(sec)、余割(csc)等函数。
它们的求值公式可以用其他特殊三角函数来表示,
从而帮助我们更好地理解和计算三角函数的值。
以余切函数为例,它的求值公式可以表示为cot(x) =
1/tan(x),其中tan(x)为正切函数。
这个公式告诉我们,余切函数
的值可以通过正切函数的值来求得。
同样地,正割和余割函数的求
值公式也可以通过其他常见的三角函数来表示。
在实际应用中,非特殊三角函数的求值公式可以帮助我们简化
复杂的三角函数表达式,从而更方便地进行计算和分析。
它们也为
我们提供了一种更深入理解三角函数之间关系的途径,有助于我们
在解决实际问题时更加灵活地运用三角函数的性质。
总之,非特殊三角函数求值公式虽然可能不如常见的三角函数那样为人所熟知,但它们同样具有重要的意义和应用价值。
通过深入理解和熟练运用这些公式,我们可以更好地掌握三角函数的性质和运用,为我们的学习和工作带来更多的便利和收益。
三角函数式的求值【知识点精讲】三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形三角函数式的求值的类型一般可分为:(1)“给角求值”:给出非特殊角求式子的值。
仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。
找出已知角与所求角之间的某种关系求解(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。
将已知式或所求式进行化简,再求之三角函数式常用化简方法:切割化弦、高次化低次注意点:灵活角的变形和公式的变形重视角的范围对三角函数值的影响,对角的范围要讨论【例题选讲】一、“给角求值”例1、计算)310(tan 40sin 00-的值。
练习1:tan20°+4sin20°练习2、(1)化简;︒--︒︒︒-20sin 1160sin 20cos 20sin 212;(2)求值: .练习3:求()00001tan21tan24tan21tan24++⋅ ()()()()()000021tan11tan21tan431tan44+⋅+++练习4、不查表求sin 220°+cos 280°+3sin20°cos80°的值二、“给值求值”:例2、已知tan(45°+θ)=3,求sin2θ-2cos 2θ的值练习:)6sin(,212tan παα+=求已知 例3、已知sin(-4πx)=135,0<x<4π,求)4cos(2cos x x +π的值。
[点评]:分析:角之间的关系:2)4()4(πππ=++-x x 及)4(222x x -=-ππ ,利用余角间的三角函数的关系便可求之。
︒︒+︒+︒50tan 10tan 350tan 10tan常用凑角:)2()2()(,2304560304515α-β-β+α=β-β+α=α=-=-=, )4()4()()(2α-π-α+π=β-α+β+α=α,2()()βαβαβ=+--,)4(24α-π-π=α+π,特别地, α+π4与α-π4为互余角, 它们之间可以互相转化。
概述初中数学三角函数值的计算方法1三角函数求值的计算方法1.1利用三角函数的定义1.2 三角函数具有六种基本函数:正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y1.3 一些特殊的三角函数值:Sin=1/2; sin=;sin=Cos=;cos=;cos=1/2tan=;tan=1;tan=1.4 三角函数的基本展开公式:sin(A+B) = sinAcosB+cosAsinBsin(A-B) = sinAcosB-cosAsinBcos (A+B) = cosAcosB-sinAsinBcos (A-B) = cosAcosB+sinAsinBtan(A+B) = (tanA+tanB)/(1-tanAtanB)tan(A-B) = (tanA-tanB)/(1+tanAtanB)cot(A+B) = (cotAcotB-1)/(cotB+cotA)cot(A-B) = (cotAcotB+1)/(cotB-cotA)2 三角函数求最值最近几年,高考三角函数的题型由原来的恒等式证明改为求值,常见题型有三种:给出一个比较简单的三角函数式的值,求一个比较复杂的三角函数式的值;考察三角变换问题;三角形中的求值问题。
解上述三种类型题应注重四点:要严格讨论角的范围;选择的公式与解题方向必须吻合;要熟悉变换方向;要掌握变换技巧。
三角函数的最值有以下几种求法:利用二次函数求最值,利用三角函数的有界性求最值,换元法求最值。
3 如何学好三角函数数学教学一般可分为概念教学、命题(主要有定理、公式、法则、性质)教学、例题教学、习题教学、总结与复习等五类。
相应地,数学学法指导的实施亦需分别落实到这五类教学之中。
这里仅就例题教学中如何实施数学学法指导谈几点认识。
3.1根据学习目标和任务精选例题例题的作用是多方面的,最基本的莫过于理解知识、应用知识、巩固知识,莫过于训练数学技能、培养数学能力、发展数学观念。
三角函数求值公式
哎呀,说起三角函数求值公式,这可真是让我这个小学生脑袋都大了一圈!
三角函数,就像是数学世界里的神秘小精灵,它们的求值公式更是像一道道难以破解的密码。
你想想,正弦(sin)、余弦(cos)、正切(tan),它们就像是三个调皮的小伙伴,总是在各种数学问题里蹦跶,让我们去寻找它们的价值。
比如说,正弦函数的求值公式,sin A = 对边/ 斜边。
这就好像是我们分糖果,对边是我拿到的糖果数量,斜边是总的糖果数量,那我拿到的糖果占总糖果的比例不就是正弦值嘛!
还有余弦函数,cos A = 邻边/ 斜边。
这就好比是我和小伙伴们排队,邻边就是我旁边小伙伴的人数,斜边是整排的人数,那旁边小伙伴占整排人数的比例不就是余弦值嘛!
正切函数tan A = 对边/ 邻边,这又好像是我和朋友比赛跑步,对边是我跑的距离,邻边是朋友跑的距离,那我跑的距离和朋友跑的距离的比值不就是正切值嘛!
老师在课堂上讲这些的时候,我就拼命地想啊想,这到底是咋回事呢?我同桌小明也一脸懵,还悄悄跟我说:“这也太难懂啦!”我心里也直嘀咕:“可不是嘛,这咋比玩游戏还难!”
后来老师又举了好多例子,带着我们做了好多练习题,慢慢地,好像有点开窍了。
我发现,只要认真去琢磨,这些公式也不是那么可怕。
就像爬山一样,一开始觉得山好高好难爬,但是一步一步地往上走,总能看到更美的风景。
现在想想,三角函数求值公式虽然复杂,但只要我们用心去理解,多练习,也能把它们拿下!这不就跟我们做任何事情一样嘛,只要有决心,有耐心,就没有办不成的事儿!所以呀,别害怕这些公式,勇敢地去挑战它们,说不定会发现其中的乐趣呢!。
三角函数化简求值常用技巧三角函数式的化简和求值是高考考查的重点内容之一。
掌握化简和求值问题的解题规律和一些常用技巧,以优化我们的解题效果,做到事半功倍。
这也是解决三解函数问题的前提和出发点。
一、切割化弦例1、已知 )2(cot tan22≥=+m m x x ,求xx 4cos 14cos 3-+的值。
解: 24cos 14cos 34cos 1)4cos 3(24cos 12cos 444cos 1)2cos 1(484cos 12sin 48)4cos 1(812sin 2112sin 412sin 2112sin 41cos sin 2)cos (sin cos sin cos sin sin cos cos sin 2cot tan 2222222222222244222222m x x m x x x x x x x x x x x x x x x x x x x x x x x x x x x =-+∴=-+=-+=---=--=--=-=-+=+=+∴=+Θ 点评:由已知式与待求式的差异知,若选择“从已知到未知”,必定要“切切割化弦”;利用降幂公式实现已知与未知的统一。
二、统一配凑例2、已知2π<β<α<43π,cos(α-β)=1312,sin(α+β)=-53,求sin2α的值. 解:注意到2α= (α-β)+(α+β),于是可用配凑法求解。
∵2π<β<α<43π,∴0<α-β<4π.π<α+β<43π, ∴sin(α-β)=.54)(sin 1)cos(,135)(cos 122-=+--=+=--βαβαβα ∴sin2α=sin [(α-β)+(α+β)]=sin(α-β)cos(α+β)+cos(α-β)sin(α+β).6556)53(1312)54(135-=-⨯+-⨯=点评:本题以凑角的形式来实现未知与已知的统一,这是三角函数化简求值的常用技巧之一。
三、异角化同例3、已知cos(4π+x )=53,(1217π<x <47π),求x x x tan 1sin 22sin 2-+的值. 752853)54(257)4cos()4sin(2sin sin cos cos )cos (sin sin 2cos sin 1sin 2cos sin 2tan 1sin 22sin 54)4sin(,2435,471217.257)4(2cos 2sin ,53)4cos(:22=-⨯=++=-+=-+=-+-=+∴<+<∴<<=+-=∴=+x x x x x x x x x x x x x x x x x x x x x x x ππππππππππ又解Θ 点评:本题求解关键是将如何将已知条件中的角与目标关系式中的角统一起来。
三角函数求值的几种方法三角函数是数学中重要的一部分,它与圆的关系密切。
三角函数的求值是在给定一个角度时,计算其正弦、余弦、正切等函数值的过程。
本文将介绍三角函数求值的几种常见方法。
一、定义法三角函数的定义法是最基本的方法,它直接使用三角函数的定义公式进行计算。
例如,正弦函数的定义为sin(x) = b/c,其中b和c分别为角x所对应直角三角形的对边和斜边的长度。
通过观察角度对应的三角形特点,可以求出函数值。
二、图表法三角函数图表法是通过查阅三角函数表格,根据给定的角度,在表格中查找对应的函数值。
例如,可以查阅三角函数表格得到30°的正弦函数值为0.5三、计算器法计算器法是利用现代科技设备来进行三角函数求值的方法。
几乎所有的计算器都内置了三角函数求值功能,只需输入角度值,即可得到相应的函数值。
四、迭代法迭代法是一种数值计算方法,通过连续迭代计算来逼近精确解。
使用迭代法计算三角函数值时,可以使用泰勒级数展开式或欧拉公式来逼近函数值。
例如,sin(x)可以展开为无穷级数:sin(x) = x - x^3/3! +x^5/5! - x^7/7! + ...,通过截取有限项和进行计算,可以得到近似的函数值。
五、差值法差值法是一种数值逼近方法,通过已知点的函数值来估计其它点的函数值。
三角函数的差值法是利用已知的函数值,通过插值公式逼近所求函数值。
例如,当已知sin(30°) = 0.5,sin(45°) = 0.7071时,可以使用线性插值的方法来估计sin(40°)的值。
六、三角恒等式法三角函数有很多恒等式,可以用于简化三角函数的计算。
例如,利用和差角公式sin(x + y) = sin(x)cos(y) + cos(x)sin(y),可以将复杂角度的三角函数值转化为已知角度的三角函数值来计算。
总结:本文介绍了三角函数求值的几种常见方法,包括定义法、图表法、计算器法、迭代法、差值法和三角恒等式法。
三角函数式的求值
【知识点精讲】
三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。
仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。
找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。
将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论
【例题选讲】
例1、计算)310(tan 40sin 00-的值。
【分析】将切函数化成弦函数,3转化成特殊角的三角函数,再利用两角和与差的三角函数即可求解。
解:原式=)60cos 60sin 10cos 10sin (40sin 00000
- =000
060cos 10cos 50sin 40sin -⋅ =160cos 10cos 280sin 0
00
-=⋅-
[点评] “给角求值” 观察非特殊角的特点,找出和特殊角之间的关系
注意特殊值象1、3等,有时需将其转化成某个角的三角函数,这种技巧在化简求值中经常用到。
练习:tan20°+4sin20°
解:tan20°+4sin20°=00020cos 40sin 220sin +=000020cos 40sin 10cos 30sin 2+=00
020cos 40sin 80sin + =320cos 20cos 60sin 20
0= 例2、已知tan(45°+θ)=3,求sin2θ-2cos 2
θ的值
解:法一:由已知2
1tan ,3tan 1tan 1=⇒=-+θθθ sin2θ-2cos 2
θ=θθθθ222cos sin 2cos -sin2+=54tan 12tan 22-=+-θθ 法二:sin2θ-2cos 2θ=sin2θ-cos2θ-1=-cos(θπ
22+)-sin(θπ
22+)-1 =541)4
(tan 1)4tan(2)4(tan 1)4(tan 1222-=-+++-+++--θπθπθπθπ [点评] “给值求值” 法一,由tan θ的值,利用齐次式求值。
法二,由角度之间关系求解 练习:)6
sin(,212tan παα
+=求已知 解:(利用万能公式)
10334+ 例3、已知sin(
-4πx)=135,0<x<4π,求)4
cos(2cos x x +π的值。
【解法1】∵2)4()4(πππ=++-x x ,∴cos(4π+x)=sin(4
π-x) 又cos2x=sin(2π-2x)=sin2(4π-x)=2sin(4π-x)cos(4
π-x) ∴)4
cos(2cos x x +π=2 cos(4π-x)=21324)1312(=⨯ 【解法2】)sin )(cos sin (cos sin cos 2cos 22x x x x x x x -+=-= )4cos()4sin(2π
π++x x ∴)4cos(2cos x x
+π)4cos()4cos()4sin(2x x x +++=ππ
π=)4sin(2x +π 下同解法1。
[点评]:分析:角之间的关系:2)4()4(
πππ=++-x x 及)4(222x x -=-ππ ,利用余角间的三角函数的关系便可求之。
练习:设cos(α2β
-)=91-,sin(βα-2)=32,且2
0,2πβπαπ<<<<,求cos(α+β)
解:cos(2β
α+)=cos[(α2β
-)-(βα
-2)]┉=27
57 ∴cos(α+β)= 12cos 22-+β
α=┉=729
239- 〈对角的范围要讨论〉 例4、若),0(,πβα∈,31tan ,50
7cos -=-=βα,求α+2β。
解:∵),0(,πβα∈,50
7
cos -=α ∴),0,33(71tan -∈-
=α),0,33(31tan -∈-=β ∴),65(,ππβα∈,α+2β)3,2
5(ππ∈, 又tan2β=
43tan 1tan 22-=-ββ,12tan tan 12tan tan )2tan(-=-+=+βαβαβα, ∴α+2β=4
11π [点评] “给值求角”:求角的大小,常分两步完成:第一步,先求出此角的某一三角函数值;第二步,再根据此角的范围求出此角。
在确定角的范围时,要尽可能地将角的范围缩小,否则易产生增解。
练习:已知α,β为锐角,tan α=1/7 sin β=10
10,求2α+β的值 解:由已知0<2α+β<23π, 求得cos(2α+β)=22或tan(2α+β)=1.得2α+β=4π 例5、已知3
1)sin(,21)sin(=-=+βαβα,求tan α:tan β的值。
解:由已知,sin αcos β+cos αsin β=1/2……(1), sin αcos β-cos αsin β=1/3……(2) ()()()()
得2121-+tan α:tan β=5:1 [点评] “给式求值”:注意到公式中的特点用解方程组的方法得到。
练习: 已知sin α+sin β= m 已知cos α+cos β= n(mn ≠0).
求⑴cos(α-β);⑵sin(α+β);⑶tan(α+β)
解:⑴两式平方相加得:2+2(cos αcos β+sin αsin β)=m 2+n 2
12
)cos(2
2-+=-⇒n m βα. ⑵=++βαβαcos cos sin sin n m =+=-+-+2tan 2cos 2cos 22cos 2sin 2βαβαβαβ
αβα. 由万能公式:sin(α+β)=222212
m n mn n m n m
+=⎪⎭⎫ ⎝⎛+ ⑶tan(α+β)=222212
m n mn n m n m
-=⎪⎭⎫ ⎝⎛-
【课堂小结】
三角函数式的求值的关键是熟练掌握公式及应用, 掌握公式的逆用和变形
三角函数式的求值的类型一般可分为:
(1)“给角求值”:给出非特殊角求式子的值。
仔细观察非特殊角的特点,找出和特殊角之间的关系,利用公式转化或消除非特殊角
(2)“给值求值”:给出一些角得三角函数式的值,求另外一些角得三角函数式的值。
找出已知角与所求角之间的某种关系求解
(3)“给值求角”:转化为给值求值,由所得函数值结合角的范围求出角。
(4)“给式求值”:给出一些较复杂的三角式的值,求其他式子的值。
将已知式或所求式进行化简,再求之
三角函数式常用化简方法:切割化弦、高次化低次
注意点:灵活角的变形和公式的变形
重视角的范围对三角函数值的影响,对角的范围要讨论。