实际问题与解方程(一)(1)
- 格式:doc
- 大小:39.50 KB
- 文档页数:3
实际问题与一元一次方程同步测试题(一)一.选择题1.新型冠状肺炎疫情正在全球蔓延肆虐,口罩成了人们生活中必不可少的物品,某口罩厂有26名工人,每人每天可以生产800个口罩面或1000个口罩耳绳.一个口罩面需要配两个耳绳,为使每天生产的口罩刚好配套,设安排x名工人生产口罩面,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x2.小明和小亮两人在长为50m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点……若小明跑步的速度为5m/s,小亮跑步的速度为4m/s,则起跑后60s内,两人相遇的次数为()A.3B.4C.5D.63.防范新冠病毒感染要养成戴口罩、勤洗手、多通风、常消毒等卫生习惯,其中对物体表面进行消毒可以采用浓度为75%的酒精.现有一瓶浓度为95%的酒精500mL,需将其加入适量的水,使浓度稀释为75%.设加水量为xmL,可列方程为()A.75%x=95%×500B.95%x=75%×500C.75%(500+x)=95%×500D.95%(500+x)=75%×5004.某超市以同样的价格卖出甲、乙两件商品,其中甲商品获利20%,乙商品亏损20%,若甲商品的成本价是80元,则乙商品的成本价是()A.90元B.72元C.120元D.80元5.书架上,第一层的数量是第二层书的数量x的2倍,从第一层抽8本到第二层,这时第一层剩下的数量恰比第二层的一半多3本.依上述情形,所列关系式成立的是()A.2x=x+3B.2x=(x+8)+3C.2x﹣8=x+3D.2x﹣8=(x+8)+36.欣欣服装店某天用相同的价格a(a≥0)卖出了两件服装,其中一件盈利20%,另一件亏损20%,那么该服装店卖出这两件服装的盈利情况是()A.亏损B.盈利C.不盈不亏D.与进价有关7.《九章算术》是我国古代的第一部自成体系的数学专著,其中的许多数学问题是世界上记载最早的,《九章算术》卷七“盈不足”有如下记载:原文:今有共买班①,人出半,盈四;人出少半,不足三问人数、进价各几何?注释:①琺jin:像玉的石头.译文:今有人合伙买班石,每人出钱,会多4钱;每人出钱,又差3钱,问人数进价各是多少?设进价是x钱,则依题意有()A.B.C.2(x+4)=3(x﹣3)D.2(x﹣4)=3(x+3)8.一套仪器由两个A部件和三个B部件构成.用1立方米钢材可做40个A部件或240个B部件.现要用5立方米钢材制作这种仪器,应用多少钢材做A部件,多少钢材做B部件,才能恰好配成这种仪器?若设应用x立方米钢材做A部件,则可列方程为()A.2×40x=3×240(5﹣x)B.3×40x=2×240(5﹣x)C.D.9.如图,数轴上的点O和点A分别表示0和10,点P是线段OA上一动点.点P沿O→A →O以每秒2个单位的速度往返运动1次,B是线段OA的中点,设点P运动时间为t 秒(t不超过10秒).若点P在运动过程中,当PB=2时,则运动时间t的值为()A.秒或秒B.秒或秒秒或秒C.3秒或7秒D.3秒或秒或7秒或秒10.根据图中提供的信息,可知一个杯子的价格是()A.6元B.8元C.10元D.12元二.填空题11.一条地下管线由甲工程队单独铺设需要12天,由乙工程队单独铺设需要24天,如果由这两个工程队从两端同时施工,要多少天可以铺好这条管线?设要用x天可以铺好这条管线,则可列方程.12.商店促销,标价1200元的球鞋8折出售,如果是VIP会员,还可以再打9折,但商店仍可获利20%,那么球鞋的进价是元.13.一个两位数的十位数字与个位数字的和是5,把这个两位数加上9后,结果恰好成为数字对调后组成的两位数,则这个两位数是.14.六年级(11)班有60人,其中参加数学小组的人数占全班的,参加英语小组的人数比参加数学小组的人数少,并且两个小组都不参加的人数比两个小组都参加的人数的多2人,则同时参加两个小组的人数是.15.现在有一面7尺厚的墙,大小两只老鼠分别从两面相对着打洞,第一天两只老鼠都打相同距离的洞,从第二天开始,大老鼠每天打洞的距离是前一天的2倍,小老鼠每天打洞的距离是前一天的一半,第三天结束洞刚好被打通,小老鼠第一天打洞的距离为尺.三.解答题16.某水果店一次批发买进苹果若干筐,每筐苹果的进价为30元,如果按照每筐40元的价钱卖出,那么当卖出比全部苹果的一半多5筐时,恰好收回全部苹果的成本,那么这个水果店这次一共批发买进苹果多少筐?17.某街道1000米的路面下雨时经常严重积水.需改建排水系统.市政公司准备安排甲、乙两个工程队做这项工程,根据评估,有两个施工方案:方案一:甲、乙两队合作施工,那么12天可以完成;方案二:如果甲队先做10天,剩下的工程由乙队单独施工,还需15天才能完成.(1)甲、乙两队单独完成此项工程各需多少天?(2)方案一中,甲、乙两队实际各施工了多少米?18.已知数轴上点A、点B、点C所对应的数分别是﹣6,2,12.(1)点M是数轴上一点,点M到点A、B、C三个点的距离和是35,直接写出点M对应的数;(2)若点P和点Q分别从点A和点B出发,分别以每秒3个单位和每秒1个单位的速度向点C运动,P点到达C点后,立即以同样的速度返回点A,点Q到达点C即停止运动,求点P和点Q运动多少秒时,点P和点Q相距2个单位长度?19.“乐天乐地乐巴蜀,巴蜀孩子最幸福”巴蜀中学一年一度的艺术节是孩子们最盼望的节日,不仅有各种精彩的节目表演,还有美淘街各具特色的小店,就像过年一样热闹.初二(1)班的同学们在2018年的美淘街上大放异彩,他们手工编织的小挂件非常受欢迎,当天一共卖出了40件动物挂件与50件植物挂件,其中动物挂件每件售价8元,植物挂件每件售5元.2019年他们打算继续卖手工编织的挂件.与2018年的售价相比,动物挂件的售价不变,优惠如下:买2件,首件全价,第二件半价,不单件销售:植物摆件的单价上调m%.与2018年的销售量相比,动物挂件的销量增加了5m%,植物挂件的销量下降了10件.结果2019年的销售额比2018年的销售额增加了m元,求m的值.参考答案与试题解析一.选择题1.【解答】解:设安排x名工人生产口罩面,则(26﹣x)人生产耳绳,由题意得1000(26﹣x)=2×800x.故选:C.2.【解答】解:设两人起跑后60s内,两人相遇的次数为x次,依题意得;每次相遇间隔时间t,A、B两地相距为S,V甲、V乙分别表示小明和小亮两人的速度,则有:(V甲+V乙)t=2S,则t==,则x=60,解得:x=5.4,∵x是正整数,且只能取整,∴x=5.故选:C.3.【解答】解:设加水量为xml,可列方程为:75%(500+x)=95%×500.故选:C.4.【解答】解:设两件商品以x元出售,由题意可知:×100%=20%,解得:x=96,设乙商品的成本价为y元,∴96﹣y=﹣20%×y,解得:y=120,故选:C.5.【解答】解:由题意知,第一层书的数量为2x本,则可得到方程2x﹣8=(x+8)+3.故选:D.6.【解答】解:设第一件衣服的进价为x元,第二件衣服的进价为y元,由题意得:(1+20%)x=a,(1﹣20%)y=a∴(1+20%)x=(1﹣20%)y整理得:3x=2y∴y=1.5x∴该服装店卖出这两件服装的盈利情况是:20%x﹣20%y=0.2x﹣0.2y×1.5=﹣0.1x<0即赔了0.1x元.故选:A.7.【解答】解:设进价是x钱,则依题意有:=,整理得:2(x+4)=3(x﹣3).故选:C.8.【解答】解:设应用x立方米钢材做A部件,则应用(5﹣x)m3钢材做B部件,根据题意,得3×40x=2×240(5﹣x).故选:B.9.【解答】解:①当0≤t≤5时,动点P所表示的数是2t,∵PB=2,∴|2t﹣5|=2,∴2t﹣5=﹣2,或2t﹣5=2,解得t=或t=;②当5≤t≤10时,动点P所表示的数是20﹣2t,∵PB=2,∴|20﹣2t﹣5|=2,∴20﹣2t﹣5=2,或20﹣2t﹣5=﹣2,解得t=或t=.综上所述,运动时间t的值为秒或秒秒或秒.故选:B.10.【解答】解:设一个杯子的价格是x元,则一个暖瓶的价格是(43﹣x)元,根据题意得:3x+2(43﹣x)=94,解得:x=8.答:一个杯子的价格是8元.故选:B.二.填空题11.【解答】解:设要用x天可以铺好这条管线,则可列方程:(+)x=1.故答案为:(+)x=1.12.【解答】解:设球鞋的进价是x元,依题意,得:1200×0.8×0.9﹣x=20%x,解得:x=720.故答案为:720.13.【解答】解:设这个两位数个位上的数字是x,则十位上的数字是5﹣x,∴10(5﹣x)+x+9=10x+(5﹣x),∴59﹣9x=5+9x,∴18x=54,解得x=3,∴5﹣x=5﹣3=2,∴这个两位数是23.故答案为:23.14.【解答】解:设同时参加这两个小组的人数为x,则这两个小组都不参加的人数为x+2,得:36+36﹣5﹣x+x+2=60,移项、合并同类项得:9=x,系数化为1得:x=12,即同时参加两个小组的人数是12人,故答案为:12人.15.【解答】解:设小老鼠第一天打洞的距离为x尺,根据题意,得[(x+2x)+(x+x)]+4x+x=7.解得x=.答:小老鼠第一天打洞的距离为尺.故答案是:.三.解答题(共4小题)16.【解答】解:设这个水果店一共买进水果x筐,根据题意,得:40(+5)=30x,解得x=20,答:这个水果店这次一共批发买进苹果20筐.17.【解答】解:(1)设甲队每天施工x米,则乙队每天施工米,依题意,得:12x+12×=1000,解得:x=50,∴=,∴1000÷50=20(天),1000÷=30(天).答:甲队单独完成此项工程需要20天,则乙队单独完成此项工程需要30天.(2)50×12=600(米),×12=400(米).答:方案一中,甲队实际施工了600米,乙队实际施工了400米.18.【解答】解:设点M对应的数为x,当点M在点A左侧,由题意可得:12﹣x+2﹣x+(﹣6)﹣x=35,解得x=﹣9,当点M在线段AB上,由题意可得:12﹣x+2﹣x+x﹣(﹣6)=35,解得:x=﹣15(不合题意舍去);当点M在线段BC上时,由题意可得12﹣x+x﹣2+x+6=35,解得:x=19(不合题意舍去);当点M在点C右侧时,由题意可得:x﹣12+x﹣2+x+6=35,解得:x=,综上所述:点M对应的数为﹣9或;(2)设点P运动x秒时,点P和点Q相距2个单位长度,点P没有到达C点前,由题意可得:|3x﹣(8+x)|=2,解得:x=5或3。
实际问题与一元一次方程同步测试题(一)一.选择题1.一件夹克衫先按成本价提高70%标价,再将标价打7折出售,结果获利38元.设这件夹克衫的成本价是x元,那么依题意所列方程正确的是()A.70%(1+70%)x=x+38B.70%(1+70%)x=x﹣38C.70%(1+70%x)=x﹣38D.70%(1+70%x)=x+382.某城市出租车的收费标准是:起步价5元,超过3千米后,每行1千米加收2.4元(不足1千米按1千米计),某人乘这种出租车从甲地到乙地付款17元,那么甲、乙两地的距离应不超过()A.11千米B.5千米C.7千米D.8千米3.某商品进价200元,标价300元,打n折(十分之n)销售时利润率是5%,则n的值是()A.5B.6C.7D.84.小王在某月的日历上圈出了如图所示的四个数a、b、c、d,已知这四个数的和等于34,则a等于()A.3B.4C.5D.65.在排成每行七天的月历表中取下一个3×3方块(如图所示),若所有日期数之和为99,则n的值为()A.21B.11C.15D.96.某新华书店暑假期间推出售书优惠方案:①一次性购书不超过200元,不享受优惠:②一次性购书超过200元但不超过400元一律打九折:③一次性购书超过400元一律打八折.如果黄聪同学一次性购书共付款324元,那么黄聪所购书的原价是()A.360元B.405元C.324元或360元D.360元或405元7.如图,把8个大小相同的长方形(如图1)放入一个较大的长方形中(如图2),则ab 的值为()A.8B.16C.20D.248.某电视台组织知识竞赛,共设有20道选择题,各题分值相同,每题必答.下表记录了3个参赛者的得分情况,如果参赛者F得76分,则他答对的题数为()参赛者答对题数答错题数得分A200100B19194C18288A.16题B.17题C.18题D.19题9.为迎军运会,武汉市对城区主干道进行绿化,计划把某一段公路的两侧全部栽上银杏树,要求每两棵树的间隔相等,并且路的每一侧的两端都各栽一棵,如果每隔4米栽一棵,则还差102棵;如果每隔5米栽一棵,则多出102棵,设公路长x米,有y棵树,则下列方程中:①2(+1)﹣102=2(+1)+102;②﹣102=+102;③4(﹣1)=5(﹣1);④4(﹣1)=5(﹣1)其中正确的是()A.①③B.②③C.①④D.①10.某车间原计划13小时生产一批零件,后来每小时多生产10件,用了12小时不但完成任务,而且还多生产60件,设原计划每小时生产x个零件,则所列方程为()A.13x=12(x+10)+60B.﹣=10C.12(x+10)=13x+60D.﹣=10二.填空题11.20名同学在植树节这天共种了52棵树苗,其中男生每人种3棵,女生每人种2棵,设参加植树的男生x人,则可列方程为.12.某地居民生活用电基本价格为0.50元/度,规定每月基本用电量为a度,超过部分电量的每度电价比基本用电量的每度电价增加20%收费,某用户在5月份用电120度,共交电费66元,则a=.13.商店为了促销某种商品,将定价为3元的商品以下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小华买了n件该商品共付了27元,则n的值是.14.已知学校距离敬老院1000米.小明和小刚两人从学校出发去敬老院送水果,小明带着水果先走了200m,然后小刚才出发.若小明每分钟行80m,小刚每分钟行120m.则小刚用分钟可以追上小明.15.小明在某月历上圈出如图所示的呈十字形的5个数,如果圈出的五个数的和为65,那么其中最大的数为.三.解答题16.A、B两种型号的机器生产同一种产品,已知7台A型机器一天生产的产品装满8箱后还剩2个,5台B型机器一天生产的产品只差4个就能装满6箱.每台A型机器比每台B 型机器一天少生产2个产品,求每箱装多少个产品?17.一书店按定价的五折购进某种图书800本,在实际销售中,500本按定价的七折批发售出,300本按八五折零售,若这种图书最终获利8200元,问该图书批发与零售价分别是多少元?18.已知线段AB=60cm.(1)如图1,点P沿线段AB自A点向B点以2厘米/秒运动,同时点Q沿线段BA自B 点向A点以4厘米/秒运动,问经过几秒后P、Q相遇?(2)在(1)的条件下,几秒钟后,P、Q相距12cm?(3)如图2,AO=PO=10厘米,∠POB=40°,点P绕着点O以10度/秒的速度顺时针旋转一周停止,同时点Q沿线段BA自B点向A点运动,假若点P、Q两点能相遇,求点Q运动的速度.19.如图,点A、B分别在数轴原点O的两侧,且OB+8=OA,点A对应数是20.(1)求B点所对应的数;(2)动点P、Q、R分别从B、O、A同时出发,其中P、Q均向右运动,速度分别为2个单位长度/秒,4个单位长度/秒,点R向左运动,速度为5个单位长度/秒,设它们的运动时间为t秒,当点R恰好为PQ的中点时,求t的值及R所表示的数;(3)当t≤5时,BP+AQ的值是否保持不变?若不变,直接写出定值;若变化,试说明理由.参考答案与试题解析一.选择题1.【解答】解:设这件夹克衫的成本价是x元,依题意,得:70%(1+70%)x=x+38.故选:A.2.【解答】解:设甲乙两地距离为x千米,依题意得:5+2.4(x﹣3)≤17,解得:x≤8.因此x的最大值为8.故选:D.3.【解答】解:商品是按标价的n折销售的,根据题意列方程得:(300×0.1n﹣200)÷200=0.05,解得:n=7.则此商品是按标价的7折销售的.故选:C.4.【解答】解:依题意,可知:b=a+1,c=a+8,d=a+9,∴a+b+c+d=34,即4a+18=34.解得a=4故选:B.5.【解答】解:由题意可得,n+(n﹣1)+(n+1)+(n﹣7)+(n+7)+(n﹣1﹣7)+(n﹣1+7)+(n+1﹣7)+(n+1+7)=99,解得,n=11,故选:B.6.【解答】解:设黄聪购书的原价是x元,当200<x≤400元时,0.9x=324,解得x=360,当x>400时,。
第八章 二元一次方程组8.3.1实际问题与二元一次方程组(邓遥佳)一、教学目标1.核心素养通过学习二元一次方程组,培养学生的模型思想,运算能力、推理能力和应用意识.2.学习目标(1)能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组.(2)会列方程组解决同种条件并列类型的实际问题.3.学习重点用列方程组的方法解决实际问题.4.学习难点会找出简单的实际问题中的数量关系.二、教学设计(一)课前设计1.预习任务阅读教材P99,思考:用二元一次方程组解决实际问题的步骤是什么?如何找等量关系?如何理解同种条件并列类型?2.预习自测1.一条船从重庆到涪陵顺流航行,每小时行20km ;逆流航行,每小时行16km.求轮船在静水中的速度与水的流速.设轮船在静水中的速度与水流速度分别为x 、y ,则可列二元一次方程组( B )A.⎩⎨⎧=+=-2016y x y xB.⎩⎨⎧=-=+1620y x y xC.⎩⎨⎧=-=+y x y x 2016D.⎩⎨⎧=-=+yx y x 16202.2台大收割机和5台小收割机,两小时收割3.6公顷,3台大收割机和2台小收割机,5小时收割8公顷,1台大收割机和1台小收割机1小时各收割小麦多少公顷?设1台大收割机和1台小收割机1小时收割小麦分别为x 、y ,则可列二元一次方程组( A )A.()()⎩⎨⎧=+=+82356.3522yxyxB.()()⎩⎨⎧=+=+82356.3252yxyxC.()()⎩⎨⎧=+=+83256.3522yxyxD.()()⎩⎨⎧=+=+82326.3525yxyx(二)课堂设计1.知识回顾(1)运用方程解决实际问题的关键:找等量关系;(2)用一元一次方程解决实际问题的步骤:1.设:设未知数2.列:列方程3.解:解方程4.验:双重方式检验解5.答:作答2.问题探究1.运输360t化肥,装载了6节火车车厢和15辆汽车;运输440t化肥,装载了8节火车车厢和10辆汽车.每节火车车厢与每辆汽车平均各装多少吨化肥?【知识点:二元一次方程组的应用】分析题目中都是以运输化肥这种方式并列呈现的问题.6节火车车厢和15辆汽车运输化肥360t作为一个等量关系;8节火车车厢和10辆汽车运输化肥440t作为一个等量关系.这样有两个等量关系即可列出二元一次方程组.设每节火车车厢与每辆汽车平均各装x吨和y吨化肥.小结:分析题干及条件的呈现方式,所求问题的条件以同一种方式并列呈现归之为同种条件并列.2.养牛场原有30头大牛和15头小牛,1天约用饲料675kg;一周后又购进12头大牛和5头小牛,这时1天约用饲料940kg.饲养员李大叔估计每头牛1天约需饲料18~20kg,每头小牛1天约需饲料7~8kg.你能通过计算检验他的估计吗?【知识点:二元一次方程组的应用】分析题目中都是以牛消耗饲料的量这种方式并列呈现的问题.30头大牛和15头小牛1天约用饲料675kg作为一个等量关系;购进12头大牛和5头小牛后牛的数量变为大牛42头、小牛20头1天约用饲料940kg作为第二个等量关系.这样有两个等量关系即可列出二元一次方程组.设每头大牛和每头小牛1天约需饲料分别为xkg、ykg.。
【21.3实际问题与一元二次方程】期末解答题巩固练习(一)1.新华商场销售某种商品,每件进货价为40元,市场调研表明:当销售价为80元时,平均每天能售出20件;在每件盈利不少于25元的前提下,经过一段时间销售,当销售价每降低1元时,平均每天就能多售出2件.(1)若降价2元,则平均每天销售数量为件;(2)当每件商品定价多少元时,该商场平均每天销售某种商品利润达到1200元?2.某地区2018年投入教育经费2000万元,2020年投入教育经费2880万元.(1)求2018年至2020年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2021年该地区将投入教育经费多少万元.3.为了丰富市民的文化生活,我市某景点开放夜游项目.为吸引游客组团来此夜游,特推出了如下门票收费标准:标准一:如果人数不超过20人,门票价格为60元/人;标准二:如果人数超过20人,每超过1人,门票价格降低2元,但门票价格不低于50元/人.(1)当夜游人数为15人时,人均门票价格为元;当夜游人数为25人时,人均门票价格为元.(2)若某单位支付门票费用共计1232元,则该单位这次共有多少名员工去此景点夜游.4.我区某中学响应习总书记“足球进校园”的号召,开设了“足球大课间”活动,现需要购进100个某品牌的足球供学生使用.经调查,该品牌足球2016年的单价是200元,2018年的单价为162元.(1)求2016年到2018年该品牌足球单价平均每年降低的百分率.(2)购买期间发现该品牌足球在A,B两个体育用品店有不同的促销方案,A店买十送一,B店全场9折,通过计算说明到哪个店购买足球更优惠.5.如图,依靠一面长18米的墙,用34米长的篱笆围成一个矩形场地ABCD,AB边上留2米宽的小门EF(不用篱笆),设AD长为x米,AB长为y米.(1)求y关于x的函数表达式,并直接写出x的取值范围;(2)当矩形场地的面积为160平方米时,求AD的长.6.“阳光玫瑰”葡萄品种是广受各地消费者的青睐的优质新品种,在我国西部区域广泛种植,某葡萄种植基地2018年种植“阳光玫瑰”100亩,到2020年“阳光玫瑰”的种植面积达到256亩.(1)求该基地这两年“阳光玫瑰”种植面积的平均年增长率.(2)市场调查发现,当“阳光玫瑰”的售价为20元/千克时,每天能售出200千克,售价每降价1元,每天可多售出45千克.①若降价x(0≤x≤20)元,每天能售出多少千克?(用x的代数式表示)②为了推广宣传,基地决定降价促销,同时尽量减少库存,已知该基地“阳光玫瑰”的平均成本价为10元/千克,若要销售“阳光玫瑰”每天获利2125元,则售价应降低多少元?7.今年10月份,学校从某厂家购进了A、B型电脑共250台,学校10月份购进A、B型电脑的单价分别为7000元、9000元,购进A、B型电脑的总金额不超过205万元.(1)求学校10月份至少购进A型电脑多少台?(2)为推进学校设备更新进程,学校决定11月份在同一厂家再次购进A、B两种型号的电脑,在此次采购中,比起10月份刚好用完总金额205万元时的进购情况,A型电脑的单价下降了a%,B型电脑的单价下降了40a元,A型电脑数量增加了a%,B型电脑数量下降了a%,这次采购A、B两种型号电脑的总金额为159万元,求a的值.8.某生物实验室需培育一群有益菌,现有90个活体样本,经过两轮培植后,总和达36000个,其中每个有益菌每一次可分裂出若干个相同数目的有益菌.(1)每轮分裂中平均每个有益菌可分裂出多少个有益菌?(2)按照这样的分裂速度,经过三轮培植后有多少个有益菌?9.如图是一张长10dm,宽6dm矩形纸板,将纸板四个角各剪去一个相同边长的正方形,然后将四周突出部分折起,可制成一个无盖方盒.若要制作一个底面积是32dm2的一个无盖长方体纸盒,求剪去的正方形边长.10.火锅是重庆人民钟爱的美食之一;解放碑某老火锅店为抓住“十一黄金周”这个商机,通过网上广告宣传和实地派发传单等一系列促销手段吸引了不少本地以及外地游客,火锅店门庭若市.据店员统计;仅“十一黄金周”前来店内就餐选择红汤火锅和清汤火锅的游客共2500人,其中红汤火锅和清汤火锅的人均消费分别为80元和60元.(1)“十一”期间,若选择红汤火锅的人数不超过清汤火锅人数的1.5倍,求至少有多少人选择清汤火锅?(2)随着“十一”的结束,前来店内就餐的人数逐渐减少,据接下来的第二周统计数据显示,与(1)选择清汤火锅的人数最少时相比,选择红汤火锅的人数下降了a%,选择清汤火锅的人数不变,但选择红汤火锅的人均消费增长了a%,选择清汤火锅的人均消费增长了,最终第二周两种火锅的销售总额与(1)中选择清汤火锅的人数最少时两种火锅的销售总额相等,求a的值.参考答案1.解:(1)20+2×2=24(件).故答案为:24.(2)设每件商品降价x元,则平均每天可销售(20+2x)件,依题意,得:(40﹣x)(20+2x)=1200,整理,得:x2﹣30x+200=0,解得:x1=10,x2=20.当x=20时,40﹣x=20<25,∴x=20舍去.答:当每件商品降价10元时,该商店每天销售利润为1200元.2.解:(1)设2018年至2020年该地区投入教育经费的年平均增长率为x,依题意得:2000(1+x)2=2880,解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).答:2018年至2020年该地区投入教育经费的年平均增长率为20%.(2)2880×(1+20%)=3456(万元).答:预计2021年该地区将投入教育经费3456万元.3.解:(1)由标准一知,当夜游人数为15人时,人均门票价格为60元;由标准二知,60﹣(25﹣20)×2=50(元).故答案是:60;50;(2)设该单位这次共有x名员工去江南长城旅游区旅游,∵1232÷60=20(人),1232÷50=24,∴20<x≤24.依题意,得:x[60﹣2(x﹣20)]=1232,整理,得:x2﹣50x+616=0,解得:x1=22,x2=28(不合题意,舍去).答:该单位这次共有22名员工去江南长城旅游区旅游.4.解:(1)设2016年到2018年该品牌足球单价平均每年降低的百分率为x,依题意得:200(1﹣x)2=162,解得:x1=0.1=10%,x2=1.9(不合题意,舍去).答:2016年到2018年该品牌足球单价平均每年降低的百分率为10%.(2)100×=≈90.91(个),90+1=91(个),在A店购买所需费用为162×91=14742(元),在B店购买所需费用为162×100×0.9=14580(元).∵14742>14580,∴去B店购买足球更优惠.5.解:(1)∵AD=BC=x米,AB+AD+BC=34+2=36(米),∴AB=(36﹣2x)米.∵,∴y=36﹣2x(9≤x≤17).(2)依题意,得:x(36﹣2x)=160,整理,得:x2﹣18x+80=0,解得:x1=8(不合题意,舍去),x2=10.答:AD的长为10米.6.解:(1)设该基地这两年“阳光玫瑰”种植面积的平均增长率为x,依题意,得:100(1+x)2=256,解得:x1=0.6=60%,x2=﹣2.6(不合题意,舍去).答:该基地这两年“阳光玫瑰”种植面积的平均增长率为60%.(2)①设售价应降低y元,则每天可售出(200+45y)千克;②依题意,得:(20﹣10﹣y)(200+45y)=2125,整理,得:9y2﹣50y+25=0,解得:y1=5,y2=.∵要尽量减少库存,∴y=5.答:售价应降低5元.7.解:(1)设学校10月份购进A型电脑x台,则购进B型电脑(250﹣x)台,依题意得:7000x+9000(250﹣x)≤2050000,解得:x≥100.答:学校10月份至少购进A型电脑100台.(2)依题意得:7000(1﹣a%)×100(1+a%)+(9000﹣40a)×(250﹣100)(1﹣a%)=1590000,整理得:a2+2275a﹣57500=0,解得:a1=25,a2=﹣2300(不合题意,舍去).答:a的值为25.8.解:(1)设每轮分裂中平均每个有益菌可分裂出x个有益菌,依题意,得:90(1+x)2=36000,解得:x1=19,x2=﹣21(不合题意,舍去).答:每轮分裂中平均每个有益菌可分裂出19个有益菌.(2)36000×(1+19)=720000(个).答:按照这样的分裂速度,经过三轮培植后有720000个有益菌.9.解:设剪去的正方形边长为xdm,则做成的长方形纸盒的底面长为(10﹣2x)dm,宽为(6﹣2x)dm,依题意,得:(10﹣2x)(6﹣2x)=32,整理,得:x2﹣8x+7=0,解得:x1=1,x2=7.∵6﹣2x>0,∴x<3,∴x=1.答:剪去的正方形边长为1dm.10.解:(1)设有x人选择清汤火锅,则有(2500﹣x)人选择红汤火锅,依题意,得:2500﹣x≤1.5x,解得:x≥1000.答:至少有1000人选择清汤火锅.(2)依题意,得:80(1+a%)×(2500﹣1000)(1﹣a%)+60(1+a%)×1000=80×(2500﹣1000)+60×1000,整理,得:12a2﹣120a=0,解得:a1=10,a2=0(不合题意,舍去).答:a的值为10.。
课题 实际问题与方程(一) 课时 第(1)课时,共(5)课时 课型
新授
教学内容 实际问题与方程(一)
教学目标
使学生学会解形如AX+B=C的方程,并能正确列出这种形式的方程应用题。
培养学生抽象概括能力,发展思维灵活性。培养学生根据具体情况,灵活选择算法的意识和能力。
引导学生感受列方程解应用题的优越性,培养学生的数学应用意识和自觉检验的习惯。
教学重点 掌握解形如AX+B=C的方程的方法,并能正确找出题中数量间的相等关系。
教学难点 找出题中数量间的相等关系。
教学准备
教师准备 情境图、多媒体课件
学生准备 教材、练习本
主备教师 赵淑玲 审核 祝联
教学过程
教学环节 主案 个性修改
一、导入新课
导入
1.读题,列出方程,并说数量关系。
男生有X人,女生有50人,比男生多5人。
2.李强原来跳高成绩是1.05米,现在达到了1.12米。成
绩提高了多少米?
3.解方程。
X-2.5=10 X+7.8=19.5
二、探索新知 教师出示情境图。 1. 小明跳远成绩为4.21米,超过原纪录0.06米。学校原跳远纪录是多少米?(出示教材情境图)
看主题图,思考:
(1)从图中你知道了哪些信息?
(2)用学过的方法该怎样列式计算呢?
(3)你能根据情景
用方程来解答吗?请说出原纪录、超出部分和小明的成绩
之间的关系吗?
(4)列方程解应用题的方法。
让学生独立思考,完成以上问题。
1.小组交流展示。
2.学生汇报。教师要根据学生的汇报,灵活地进行引导。
课件演示
原纪录+超出部分=小明的成绩 小明的成绩-原纪
录=超出部分
解:设学校原跳远纪录是x米。
X+0.06=4.21
X+0.06-0.06=4.21-0.06
X=4.15
答:学校原跳远纪录是4.15米。
3.学生口述检验过程。
4.学生总结列方程解应用题的方法。教师演示:再用方程
解题时,先将要求的量设为X,再根据等量关系列方程,最
后解方程。
学生质疑。教师:通过本节课的学习,你们还有什么不懂
的问题,提出来我们共同探讨。
2.解决学生提出的问题。
三、应用实践
练习。
1. 数学书73页的做一做。
2. 数学书75页2题。
四、总结拓展 1. 这节课的学习你有什么收获?
2. 评选优秀小组,优秀个人,进行表扬。
板书设计 实际问题与方程
原纪录+超出部分=小明的成绩 小明的成绩-原纪
录=超出部分
解:设学校原跳远纪录是x米。
X+0.06=4.21
X+0.06-0.06=4.21-0.06
X=4.15
答:学校原跳远纪录是4.15米。
教学反思