分式的乘法法则
- 格式:pptx
- 大小:241.13 KB
- 文档页数:6
分式的乘除(基础)责编:杜少波【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】【高清课堂402545 分式的乘除运算 知识要点】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:a c ac b d bd⋅=,其中a b c d 、、、是整式,0bd ≠. 2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:a c a d adb d bc bc ÷=⋅=,其中a b cd 、、、是整式,0bcd ≠. 要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:nn n a a b b⎛⎫= ⎪⎝⎭(n 为正整数). 要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把n n n a a b b ⎛⎫= ⎪⎝⎭写成n n a a b b ⎛⎫= ⎪⎝⎭(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如()222222a b a b a b b b b ---⎛⎫=≠ ⎪⎝⎭. 【典型例题】类型一、分式的乘法1、计算:(1)422449158a b x x a b g ;(2)222441214a a a a a a -+--+-g . 【思路点拨】(1)中分子、分母都是单项式,直接用分式乘法法则计算,结果要通过约分化简;(2)中分子、分母都是多项式,要先把可分解因式的分子、分母分解因式,然后用乘法法则化简计算.【答案与解析】解:(1)422449158a b x x a b g 422449315810a b x b x a b x==g g . (2)222441214a a a a a a -+--+-g 22(2)1(1)(2)(2)a a a a a --=-+-g 22(2)(1)(1)(2)(2)a a a a a --=-+-g g 222(1)(2)2a a a a a a --==-++-. 【总结升华】分式的乘法运算的实质就是运用分式的基本性质把分式约分化简的过程,熟练之后也可先约分后运用乘法法则计算.举一反三:【变式】计算.(1)26283m x x m g ;(2)22122x x x x+-+g 【答案】解:(1)原式22621283242m x mx x x m mx ===g g ; (2)原式22112(2)2x x x x x x+==-+-g ; 类型二、分式的除法【高清课堂402545 分式的乘除运算 例1(4)】2、 计算:(1)222324a b a b c cd-÷;(2)2222242222x y x y x xy y x xy -+÷+++. 【思路点拨】(1)先运用法则将分式的除法转化为乘法,然后约分化简;(2)先运用分式的除法法则将分式的除法转化为乘法,同时将分子、分母分解因式,然后约分化简.【答案与解析】解:(1)222324a b a b c cd -÷22222244236a b cd a b cd c a b c a b ==--g g 23d c=-.(2) 2222242222x y x y x xy y x xy-+÷+++ 2(2)(2)2()()2x y x y x x y x y x y+-+=++g 22(2)24x x y x xy x y x y --==++. 【总结升华】分式的除法和实数的除法一样,均是转化为乘法来完成的.举一反三:【变式】(2015•宝鸡校级模拟)化简:.【答案】解:原式=• =.类型三、分式的乘方3、(2014秋•华龙区校级月考)下列计算正确的是( )A. B.C. D.【思路点拨】把四个选项先利用分式的乘方法则,将分子分母分别乘方,然后利用积与幂的乘法法则,积的乘方的运算法则,积的乘方等于积中每一个因式分别乘方并把结果相乘,幂的乘方法则是底数不变,指数相乘,即可计算出结果,得到计算正确的选项.【答案】C .【解析】解:A 、,本选项错误; B 、,本选项错误;C 、,本选项正确;D 、,本选项错误.所以计算结果正确的是C .【总结升华】此题考查了分式的乘方法则,考查了积的乘方及幂的乘方法则,完全平方公式的运用,是一道基础题.类型四、分式的乘除法、乘方的混合运算4、 计算:(1)(2016春•淅川县期中)(﹣2ab ﹣2c ﹣1)2÷×()3;(2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g . 【思路点拨】先算乘方,再算乘、除.【答案与解析】解:(1)(﹣2ab ﹣2c ﹣1)2÷×()3=﹣•• =﹣. (2)222223()a b ab a ab b b a ⎛⎫-⎛⎫÷+ ⎪ ⎪-⎝⎭⎝⎭g 2222232()1()[()]()a b ab b a a b b a -=+-g g 22222332()()1()()a b a b a b b a a b a b +-=+-g g211()a a b a ab==++. 【总结升华】(1)题中有除法和乘方运算,应先算乘方,要特别注意符号的处理.(2)本题是乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.举一反三:【变式】计算:(1)332212b b a a ab ⎛⎫⎛⎫⎛⎫-÷-÷ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)2222()m n n m m n m n mn m --+⎛⎫÷ ⎪-⎝⎭g .【答案】解: (1)332212b ba a ab⎛⎫⎛⎫⎛⎫-÷-÷⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭23263382633312212b b b a a b a ba a ab a b⎛⎫⎛⎫=-÷-÷==⎪ ⎪⎝⎭⎝⎭g g.(2)2222()m n n m m nm n mn m--+⎛⎫÷⎪-⎝⎭g22222()()()()m n m n m n m m nm n m n m n mn+---==-+g g.。
整式的分式运算在代数学中,我们经常会遇到整式的分式运算。
整式是由常数、变量和运算符(如加减乘除)组成的代数表达式,而分式是整式之间用分数形式表示的运算。
在本文中,我们将介绍整式的分式运算及其应用。
一、分式的概念分式是指一个整式的分数形式表示,包含了分子和分母两部分。
其中,分子表示整式中的某一部分,分母表示整式中的另一部分。
分式的概念是整式的一种特殊表示形式,能够方便地表示和计算复杂的代数表达式。
二、分式的运算法则1. 相等性法则:如果两个分式的值相等,那么它们对应的整式也相等。
2. 通分法则:对于不同的分式,我们需要将其分母相同化,以便进行运算。
具体操作是将每个分式的分母乘以其他分式的分母,使得它们的分母相等。
3. 分子运算法则:对于分母相等的两个分式,我们可以直接对分子进行加减运算,并将分母保持不变。
4. 乘法法则:两个分数相乘时,我们只需要将它们的分子相乘,分母相乘。
5. 除法法则:两个分数相除时,我们只需要将第一个分数的分子乘以第二个分数的分母,分母乘以第二个分数的分子。
即将除法转化为乘法运算。
三、分式的应用分式的运算在实际应用中具有广泛的应用场景。
以下是一些常见的应用领域:1. 金融领域:利润分配、股权比例计算等都需要使用分式运算。
2. 工程领域:施工用料比例、土地面积比较等需要使用分式运算。
3. 科学研究:实验数据统计、样本占比计算等需要使用分式运算。
4. 经济学:市场份额计算、经济指标比较等需要使用分式运算。
总结:整式的分式运算是代数学中一个重要的概念和工具,可以用于解决各种实际问题。
在进行分式运算时,我们需要掌握分式的概念、运算法则和应用场景。
通过灵活运用分式运算,我们能够简化复杂的代数表达式,准确求解问题,提高计算效率。
通过以上介绍,相信读者已经对整式的分式运算有了更深入的理解和掌握。
希望读者能够在实际问题中灵活应用分式运算,提高解决问题的能力和方法。
写完之后,请您复制并粘贴回答以供检查。
分式加减法运算法则分式加减法运算法则:1. 分式加法:分式加法是把分子相加或者相减,而分母保持不变,用一个新分式来表示和或差。
一般格式是:(分子1/分母)➕(分子2/分母)=(分子1+分子2/分母)。
2. 分式减法:分式减法也是把分子相减或者相加,而分母保持不变,用一个新分式来表示差。
一般格式是:(分子1/分母)➖(分子2/分母)=(分子1-分子2/分母)。
3. 分式整体乘法:分式整体乘法是将两个分式的分子相乘,而分母相乘。
一般格式是:(分子1/分母1)×(分子2/分母2)=(分子1×分子2/分母1×分母2)。
4. 分式整体除法:分式整体除法是将分式的分母相乘,而分子相乘。
一般格式是:(分子1/分母1)÷(分子2/分母2)=(分子1×分母2/分母1×分子2)。
5. 一般的分式的运算:在分式加减法和分式乘除法之后,还可以进行一般的计算,比如:(分子/分母)+(x/分母)+3=(分子+x+3×分母/分母)。
其中的 +x 和+3 就是一般的计算。
因此,在做分式加减法和乘除法的时候,我们首先要确定每个分式中分子和分母,然后根据其法则做整体或一般计算,得出正确结果。
此外,分母一般不能为0,否则会出现无穷大或者不可定义解答;分子和分母要使用相同的符号,否则会导致结果的正负不正确;如果分子和分母出现了负数,要根据实际情况将负号带到分子或者分母,以便能够得到正确的答案。
此外,分式的运算还有一个重要的技巧,即分数化简,就是用数学技巧找出分数的最简形式。
常用的分数化简诀窍就是先分子分母分别除以最大公约数,然后将分子和分母比较,可以将分母统一为最小值,再算出最终结果。
例如,有分式等式:(4/8)=(2/4),明显可以看出它们的最简形式应该为:(1/2)=(1/2),所以,我们只要在做分数运算的时候注意分数化简,就可以得出正确的答案。
总之,分式加减法和乘除法运算都要掌握其基本原理和规律,熟悉一般计算技巧,注意分数化简,以及分母不能为0,就可以得出正确的结果了。
专题08分式性质与运算重难突破知识点一分式有意义及值为0的条件1、分式的定义一般地,如果A ,B 表示两个整式,并且B 中含有字母,那么式子A B 叫做分式,其中A 是分式的分子,B 是分式的分母.注意:三要素(1)形如A B 的式子;(2)A ,B 均为整式;(3)分母B 中含有字母.2、分式有意义、无意义的条件(1)当分母0B =时,分式A B无意义;(2)当分母0B ≠时,分式A B 有意义.注意:①分母不为0,并不是说分母中的字母不能为0,而是表示分母的整式的值不能为0;②分式是否有意义,只与分式的分母是否为0有关,而与分式的分子的值是否为0无关.3、分式的值(1)分式值为0:分子为0且分母不为0,即00A B =⎧⎨≠⎩;(2)分式值为正:分子分母同号,即00A B >⎧⎨>⎩或00A B <⎧⎨<⎩;(3)分式值为负:分子分母异号,即00A B >⎧⎨<⎩或00A B <⎧⎨>⎩.注意:①分式的值为0必须同时满足两个条件:分子的值为0;分母的值不为0.②必须在分式有意义的前提下,才能谈分式的值是多少,也就是说,必须在分式有意义的前提下,才能讨论分式的值是否等于0.典例1(2020•姑苏区一模)若分式3x x -在实数范围内有意义,则x 的取值范围为()A .3x >B .0x ≠且3x ≠C .0x D .3x ≠典例2(2021春•罗湖区校级期中)已知分式2(3)(1)1x x x -+-的值为0,那么x 的值是()A .1-B .3C .1D .3或1-知识点二分式基本性质1、分式的基本性质分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.用字母表示:a a m b b m ⋅=⋅,a a m b b m÷=÷(0m ≠)其中m 是不等于0的整式.注意:(1)分式的符号法则将分式、分子、分母的符号改变其中的任意两个,其结果不变.速记口诀:分式变形用性质,变形牢记要两同;分子、分母同乘除,非零整式且相同.(2)分式的基本性质是分式约分和通分的依据.2、分式的约分根据分式的基本性质,把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.当分式的分子和分母没有公因式时,这样的分式称为最简分式.约分通常要把分式化为最简分式或整式.典例1(2021春•光明区期中)若把分式3xy x y -中的x 和y 都扩大为原来的5倍,那么分式的值()A .扩大为原来的5倍B .扩大为原来的10倍C .不变D .缩小为原来的15倍典例2(2020春•铜仁市期末)下列各式,正确的是()A .632x x x=B .a x a b x b +=+C .1()x y x y x y -+=-≠-D .22a b a b a b+=++知识点三分式的运算1、分式的乘除法(1)乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用式子可以表示为:b d bd a c ac⋅=.(2)除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用式子可以表示为:b d b c bc a c a d ad÷=⋅=.(3)乘方法则:分式的乘方要把分子、分母分别乘方.用式子可以表示为:(n n n b b a a =(n 是正整数,b ≠0)2、分式的通分(1)根据分式的基本性质,异分母的分式可以化为同分母的分式,这一过程称为分式的通分.(2)通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。
分式及其运算
一、分式的概念
分式是用一个数除以另一个非零数所得的商。
分式由分子和分母两部分组成,用斜线"/"或水平线"—"隔开,如3/5或3—5。
其中,分子是被除数,分母是除数。
二、分式的基本运算
1. 分式的加减法
- 同分母分式的加减法:只需将分子相加或相减,分母保持不变。
- 异分母分式的加减法:先通分,使分母相同,再将分子相加或相减。
2. 分式的乘法
- 分式相乘时,分子相乘,分母相乘。
3. 分式的除法
- 分式除法可以通过乘以另一个分式的倒数来实现。
4. 分式的化简
- 分子和分母都除以它们的最大公因数,可以化简分式。
三、分式的应用
分式在日常生活和学习中有广泛的应用,例如:
1. 计算比例和百分比
2. 表示概率
3. 解决实际问题(如分配任务、计算利息等)
通过掌握分式的运算规则和应用技巧,我们可以更好地理解和处理涉及分数的各种情况。
八年级数学上册分式知识点八年级数学上册分式知识点在我们的学习时代,不管我们学什么,都需要掌握一些知识点,知识点是知识中的最小单位,最具体的内容,有时候也叫“考点”。
哪些才是我们真正需要的知识点呢?下面是店铺帮大家整理的八年级数学上册分式知识点,仅供参考,欢迎大家阅读。
八年级数学上册分式知识点1分式知识点1.分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式。
2.分式有意义、无意义的条件:分式有意义的条件:分式的分母不等于0;分式无意义的条件:分式的分母等于0。
3.分式值为零的条件:分式AB=0的条件是A=0,且B≠0.(首先求出使分子为0的字母的值,再检验这个字母的值是否使分母的值为0.当分母的值不为0时,就是所要求的字母的值。
)4.分式的基本性质:分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(其中A、B、C是整式),5.分式的通分:和分数类似,利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母分式化成相同分母的分式,这样的分式变形叫做分式的通分。
通分的关键是确定几个式子的最简公分母。
几个分式通分时,通常取各分母所有因式的最高次幂的积作为公分母,这样的分母就叫做最简公分母。
求最简公分母时应注意以下几点:(1)“各分母所有因式的最高次幂”是指凡出现的字母(或含字母的式子)为底数的幂选取指数最大的;(2)如果各分母的系数都是整数时,取它们系数的最小公倍数作为最简公分母的系数;(3)如果分母是多项式,一般应先分解因式。
6.分式的约分:和分数一样,根据分式的基本性质,约去分式的分子和分母中的公因式,不改变分式的值,这样的分式变形叫做分式的约分。
约分后分式的分子、分母中不再含有公因式,这样的分式叫最简公因式。
约分的关键是找出分式中分子和分母的公因式。
(1)约分时注意分式的分子、分母都是乘积形式才能进行约分;分子、分母是多项式时,通常将分子、分母分解因式,然后再约分;(2)找公因式的方法:①当分子、分母都是单项式时,先找分子、分母系数的最大公约数,再找相同字母的最低次幂,它们的积就是公因式;②当分子、分母都是多项式时,先把多项式因式分解。
分式的加减乘除分式是数学中的一种常用表示方法,用于表示一个数与另一个数之间的比率关系。
分式的运算包括加法、减法、乘法和除法。
在本文中,我们将详细介绍分式的加减乘除运算。
一、分式的加法分式的加法是指将两个分式相加的运算。
我们可以通过以下步骤来完成分式的加法:Step 1:找到两个分式的公共分母。
Step 2:将两个分式的分子分别乘以对方的公共分母。
Step 3:将两个分式的分子相加,并将结果放在一个新的分子上。
Step 4:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。
Step 5:将新的分子和分母进行约分,得到最简分数。
例如,我们有以下两个分式需要相加:1/3 + 2/5Step 1:两个分式的公共分母为15。
Step 2:将1/3乘以5/5,得到5/15;将2/5乘以3/3,得到6/15。
Step 3:5/15 + 6/15 = 11/15。
Step 4:保持公共分母为15。
Step 5:11/15已经是最简分数。
所以,1/3 + 2/5 = 11/15。
二、分式的减法分式的减法是指将一个分式减去另一个分式的运算。
我们可以通过以下步骤来完成分式的减法:Step 1:找到两个分式的公共分母。
Step 2:将第一个分式的分子乘以第二个分式的分母。
Step 3:将第二个分式的分子乘以第一个分式的分母。
Step 4:将第一个分式的分子减去第二个分式的分子,并将结果放在一个新的分子上。
Step 5:将两个分式的公共分母保持不变,并将结果放在一个新的分数上。
Step 6:将新的分子和分母进行约分,得到最简分数。
例如,我们有以下两个分式需要相减:3/4 - 1/8Step 1:两个分式的公共分母为8。
Step 2:将3/4乘以2/2,得到6/8。
Step 3:将1/8乘以4/4,得到4/32。
Step 4:6/8 - 4/32 = 24/32 - 4/32 = 20/32。
Step 5:保持公共分母为32。
152.2 分式的乘除法互动思维导图[基础知识与基本技能]1.分式的乘除法法则 ⑴分式乘法的法则为:分式乘以分式,把分子乘以分子,分母乘以分母,分别作为积的分子、分母,然后约去分子与分母中的公因式.用符号语言表达:f g ·u v =fugv.⑵分式除法的法则为:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用符号语言表达:f g ÷u v =f g ·vu=fv gu (u ≠0).(1)22368y x x y ;(2)222224a a a a a +---. 分析:⑴式是两个分式相乘,分式的分子、分母都是单项式,可直接利用分式乘法法则进行计算;⑵中的两个分式相乘,分子或分母是多项式,要先对分子或分母进行因式分解,然后再运用法则计算.16解:(1)223633298424y x y x x x x y x y y y== . (2)22222(2)242(2)(2)2a a a a a a a a a a a a a +-+-==---+-- . 方法技巧:⑴两个分式相乘,如果分子、分母是多项式,那么要先对分子或分母因式分解.然后运用分式的乘法法则进行计算;⑵最后计算的结果要通过约去分子、分母的公因式(数)化到最简;⑶在分式的乘法运算中,既可以用法则来计算,也可以根据情况先约去公因式再相乘,后者方法有时会更简便.(1)234xy ÷92y x ; ⑵2a-1a 44a -+÷2214a a --;⑶22442x xy yx y+++÷(4x 2-y 2).思维幻灯片:分析:⑴中的分式的分子、分母都是单项式,可以直接利用分子计算;⑵中的分子或分母有多项式,先把多项式因式分解,然后再运用法则计算;⑶中的除式是整式,把整式看作是分母为1的式子,再运用除法法则计算.解:⑴原式=234xy ·29x y =23249xy x y ∙⨯=26x y ;⑵原式=2a-1a 44a -+·2241a a --=2a-1(a 2)-·(a+2)(a-2)(a+1)(a-1) =2(2)(1)a a a +-+.⑶原式=22442x xy y x y +++·2241x y -=2(2)2x y x y ++·1(2x+y)(2x-y)=12x y-.方法技巧:⑴两个分式相乘,如果分子、分母都是单项式,可以直接利用分式除法法则进行计算,如果分子、分母有多项式,那么要先对分子或分母进行因式分解,然后运用分式的除法法则进行计算;⑵计算结果通过约去公因式化到最简或整式;⑶如果遇到分式与整式相乘除时,可以把整式看作分母为1的式子进行计算;⑷通常情况下,计算最后的结果要使分子和分母的符号都为正号.2.分式的约分把一个分式的分子和分母的公因式约去,这种变形称为分式的约分.约分的关键是正确找出分子与分母的公因式.其一般方法是:①当分子和分母都是单项式时,先找分子、分母系数的最大公因数,再找相同字母的最低次幂;②当分子和分母都是多项式时,首先要对分子、分母进行因式分解,把分子、分母变为几个因式的积后,再找分子、分母的公因式.[温馨提示]⑴约分的依据是分式的基本性质,分子、分母都除以的整式是它们的公因式.由于原分式有意义,可知分子与分母的公因式一定不为零,故利用分式的基本性质约去公因式时,不必强调公因式不为零,直接约分即可.⑵要牢记分子、分母都是乘积形式时,才能进行约分;分子、分母是多项式时,通常先将分子、分母分解因式,然后再约分.43243521a b ca b d.分析:分子的数字因数是35,分母的数字因数是21,其最大公因数是7,分子、分母中的相同因式是a、b,其最低次幂分别为2、3,故最大公因式是723a b.解:43232224233575532173a b c a b a c a cbda b d a b bd⋅==⋅.方法技巧:当约分的分式的分子、分母都是单项式时,只要约去分子、分母的最大公因数和相同字母的最低次幂即可.2222a aba ab b+++.分析:此分式的分子和分母都是多项式,要先各自因式分解,然后约去公因式.解:原式=2()()a ab aa ba b+=++.方法技巧:约分的根据是分式的基本性质,将分子、分母的公因式约去,若分子、分母是多项式,须先因式分解,再约去公因式.特别注意分子、分母必须是乘积形式时1718才能进行约分. 4.最简分式434y x a +,2411x x --,22x xy y x y -++,2222a abab b +-A .1个B .2个C .3个D .4个分析:分子分母是多项式的,先把分子、分母都分解因式,看分子、分母中是否有公因式,第1个不能再分解了,是最简分式;第2个可化为2221(1)(1)x x x -+-有公因式x 2-1;第3个不能分解,也没有公因式;第4个可化为(2)(2)a ab a a b +-没有公因式,是最简分式.故有3个最简分式. 解:C .方法技巧:判断一个分式是否是最简分式,关键看分子、分母中有没有公因式,有些分式的分子、分母虽然都能因式分解,都是分解后仍然没有公因式,这样的分式仍然是最简分式. 5.分式的乘方分式的乘方是把分子、分母各自乘方.用符号语言表达:()nn n f f g g=.1922y x-)2;⑵(2222a ab ab b+-)3. 分析:⑴中的分式的分子、分母是单项式,可以直接运用法则计算;⑵中的分式的分子、分母是多项式,应该先各自因式分解,发现有公因式,先约分,然后再运用法则计算.解:⑴原式=2222()y x -()=244y x .⑵原式=((2)(2)a a b a a b +-)3=(22a b a b+-)3=3(2)a b +3(a-2b)方法技巧:在计算乘方运算时,如果分子、分母是单项式,可以直接运用法则计算;如果是多项式,要先因式分解,通常约去公因式后再计算,也可以先进行乘方运算后再约去公因式.32222183442x x x x x ⎛⎫--⎛⎫- ⎪⎪-+-⎝⎭⎝⎭÷ .思维幻灯片:分析:题目是求两个乘方的商,根据运算顺序,应先算乘方,后算除法.由于第一个分式的分子、分母是多项式,所以要先分解因式后再算乘方,最后将第二个分式的乘方分子、分母颠倒后再与第一个分式乘方的结果相乘.解:原式3232(3)(3)3(2)2x x x x x ⎡⎤+--⎛⎫= ⎪⎢⎥--⎝⎭⎣⎦÷=322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·223x x -⎛⎫ ⎪-⎝⎭322(3)(3)(2)x x x ⎡⎤+-=⎢⎥-⎣⎦·22(2-x )(3-x)203342348(3)(3)1(2)(3)8(3)(3)(2)x x x x x x x +-=--+-=-.方法技巧:分式的运算顺序与分数的运算顺序一样,要先算乘方,后算乘除,有括号的先算括号内的.[基本方法与拓展延伸]6.分式乘除法的步骤和运算顺序⑴分式乘除法的步骤:对一个分式进行乘除法运算时,先观察分式,看一个分式的分子、分母能否进行分解因式,若能分解因式的应先分解.当分解完成以后,要进行约分,直到分子、分母没有公因式时再进行乘除.⑵分式乘除法的运算顺序:分式乘除法与整式乘除法运算顺序相同一般是从左向右,有除法的先把除法转化为乘法.⑶进行分式乘除法运算时应注意的问题:在进行分式乘除法运算时,特别要注意,当分解因式后进行约分时,一定要先把除法转化为乘法后才可以进行.xy =3,求222223x xy y x xy y +--+的值.分析:有两种思路:其一可用含y 的代数式替代x,即x=3y,代入分式求值;其二可把求值分式变形,使之出现已知中的xy的式子. 解法一:由xy=3,可得x=3y. 则222223x xy y x xy y +--+=222222(3)2(3)31212.7(3)(3)7y y y y y y y y y y +-=-+ 解法二:将分式分子、分母都除以2y ,得222223x xy y x xy y +--+=222396312.93171x xy y x xy y ⎛⎫+⋅- ⎪+-⎝⎭==-+⎛⎫-+ ⎪⎝⎭方法技巧:解此类题目,用解法一求,变化已知条件,使求值分式能用同一个字母代替;用解法二求,所变化的分式,使之出现已知的式子,以便能用已知的数据来代替.这两种方法既是求分式值常用的方法,也是求代数式的值常用的方法.222222x y x yx xy y x xy--÷+++.分析:分式的分子、分母都是多项式,可先分解因式,再约分.解:222222x y x yx xy y x xy--÷+++=2()()()()x y x y x x yx yx y+-+⨯-+=x.方法技巧:当分式的分子、分母有公因式时,要先因式分解,变除法为乘法后约分,再按照运算法则计算.7.分式的乘除法混合运算分式的乘除法混合运算与分数的乘除法混合运算一样,应先把除法运算转化为乘法运算,使整个算式变为乘法运算,其运算顺序是由左到右依次运算,并且乘法的交换律和结合律在分式的乘法中依然可以运用,根据具体问题利用运算律可以简化运算.(1)221111121x x xx xx x-+-÷⋅-+-+.(2)0.60.424155aa--÷210.2 1.31230.15a aa-+-÷1210a-.分析:⑴中的分式的分子、分母都是多项式,所以应先各自因式分解,然后将除法转化为乘法计算即可;⑵中的分式的分子、分母的系数是分数,要先把分子、分母中的系数变为整数,再进行计算.解:⑴221111121x x xx xx x-+-÷⋅=-+-+221111121x x xx xx x---⋅⋅++-+2122=2(1)(1)(1)111(1)x x x x x x x +----⋅⋅++-=11x x --+; (2)原式=916212a a --÷2213156a a a -+-÷1210a -=-)6(2)32(3--a a ·)5)(32(6---a a a ·2(a -5)=-3.方法技巧:分式的乘除运算与分数的乘除法法则和运算顺序都相同,归根到底是分式的乘法运算,运算的实质是分式的约分.[基本能力与创新应用]8.分式的化简、求值的开放题分式化简、求值题是分式部分重要的题型,灵活运用前面学习的数学知识和思想方法,是解决分式求值问题的关键. 分式求值是代数式求值常见的题型之一,其基本解法是先化简,再把字母的值代入计算.但在条件开放下的分式求值问题,与传统题目不同的是,代入值由同学们自己选取,一方面题目开放,有无数种结果,另一方面也考查了分式有意义的条件,在实际解题时却有很多同学由于代入了使分式无意义的数值,从而导致错误.44,2,4222+---x x x x x 中,任选两个你喜欢的式子组成一个分式是 ,把这个分式化简所得的结果是 .分析:本例是一道组合开放型试题,所给的三个式子都是整式,并且都含有字母.因此可任意选择其中两个,一个为分子,另一个为分母,先组成分式,再进行化简,故答案不唯一.解:如:222(2)(2)42244(2)x x x x x x x x +--+==--+-.方法技巧:本题是条件开放,结论也开放,因此,这种题的答案不唯一,只要合理计算正确即可.24462x x x +--÷(x +3)·x x x --+362,并选择一个你喜欢的x 的值求出分式的值. 思维幻灯片:23分析:⑴本题是乘除法运算,乘法、除法属于同一级运算,计算时要从左到右,千万不能把运算顺序理解为先乘法后除法;⑵化简完毕后,把一个x 的值代入求出即可.解:24462xx x +--÷(x +3)·x x x --+362=2)2()3(2--x x ·31+x ·xx x -++3)2)(3(=22--x . 当x =-2时,原式=222---=21.误区警示:这类问题的答案不唯一,解答时,一是按常规先化简,二是代入求值时需防“陷阱”,在取值时既要注意使运算简捷,同时又要考虑到“隐含条件”的约束,所取字母的值必须使原分式有意义,如本题中x 的值不能取2和3以及-3,这样会使原分式无意义,而实际上部分同学往往只注意最后一步中x 不能取2,而忽视了原分式中隐含条件是x 不能为2,3,-3,从而导致错误.[迁移应用与分级检测]1.下列分式中不是最简分式的是( )A .2222a b a b +- B .24a a a + C .12a a ++ D .a a b +答案:B点拨:选项A 、C 、D 中的分式的分子、分母没有公因式,是最简分式,而选项B 中的分式的分子、分母含有公因式a ,不是最简分式. 2.计算33bab a÷的结果是( ) A .2bB .18aC .9aD .29a答案: D点拨:按照除法法则变为乘法,积为9a 2,故选择D . 3.计算1m n n÷ 的结果是( )24A .mB .2m nC .2mn D .2n m答案:B点拨:本题往往不注意运算顺序,先把n 和1n约分(相乘),得出错误答案m ,从而错误地选择A .4.计算22ab cd÷34ax cd -等于( )A .223b xB .32b 2xC .-223b xD .-222238a b xc d答案:C点拨:本题有两种方法,一是直接利用法则计算正确地得出选项C ;二是用排除法,由符号易排除选项A 、B ,由被除式和除式的分母都有cd 可知变为乘法后被约去,不可能是选项D ,故选择C .5.下面约分的四式中,正确的是( )A.22y y x x =B.22a c abb c +=+ C.12a b ma mb m +=+ D.1a b b a -=-- 答案:D点拨:对分式约分是约去分子与分母的公因式.实际上A ,B 两个分式的分子与分母没有公因式.C 式虽有公因式,但应把分母先分解因式然后再约去因式,即1()a b a b ma mb m a b m++==++,正确的是:1()a b a b b a a b --==----,故选D.6.约分3232105a bca b c -.解:3322322322221010522555a bc a bc a bc a a a b c a b c a bc b c b c=-=-=-- . 点拨:当分式的分子或分母的系数是负数时,应先把负号提到分式的前边再约分(即先确定整个分式的符号再约分).7.化简:222692693x x x x x x-+--+÷.解:原式=2(3)(3) (3)(3)2(3)x x xx x x-+ +--⨯=(3)(3)22x x xx--=--⨯.点拨:当分式的分子、分母是多项式时,应先各自因式分解后再按照法则计算.8.计算:①2222253518x ya bxy ab⨯;②2234()()()y xx yx y-÷-;解:①22222535566518x ya b a x axy b byxy ab⨯=⨯=.②226234234211 ()()()()y yx xx yx y x y x y y-÷-=⨯⨯-=- .点拨::注意运算顺序,先算乘方,后算乘除,在运算的过程中要正确确定结果的符号.9.(2009年淄博市)化简222a ba ab-+的结果为()A.ba-B.a ba-C.a ba+D.b-答案:B点拨:先将分子、分母因式分解,然后约去公因式a+b即可得出选项B.10.计算:(1)322822444x x xxx x-+⨯-++;(2)22212211x x xxx-+-÷+-解:(1)322822444x x xxx x-+⨯-++=22(2)(2)22(2)(2)x x x xxx-++⨯-+=2x.(2)22212211x x xxx-+-÷+-2(1)(1)1(1)(1)2(1)2x xx x x-+=⋅=-+---.点拨:分式的乘除运算中常将除法转化为乘法,再依据乘法法则先把分子、分母分别相乘,化成一个分式后再约分,但实际计算时,也可根据情况先约分,再相乘,这样有时既可简化运算过程,又不易出错.11.计算:239()33x x xx x x--⋅-+.2526解: 239()33x x x x x x--⋅-+ =(3)(3)(3)(3)333x x x x x x x x x x+-+-⋅-⋅-+ =3(x +3)-(x -3)=3x +9-x +3 =2x +12.点拨:本题可以按照乘法的分配律进行计算,约去公因式后变成两个整式,再合并同类型即可.12.计算:⑴ (xy z )3·(-xz y)3÷(yzx-)4;⑵3()a b ab-÷(b-a )2·(ab b a -)2.解:⑴原式=333x y z ·(-333x z y )·444()x y x -=-333x y z·333x z y ·444x y x =-1044x y x .⑵原式=3()a b ab -·21(a-b )·22()()ab b a -=2222()()a b ab a b a b -- 3(a-b )=aba b -. 点拨:在运算过程中,一定要严格按照运算顺序,先算乘方,后算乘除,特别注意变化过程中分式的符号.13.(2222a x a x-+)3÷(22442a ax x a x ++-)2·[21()a x -]2解:原式=322322)()(x a x a +-÷224222)()2(x a x ax a -++·4)(1x a -=32233)()()(x a x a x a +-+·422222)()()()(x a x a x a x a +-++·4)(1x a -=22()()a x a x a x +-+=2222xa x a +- 点拨:本题分式的分子、分母都含有公因式[中考零距离]1.(2009湖北省荆门市)计算22()ab a b -的结果是( )A .aB .bC .1D .-b27答案:B点拨:本题考查积的乘方运算与分式的化简,()22222ab a b b a ba b-==,故选B . 2.(2009年黄冈市)化简2422a a a a a a -⎛⎫-⋅ ⎪-+⎝⎭的结果是()A .-4B .4C .2aD .-2a答案:A点拨:2422aa a a a a -⎛⎫-⋅ ⎪-+⎝⎭=22a a a a a ⎛⎫-⋅ ⎪-+⎝⎭(2+a )(2-a) -(2+a)-(2-a)=-4.3.(2008山西省太原市)化简222m n m mn-+的结果是( )A .2m nm- B .m nm- C .m n m + D .m nm n-+ 答案:B点拨:把分式的分子、分母因式分解后约去公因式m+n 即可得出答案为选项B .4.(2008内蒙古呼和浩特市)计算:222233y x y x-÷= .答案:392x -点拨:按照除法法则变为乘法后约分即可.5.(2010广东中山)化简:22211x xy y x y -+---=_________.答案:x-y+1点拨:222211(1)(1)111x xy y x y x y x y x y x y x y -+----+--==------()= x-y+1.6.(2010江苏连云港)化简:(a -2)·a 2-4a 2-4a +4=___________.答案:a+2点拨:(a-2)·a2-4a2-4a+4=(a-2)·2(2)(2)(2)a aa+--=a+2.<教材问题与习题参考答案>教材问题详解本节无教材习题详解28。