质谱发展历史 基础知识
- 格式:ppt
- 大小:8.46 MB
- 文档页数:2
8 质谱8.1 概述质谱分析是现代物理、化学以及材料领域内使用的一个极为重要的工具。
从第一台质谱仪的出现至今已有80年历史。
早期的质谱仪器主要用于测定原子质量、同位素的相对丰度,以及研究电子碰撞过程等物理领域。
第二次世界大战时期,为了适应原子能工业和石油化学工业的需要,质谱法在化学分析中的应用受到了重视。
以后由于出现了高性能的双聚焦质谱仪,这种仪器对复杂有机分子所得的谱图,分辨率高,重现性好,因而成为测定有机化合物结构的一种重要手段。
60年代末,色谱-质谱联用技术因分子分离器的出现而日趋完善,使气相色谱法的高效能分离混合物的特点,与质谱法的高分辨事鉴定化会场的特点相结合,加上电子计算机的应用,这样就大大地提高了质谱仪器的效能,扩展了质谱法的工作领域。
近年来各种类型的质谱仪器相继问世,而质谱仪器的心脏—离子源,也是多种多样的,因此质谱法已日益广泛地应用于原子能、石油化工、电子、医药、食品、材料等工业生产部门,农业科学研究部门,以及核物理、电子与离子物理、同位素地质学、有机化学、生物化学、地球化学、无机化学、临床化学、考古、环境监测、空间探索等科学技术领域。
质谱法具有独特的电离过程及分离方式,从中所获得的信息直接与样品的结构相关,不仅能得到样品中各种同位素的比值,而且还能给出样品的结构和组成。
因此,质谱学已成为有机、无机、高分子材料结构分析的有力工具。
已高分子材料为例,由于高分子材料的分子量较大,而且不易挥发,所以无法直接用质谱进行鉴定。
但通过软电离方法却可有效地测定各种塑料、橡胶、纤维的主体结构单元以及高分子材料中所使用的各种添加剂的化学结构。
应用热裂解—质谱或热裂解-气相色谱-质谱,可分别获得不同高分子结构特征的热裂解产物,从而进一步揭示聚合物的链节以及序列分布。
这在研究高分子的结构与性质关系方面可发挥很大的作用。
辉光放电质谱(GDMS)和火花源质谱(SSMS)是进行高纯固体材料全面分析的两种主要分析技术。
质谱仪的历史与发展质谱的发展与核物理的早期发展紧密相连,而核物理的早期发展又是建立在真空管气体放电的技术上;克鲁克斯管是从早期用的盖斯勒管改良而来的,它是一个内部抽成较低气压的玻璃管,两端装有电极,阴极和阳极之间可以产生10 -100千伏的高压;克鲁克斯管运行时的真空比帕斯卡要低得多,这是射线管实验——特别是阳极射线研究的必备条件;许多基于克鲁克斯管的实验带来了原子和核物理方面开创性的研究成果;最着名的是在1895年由威廉·康拉德·伦琴发现x射线;不到年之后.汤姆森通过对阴极射线在电场中的偏转分析和测量了电子的质荷比m / e;他发现了一种质量只有氢原子当时已知的最轻的原子的1/1800却带有一个单位负电荷的粒子,这是电子的发现;维恩在1898年通过对阳极射线的分析测量了氢原子核的质量,这是首次对质子的测量;维恩和汤姆森正是质谱法的开创者如图是1898年由维恩制造的第一台质谱实验装置;在一个气压很低的玻璃管中设置了阴极A和阳极a用来产生阳极射线,然后射线会经过平行的电极缝,同时b区域的真空管外也覆盖了电极用来屏蔽磁场;在真空管c区域内,除了磁极间的平行磁场外在垂直射线和磁场方向设置了平行电场来分析离子束;在电场和磁场的作用下,只有特定速度v=E/B的离子可以到达真空管末端,这就是我们现在所说的速度选择器;这个装置的长度只有5厘米;维恩利用它从阳极射线中选出特定速度的离子进行研究,测量了氢原子核当时维恩并不知道这是氢原子核的荷质比,并研究了其他一些更重的离子;但直到1919年卢瑟福的系列工作之后才正式宣判了质子的发现;尽管如此,正如.汤姆森所说,维恩是第一个是用磁场偏转来分析离子束性质的科学家;不过真正意义上的质谱法的诞生还要归功于1907年汤姆森本人的实验;上图是汤姆森在剑桥搭建的第一台质谱仪的实物和原理;他同样采用阳极C 把放电区和测量区分开,放电区冲入少量的某种气体,阳极和阴极之间加有30-50千伏的电压;同样为了屏蔽磁场的干扰,在放电区的外面放置了金属的隔离罩W;放电区电极C 中间是一个6cm 长,内径从到的准直孔,用一个非常精巧的毛细玻璃管F 和测量区相连;气体在放电区电离出离子,并且在高电场下获得很快的速度,最后沿着毛细玻璃管以很窄的一束射入抽真空的测量区;测量区内安装了两块平行的电极A,并且外部有一组磁极P 提供磁场;与维恩的实验不同,这里磁场和电场的方向是平行的;经过偏转的离子束打在后面的荧光屏上;汤姆森采用了Zn 2SO 4作为荧光材料,它的灵敏度比之前使用的材料要高很多;经过简单的力学分析计算,可以得到离子束在x 和y 方向的偏转距离为: 当0mv R L qB=>>时实验的设置可以满足这一点,x 可以近似为0q BLD x m v ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭由此可以看出,在确定的电场和磁场之下,对于不同荷质比的粒子,随着其速度的变化调节加速电压,会在荧光屏上显示出不同的抛物线轨迹,他们都出发自同一个未经偏转的原点;汤姆森利用这个原理测量了多种气体电离出的离子束,在早期的实验结果中就可以看到,不同质量离子形成的抛物线都是比较清晰锋锐的,没有出现成片的散点,这也是第一次证明了同一种原子在比较精细的测量中没有表现出质量差别;这是1913年汤姆森发表的最着名的一张质谱图,可以看到很多清晰的离子谱线,最引人注目的是22Ne和20Ne,这是第一次发现化学元素的同位素;当时已经成为汤姆森助手的.阿斯顿为了证实这一结果,后来又进行了一系列实验,终于成功分离并制备了这两种同位素的样本;其实在1918年邓普斯特设计了一套同位素分离装置,如图离子在G中产生并被高压加速,通过狭缝S1进入抽真空的分析器A,A 内有垂直于纸面方向的匀强磁场,粒子在其中偏转180°后,能经过狭缝S2的离子才会被探测到,装置的加速电压可以从500V到1750V;由于离子在磁场中的偏转半径R=mv/qB,经过180°的偏转后,出射方向与入射方向平行,因此通过加速电压和狭缝的选择,可以得到不同荷质比的离子束;实验所用的离子源是热源,是加热或用阴极电子轰击铂片上的对应离子盐产生的的;但是由于当时技术条件的限制,达到一定强度的大范围匀强磁场难以得到,但是为了减小误差,粒子的加速电压又必须足够高因为粒子的速度本身存在一定分布,也就是说粒子的偏转半径却又不能太小;因此后来尼尔等又发展了90°、60°等小角度偏转的质谱装置,来进行更精确的实验;阿斯顿也是在邓普斯特的想法上提出了改进;1919年,阿斯顿制作了一台全新的质谱仪,上图是阿斯顿的实验装置示意图,和得到的结果;气体电离产生的离子束先经过S1、S2两个准直孔,同时通过一个与其有倾角θ的平行电极板加速,通过挡板D,再经过圆形的匀强磁场偏转,最后打在荧光屏上;阿斯顿的装置拥有十分精巧的几何结构设计,因为离子束在电场中的偏转与和磁场中的偏转都与q/m、v相关,两次偏转符合的结果消除了v的影响,使得相同荷质比不同速度的粒子最终在屏所处的平面上聚焦在同一点;这个装置极大地减小了质谱测量的误差去除了离子速度分布的影响,扩展了能够测量的离子种类,得到的质谱结果为当时的元素整数质量规则提供了直观的阐释;1922年,阿斯顿获得了诺贝尔物理学奖,以表彰它在质谱仪,同位素等方面的贡献;随后,阿斯顿又进一步改进了他的实验装置主要是在材料和工艺上,以测定不同元素的质量,并且发现了元素的相对原子质量与整数的偏差,现在我们知道这是核子结合成原子核时的质量亏损,或者说敛集率造成的,但是阿斯顿是在没有相关理论的情况下,率先利用质谱仪观测并且研究这一现象的;基于阿斯顿质谱仪中聚焦的思想,1934年Mattauch与Herzog进一步发展出了完整的离子束能量和方向的双聚焦理论,并且能在同一张底片上得到很大范围的质量谱;这种双聚焦质谱仪最终以他们的名字命名;双聚焦的设计基本成为了之后20年内多数质谱仪的蓝本;在这期间,仪器的材料,制造工艺,离子束的制备方法等都有了很大的发展,实验规模和精度也有了很大提升;质谱仪在同位素的研究方面取得了很多成果,最着名的可能是提取出了铀的同位素235U;还有用来测定材料成分的二次离子质谱法,被应用于古生物学、地球化学和地质学;到了1960年以后,探测器、加速器、光谱学、电磁学等方面技术有了很大的发展,离子的质量测量出现了许多新的方法,比如Radio Frequency Quadrupoles RFQ,重离子加速器结合TOF系统,傅里叶变换谱学,电四极离子陷方法等等,传统的质谱仪渐渐退出了核物理研究的主流舞台;然而维恩、汤姆森、邓普斯特、阿斯顿等等一批伟大的科学家在实验装置的设计,思考和解决问题的方法上有很多值得我们借鉴和学习;无论技术和知识背景如何改变,我相信其中一些科学研究的基本思想是我们始终须要秉承的;参考文献:On rays of positive electricity; ;A positive ray spectrograph;International Journal of Mass Spectrometry 349– 350 2013 9– 18;维基百科、百度百科;。
质谱仪发展历史质谱仪是一种高精度的分析仪器,能够通过分析物质的质量来研究物质的成分、结构和性质。
本文将介绍质谱仪的发展历史,主要涵盖以下方面:起源及早期发展、1910年、1912年、质谱学领域里程碑、1934年、1943年、技术进步与新应用、20世纪50年代、20世纪60年代末、20世纪90年代、新时代的技术突破与应用扩展、2002年以及现代发展与趋势。
一、起源及早期发展质谱仪的起源可以追溯到19世纪末期,当时科学家们开始研究如何通过分析物质的质量来研究物质的成分和结构。
英国物理学家汤姆森(J.J.Thomson)在1897年发现了电子,为质谱仪的发展奠定了基础。
随后,英国物理学家阿斯顿(F.W.Aston)在20世纪初期发明了第一台真正意义上的质谱仪。
二、1910年第一台实用质谱仪诞生,由阿斯顿在剑桥大学研制成功。
这台仪器被用于分析有机化合物的成分,为有机化学领域的研究提供了强有力的工具。
三、1912年英国物理学家道布森(F.W.Dobbson)发现了质谱学中的重要原理——道布森效应,为质谱仪的发展作出了重要贡献。
这一发现揭示了离子在电场中的运动轨迹与质量有关,为质谱仪的进一步发展提供了理论基础。
四、质谱学领域里程碑随着时间的推移,质谱学领域不断取得突破性进展。
1927年,阿斯顿研制出第一台单聚焦质谱仪;1946年,第一台双聚焦质谱仪问世;1952年,电子捕获检测器(ECD)被应用于质谱分析;1955年,离子源被引入到质谱分析中,为后续质谱技术的发展奠定了基础。
五、1934年在工业和化学领域,质谱仪得到了广泛应用。
这一时期,人们开始利用质谱仪分析各种有机化合物和无机化合物,为化学工业的发展提供了强有力的支持。
六、1943年质谱仪的快速检测技术取得了重要进展。
美国科学家科克伦(W.H.Cochrane)发明了飞行时间质谱仪(TOF),使得质谱仪的检测速度得到了极大的提升。
这一技术至今仍在广泛应用。
飞行时间质谱仪的发展史
飞行时间质谱仪的发展史可以追溯到20世纪初。
1906年,J.J.Thomson 使用阴极射线管测得电子质核比获得诺贝尔物理学奖。
在1912年,他设计了质谱仪的前身,发现了氖同位素。
1920年,F.W.Aston设计出第一台速度聚焦式质谱仪。
1934年,J.Mattauch发明了第一个磁场双聚焦质谱仪。
1946年,W.Stephens首次发明了时间飞行质谱仪(TOF,Time of Flight)。
1948年,A1E1Cameron和D1F1Eggers研制出世界上第一台飞行时间质谱仪实验样机,其直线飞行管长达10m,分辨率却不到5。
飞行时间质谱有两种飞行模式:平行飞行模式和垂直飞行模式。
在现代质谱产品中,大都已经采用垂直飞行模式。
尤其在大气化学领域,美国的科研团队以质谱仪为主,欧洲则以测量粒径的仪器为主。
一、引言气相色谱质谱联用仪(Gas Chromatography-Mass Spectrometry,GC-MS)是一种高效、高灵敏度的分析技术,已经成为当今化学分析领域中的重要工具。
在本文中,我将会从GC-MS的发展历史、原理和应用领域等方面进行全面评估,并撰写一篇有价值的文章。
二、GC-MS的发展历史1. 早期的气相色谱技术气相色谱技术最早可以追溯到20世纪50年代,当时的气相色谱仪虽然具有分离能力,但是对于分析物质的鉴定能力还不够强。
2. 质谱仪的发展与此质谱仪作为一种高分辨率、高灵敏度的分析工具,也在不断发展壮大。
20世纪60年代,质谱仪技术得到了长足的进步和发展,大大提高了分析物质的检测能力。
3. GC-MS的诞生随着气相色谱和质谱两种技术的不断发展,20世纪70年代初期,GC-MS技术正式诞生。
这种联用技术将气相色谱的分离能力和质谱的鉴定能力结合在一起,成为了当时分析化学领域的一大突破。
4. GC-MS的技术改进在后续的发展历史中,GC-MS技术不断进行改进和优化,包括增加了对样品的前处理技术、提高了灵敏度和分辨率等方面的改进。
如今,GC-MS已经成为了化学分析中的重要工具,被广泛应用于环境监测、食品安全、药物分析等各个领域。
三、GC-MS的原理和应用1. GC-MS的原理GC-MS技术的原理是将气相色谱仪和质谱仪联用,首先通过气相色谱将样品中的化合物分离出来,然后再通过质谱对分离出来的化合物进行鉴定。
这种联用技术大大增强了分析的能力和准确性。
2. GC-MS的应用领域GC-MS技术在环境监测中被广泛应用,可以对空气、水、土壤中的有机污染物进行快速、准确的检测。
在食品安全领域,GC-MS可以用于检测食品中的农药残留、添加剂等有害物质。
GC-MS还被广泛应用于药物分析、毒物检测等领域。
四、对GC-MS的个人观点和理解作为化学分析领域的一名研究人员,我个人非常欣赏GC-MS这种分析技术。
二次离子质谱发展历史概述说明1. 引言1.1 概述二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)是一种分析技术,具有高灵敏度和高空间分辨率等优势。
它通过将固体样品表面激发产生的次级离子进行质谱分析,可以实现对材料的元素成分、同位素丰度、元素空间分布以及化学状态等信息的获取。
1.2 文章结构本文主要围绕二次离子质谱的发展历史、技术原理和主要应用展开探讨。
文章包括引言、二次离子质谱发展历史、二次离子质谱技术原理、主要应用和成果总结以及结论与展望五个部分。
1.3 目的本文旨在全面概述二次离子质谱的发展历史,并详细介绍其原理和主要应用领域。
同时,还将对二次离子质谱在地质学、生物医学和材料科学领域中取得的重要成果进行总结,并提出存在的问题和未来发展方向。
通过阅读本文,读者能够了解到二次离子质谱研究领域的进展情况及其在各个领域中的应用前景。
注:本文大纲采用JSON格式,仅用于展示文章的目录结构,并无实际意义。
2. 二次离子质谱发展历史2.1 早期研究二次离子质谱(Secondary Ion Mass Spectrometry,SIMS)作为一项重要的表面分析技术,起源于20世纪60年代。
早期的研究主要集中在金属和半导体材料等无机样品的表面分析上。
1965年,Oesterhelt和Felix首次使用电子轰击发射次级离子,并将其纳入到质谱仪进行质量分析。
此后,Nieman等人对将溅射离子用作粒子探针进一步扩展了这项技术的应用范围。
2.2 技术突破与进展随着对逐个原子检测需求的不断增加,SIMS技术得到了迅速发展。
1970年代初,Czyzewski和Bennett首先提出了溅射离子法用于生物分析,使得该技术在生物领域获得了广泛应用。
1985年,SESSIMS(Static SIMS)技术被引入,克服了早期动态SIMS存在的问题,并且提高了灵敏度和分辨率。
1990年代以后,ToF-SIMS(Time-of-Flight SIMS)技术的引入进一步提高了分辨率和质谱效能。
蛋白质质谱分析的发展历史质谱法是准确测定蛋白质质量和表征蛋白质的重要方法,根据各种用途,目前市场上已开发出了多种鉴定方法和鉴定仪器,可应用于包括鉴定蛋白质及其翻译后修饰、蛋白质复合物、它们的亚基和功能的相互作用,以及蛋白质组学中蛋白质的整体测量。
质谱法也可用于定位各种细胞器中的蛋白质,并鉴定不同蛋白质之间以及膜脂之间的相互作用。
蛋白质质谱分析步骤图解(图片:百泰派克提供)质谱法中用于蛋白质电离的两种主要方法是电喷雾电离(ESI)和基质辅助激光解吸/电离(MALDI)。
这些电离技术需要与质谱分析仪(例如串联质谱)结合使用。
通常,可以通过“自上而下”的方法完整地分析蛋白质或者先将蛋白质分解成片段然后“自下而上”地对蛋白质进行分析。
有时分析较大的肽片段也可使用折中的“自中而下”的分析方法。
随着MALDI和ESI的发展,二十世纪八十年代,利用质谱进行蛋白质研究开始普及。
这些电离技术在蛋白质表征中发挥了重要作用。
基质辅助激光解吸电离(MALDI)是由Franz Hillenkamp和Michael Karas于80年代后期开发的。
Hillenkamp,Karas和他们的研究人员通过将氨基酸丙氨酸与氨基酸色氨酸混合并用266 nm脉冲激光照射,使氨基酸丙氨酸离子化。
尽管取得了一定进展,但直到1987年田中浩一(Koichi Tanaka)使用了“超细金属加液体基质法”,将大小为34,472 Da的蛋白质羧肽酶-A的生物分子离子化,电离技术才取得突破。
1968年,Malcolm Dole报告了电喷雾离子化法与质谱的首次联合使用。
在MALDI普及的同一时期,电喷雾离子化法由开发者John Bennett Fenn公开。
由于对生物大分子的鉴定和结构分析方法的研究做出的巨大贡献,John Fenn, 田中浩一及Kurt Wuthrich共同获得了2002年诺贝尔化学奖。
这些电离方法极大地促进了用质谱法研究蛋白质的发展。