H A E1B 1 7
E1
B1
.G
A
B
1 5
可得直线AH与BE1所成角的余弦值
1 7
1
2
3
5
例1:在正方体ABCD-A1B1C1D1中,
1
4
D1F1= D1C 1,
角的余弦值。
1
B1E1= 4
A1B1,求直线DF1与BE1所成
D1 F1
A1
H
C1
E1 B1
D
A
C
B
例1:在正方体ABCD-A1B1C1D1中,
综合法:作——证——求。
G
解析:延长AH,BE1 交于点G, 所以∠AGGH= 1 7
在三角形HE1G中,由余弦定理得
A1
H
E1
B1
GE12 GH 2 HE12
cos =
2GE1 • GH
17 17 4 15
2 17 17 17
1
点, 且D1E1= 4 D1C1求直线E1F与平面D1AC所成角的正弦值.
D1(0,0,4)
(0,4,4) C1
E1
(4,2,4) B1 (4,4,4)
(4,0,4)
A1
(0,4,0)
C
D
(4,0,0)
A
B
F
(4,4,0)
解:以
{DA,DC,DD}
正交基底,建立如图所示的
1 为
空间直角坐标系D-xyz,则各点的坐标为
D1 A 2, CE 1 (t 2)2 t 2 4t 5
D1 A • CE=1
D1 A • CE
1
所以cos60 =