质谱、LC-MS技术的基础
- 格式:ppt
- 大小:9.79 MB
- 文档页数:145
LC-MS原理质谱法原理及应用质谱法的原理及应用质谱法的原理及应用摘要:用电场和磁场将运动的离子(带电荷的原子、分子或分子碎片)按它们的质荷比分离后进行检测的方法。
测出了离子的准确质量,就可以确定离子的化合物组成。
这是由于核素的准确质量是一多位小数,决不会有两个核素的质量是一样的,而且决不会有一种核素的质量恰好是另一核素质量的整数倍。
关键词:质谱法离子运动离子源质量分析器正文:1898年W.维恩用电场和磁场使正离子束发生偏转时发现,电荷相同时,质量小的离子偏转得多,质量大的离子偏转得少。
1913年J.J.汤姆孙和F.W.阿斯顿用磁偏转仪证实氖有两种同位素[kg1]Ne和[kg1]Ne 阿斯顿于1919年制成一台能分辨一百分之一质量单位的质谱计,用来测定同位素的相对丰度,鉴定了许多同位素。
但到1940年以前质谱计还只用于气体分析和测定化学元素的稳定同位素。
后来质谱法用来对石油馏分中的复杂烃类混合物进行分析,并证实了复杂分子能产生确定的能够重复的质谱之后,才将质谱法用于测定有机化合物的结构,开拓了有机质谱的新领域。
质谱法的原理是待测化合物分子吸收能量(在离子源的电离室中)后产生电离,生成分子离子,分子离子由于具有较高的能量,会进一步按化合物自身特有的碎裂规律分裂,生成一系列确定组成的碎片离子,将所有不同质量的离子和各离子的多少按质荷比记录下来,就得到一张质谱图。
由于在相同实验条件下每种化合物都有其确定的质谱图,因此将所得谱图与已知谱图对照,就可确定待测化合物。
利用运动离子在电场和磁场中偏转原理设计的仪器称为质谱计或质谱仪。
前者指用电子学方法检测离子,而后者指离子被聚焦在照相底板上进行检测。
质谱法的仪器种类较多,根据使用范围,可分为无机质谱仪和有机质谱计。
常用的有机质谱计有单聚焦质谱计、双聚焦质谱计和四极矩质谱计。
目前后两种用得较多,而且多与气相色谱仪和电子计算机联用。
主要由以下部分组成:1,高真空系统质谱计必须在高真空下才能工作。
液相色谱-质谱联用(LC-MS)LCMS分别的含义是:L液相C色谱M质谱S分离(友情赠送:G是气相^_^)LC-MS/MS就是液相色谱质谱/质谱联用MS/MS是质谱-质谱联用(通常我们称为串联质谱,二维质谱法,序贯质谱等)LC-MS/MS与LC-MS比较,M(质谱)分离的步骤是串联的,不是单一的。
色谱法也叫层析法,它是一种高效能的物理分离技术,将它用于分析化学并配合适当的检测手段,就成为色谱分析法。
色谱法的最早应用是用于分离植物色素,其方法是这样的:在一玻璃管中放入碳酸钙,将含有植物色素(植物叶的提取液)的石油醚倒入管中。
此时,玻璃管的上端立即出现几种颜色的混合谱带。
然后用纯石油醚冲洗,随着石油醚的加入,谱带不断地向下移动,并逐渐分开成几个不同颜色的谱带,继续冲洗就可分别接得各种颜色的色素,并可分别进行鉴定。
色谱法也由此而得名。
现在的色谱法早已不局限于色素的分离,其方法也早已得到了极大的发展,但其分离的原理仍然是一样的。
我们仍然叫它色谱分析。
一、色谱分离基本原理:由以上方法可知,在色谱法中存在两相,一相是固定不动的,我们把它叫做固定相;另一相则不断流过固定相,我们把它叫做流动相。
色谱法的分离原理就是利用待分离的各种物质在两相中的分配系数、吸附能力等亲和能力的不同来进行分离的。
使用外力使含有样品的流动相(气体、液体)通过一固定于柱中或平板上、与流动相互不相溶的固定相表面。
当流动相中携带的混合物流经固定相时,混合物中的各组分与固定相发生相互作用。
由于混合物中各组分在性质和结构上的差异,与固定相之间产生的作用力的大小、强弱不同,随着流动相的移动,混合物在两相间经过反复多次的分配平衡,使得各组分被固定相保留的时间不同,从而按一定次序由固定相中先后流出。
与适当的柱后检测方法结合,实现混合物中各组分的分离与检测。
二、色谱分类方法:色谱分析法有很多种类,从不同的角度出发可以有不同的分类方法。
从两相的状态分类:相色谱和经典液相色谱没有本质的区别。
血尿串联质谱随着科技的不断发展,现代医学技术也在不断更新换代。
血尿串联质谱(LC-MS/MS)技术就是其中一种最新的技术,它可以在极短的时间内对人体血液和尿液中的化学物质进行分析,从而帮助医生诊断出疾病的类型和病情的严重程度。
本文将从血尿串联质谱的原理、应用和未来前景三个方面来介绍这种技术。
一、血尿串联质谱的原理血尿串联质谱是一种基于质谱的分析技术,它可以将化学样品分离并分析出每个样品中的化学物质。
具体来说,血尿串联质谱技术可以将血液或者尿液中的化学物质通过离子化、分离和检测等步骤,将其转化为质谱图像,从而得出每个样品中化学物质的种类和数量。
血尿串联质谱的主要原理是将样品进行离子化,然后将离子化后的样品通过电磁场进行分离。
在分离过程中,不同种类的化学物质会因为不同的质荷比而被分离到不同的位置。
最后,通过检测不同位置上的化学物质,就可以得到样品中每个化学物质的质量和数量。
二、血尿串联质谱的应用血尿串联质谱技术可以广泛应用于医学领域,特别是在疾病诊断和治疗方面。
下面是血尿串联质谱在医学领域中的一些应用:1、癌症诊断血尿串联质谱技术可以通过分析血液或者尿液中的化学物质,来判断是否存在癌症。
因为癌症细胞会产生一些特殊的化学物质,这些化学物质可以通过血尿串联质谱技术来检测出来。
利用这种技术,医生可以更加准确地诊断出患者是否患有癌症。
2、药物代谢血尿串联质谱技术可以帮助医生了解患者对药物的代谢情况。
因为每个人的代谢系统都不同,所以相同的药物在不同人群中的代谢情况也会不同。
通过血尿串联质谱技术,医生可以了解患者的代谢情况,从而更好地制定药物治疗方案。
3、遗传病诊断血尿串联质谱技术可以通过分析患者的基因组,来判断是否存在遗传病。
因为遗传病与个体基因组的缺陷有关,所以通过分析基因组,可以更加准确地诊断出患者是否患有遗传病。
三、血尿串联质谱的未来前景血尿串联质谱技术的未来前景非常广阔,它可以在医学领域中发挥更加重要的作用。
实验七液相色谱-质谱联用技术(LC-MS)的各种模式探索093858 张亚辉一、实验目的1、了解LC-MS的主要构造和基本原理;2、学习LC-MS的基本操作方法;3、掌握LC-MS的六种操作模式的特点及应用。
二、实验原理1、液质基本原理及模式介绍液相色谱-质谱法(Liquid Chromatography/Mass Spectrometry,LC-MS)将应用范围极广的分离方法——液相色谱法与灵敏、专属、能提供分子量和结构信息的质谱法结合起来,必然成为一种重要的现代分离分析技术。
但是,LC是液相分离技术,而MS是在真空条件下工作的方法,因而难以相互匹配。
LC-MS经过了约30年的发展,直至采用了大气压离子化技术(Atmospheric pressure ionization,API)之后,才发展成为可常规应用的重要分离分析方法。
现在,在生物、医药、化工、农业和环境等各个领域中均得到了广泛的应用,在组合化学、蛋白质组学和代谢组学的研究工作中,LC-MS已经成为最重要研究方法之一。
质谱仪作为整套仪器中最重要的部分,其常规分析模式有全扫描模式(Scan)、选择离子监测模式(SIM)。
(一)全扫描模式方式(Scan):最常用的扫描方式之一,扫描的质量范围覆盖被测化合物的分子离子和碎片离子的质量,得到的是化合物的全谱,可以用来进行谱库检索,一般用于未知化合物的定性分析。
实例:(Q1 = 100-259m/z)(二)选择离子监测模式(Selective Ion Monitoring,SIM):不是连续扫描某一质量范围,而是跳跃式地扫描某几个选定的质量,得到的不是化合物的全谱。
主要用于目标化合物检测和复杂混合物中杂质的定量分析。
实例:(Q1 =259m/z)本实验采用三重四极杆质谱仪(Q1:质量分析器;Q2:碰撞活化室;Q3:质量分析器),由于多了Q2、Q3的存在,在分析测试的模式上又多了四种选择:(三)子离子扫描模式(Product Scan):第一个质量分析器固定扫描电压,选择某一质量离子(母离子)进入碰撞室,发生碰撞解离产生碎片离子,第二个质量分析器进行全扫描,得到的所有碎片离子都是由选定的母离子产生的子离子,没有其它的干扰。
LCMS液质联用仪原理及基础知识介绍LC-MS是液相色谱-质谱联用技术,是将液相色谱(LC)与质谱(MS)两种分析技术结合起来,对化合物进行分离和定性定量分析。
液相色谱将混合物中的化合物分离开来,而质谱则对分离后的单个化合物进行分子结构和组成的分析。
LC-MS的原理是首先通过液相色谱将混合物中的化合物分离开来。
液相色谱采用一个固定相(如柱子内的填料)和一个移动相(溶剂),将待分离的化合物通过不同的亲和性与固定相进行交互,从而使化合物逐步分离。
分离后的化合物进入质谱部分进行分析。
质谱主要是通过离子化技术将分离后的化合物转化为离子,并在电场作用下进行分离和检测。
常见的离子化技术包括电喷雾离子源(ESI)和化学电离(CI)等。
在质谱仪中,离子化的化合物被加速到一定能量,通过一个磁场进行分离,根据离子的质量与荷比(m/z)比值,可以得到化合物的分子质量。
LC-MS的基础知识包括液相色谱和质谱。
液相色谱(LC):液相色谱是一种在液体流动相中通过固定相分离化合物的技术。
在液相色谱中,通过调节流动相的组成、温度、流速等参数,可以改变溶剂在固定相上的极性和亲和力,从而实现化合物的分离。
常见的液相色谱技术包括高效液相色谱(HPLC)、气相色谱(GC)、离子色谱(IC)等。
质谱(MS):质谱是一种通过分析分子离子的质荷比来确定化合物的结构和组成的分析技术。
质谱主要包括离子化、质量分析和信号检测等步骤。
离子化可以通过不同的技术实现,如电喷雾离子源(ESI)、化学电离(CI)等。
质量分析部分主要通过加速离子,使其通过磁场分离,根据离子质量与荷比,可以得到化合物的质量。
信号检测主要是在质谱仪内部检测加速离子之后的荷电粒子。
LC-MS在许多领域中有广泛的应用。
例如,在生物医药领域,LC-MS 可以用于药物代谢和药物残留的研究;在环境科学中,LC-MS可以用于检测水体和土壤中的有机污染物;在食品安全监测中,LC-MS可以用于检测食品中的农药残留和添加剂等。