人教版七年级上册 第七讲:整式的加减
- 格式:docx
- 大小:85.07 KB
- 文档页数:3
2024整式的加减教案人教版数学七年级上册教案一、教学目标1.理解整式的概念,掌握整式的加减运算。
2.能够熟练运用整式的加减法则,解决实际问题。
3.培养学生的数学思维能力,提高解决问题的能力。
二、教学重点与难点1.教学重点:整式的加减运算。
2.教学难点:整式加减法则的应用。
三、教学过程1.导入新课同学们,我们在上一节课学习了整式的概念,那么大家知道整式之间可以进行哪些运算吗?对,今天我们就来学习整式的加减运算。
2.学习整式的加减法则我们来看一下什么是整式的加减运算。
整式的加减运算,就是将两个或多个整式合并成一个整式的过程。
我们来看一下整式的加减法则。
整式的加减法则可以概括为:同类项相加减,系数相加减。
3.示例讲解下面,我们通过几个例子来具体讲解整式的加减运算。
例1:将整式3x^2+2x5和2x^23x+4合并成一个整式。
解:3x^2+2x5+2x^23x+4=5x^2x1例2:将整式4x^32x^2+x和3x^22x1合并成一个整式。
解:4x^32x^2+x+3x^22x1=4x^3+x^2x14.练习与巩固下面,我们来做一些练习题,巩固一下整式的加减运算。
练习题1:将整式5x^23x+2和2x^2+x1合并成一个整式。
解:5x^23x+2+2x^2+x1=7x^22x+1练习题2:将整式6x^34x^2+3x和x^22x+1合并成一个整式。
解:6x^34x^2+3x+x^22x+1=6x^33x^2+x+15.解决实际问题下面,我们来看一个实际问题,看看如何运用整式的加减运算来解决问题。
问题:某工厂生产一批产品,每件产品的成本为2x+3y元,其中x表示原材料成本,y表示人工成本。
如果工厂要生产100件产品,那么总共的成本是多少?解:总成本=100×(2x+3y)=200x+300y通过今天的学习,我们掌握了整式的加减运算,可以解决一些实际问题。
大家在课后要加强练习,熟练掌握整式的加减法则,提高解决问题的能力。
人教版数学七年级上册《整式的加减运算》教案一. 教材分析人教版数学七年级上册《整式的加减运算》是学生在掌握了有理数、实数、代数式等基础知识后,进一步学习整式运算的重要内容。
本节课的内容包括整式的加减法则、加减运算的步骤和注意事项等。
通过本节课的学习,学生能够掌握整式加减运算的方法,提高解决实际问题的能力。
二. 学情分析学生在六年级时已经学习了简单的代数运算,对于加减乘除等基本运算有一定的掌握。
但是,对于整式的加减运算,学生可能还存在以下问题:1. 对整式的概念理解不深,容易混淆;2. 运算顺序掌握不牢固,容易出错;3. 对于复杂的整式运算,缺乏解决方法。
三. 教学目标1.知识与技能:学生能够掌握整式的加减法则,正确进行整式加减运算。
2.过程与方法:通过实例分析,让学生学会将实际问题转化为整式加减运算,提高解决问题的能力。
3.情感态度与价值观:培养学生对数学的兴趣,培养学生合作、探究的精神。
四. 教学重难点1.重点:整式的加减法则。
2.难点:复杂整式加减运算的解决方法。
五. 教学方法采用“问题驱动法”和“实例分析法”,以学生为主体,教师为指导,通过提问、讨论、实践等方式,引导学生主动探索、发现和解决问题。
六. 教学准备1.教学素材:教材、多媒体课件、黑板、粉笔。
2.教学工具:投影仪、计算机。
七. 教学过程1.导入(5分钟)通过一个实际问题引出整式加减运算的概念,激发学生的学习兴趣。
2.呈现(10分钟)讲解整式的加减法则,引导学生理解并掌握加减运算的步骤。
3.操练(10分钟)学生分组进行练习,教师巡回指导,及时发现并纠正错误。
4.巩固(5分钟)选取一些典型的题目进行讲解,加深学生对整式加减运算的理解。
5.拓展(5分钟)讲解一些复杂的整式运算,引导学生学会运用合适的方法解决问题。
6.小结(3分钟)对本节课的主要内容进行总结,强调重点知识点。
7.家庭作业(2分钟)布置适量的家庭作业,巩固所学知识。
8.板书(贯穿整个教学过程)在教学过程中,适时地进行板书,总结关键步骤和注意事项。
七年级上册数学人教版整式的加减一、整式的相关概念。
(一)单项式。
1. 定义。
- 由数与字母的乘积组成的代数式叫做单项式,单独的一个数或一个字母也是单项式。
例如:3x,-2y,5,a等都是单项式。
2. 系数。
- 单项式中的数字因数叫做这个单项式的系数。
例如在单项式3x中,系数是3;在单项式-2y中,系数是-2;对于单项式5,可以看作5×1,系数就是5;单项式a 可以看作1× a,系数是1。
3. 次数。
- 一个单项式中,所有字母的指数的和叫做这个单项式的次数。
例如在单项式3x^2中,x的指数是2,所以这个单项式的次数是2;在单项式-2xy中,x的指数是1,y的指数是1,1 + 1=2,所以这个单项式的次数是2。
(二)多项式。
1. 定义。
- 几个单项式的和叫做多项式。
例如2x+3y,x^2 - 2x+1等都是多项式。
2. 项。
- 在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
例如在多项式x^2 - 2x + 1中,x^2、-2x、1都是它的项,其中1是常数项。
3. 次数。
- 多项式里次数最高项的次数,叫做这个多项式的次数。
例如在多项式x^2 - 2x+1中,次数最高的项是x^2,次数为2,所以这个多项式的次数是2。
(三)整式。
- 单项式与多项式统称为整式。
二、整式的加减。
(一)同类项。
1. 定义。
- 所含字母相同,并且相同字母的指数也相同的项叫做同类项。
几个常数项也是同类项。
例如3x和5x是同类项,2y^2和-3y^2是同类项,4和-7也是同类项。
2. 合并同类项。
- 把多项式中的同类项合并成一项,叫做合并同类项。
合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母连同它的指数不变。
例如:- 3x+5x=(3 + 5)x=8x;- 2y^2-3y^2=(2 - 3)y^2=-y^2。
(二)去括号法则。
1. 括号前是“+”号。
- 把括号和它前面的“+”号去掉后,原括号里各项的符号都不改变。
七年级数学上册《整式的加减》教案第一篇:七年级数学上册《整式的加减》教案整式的加减教学过程:(一)代数式:1.本节重点共两部分,一是对给出的一个具体的代数式,能准确表达出它的数学意义,二是列代数式,即将基本数量关系的语言用代数式来表示。
本节是关于代数的初步知识,在复习中注意以下几点:(1)代数式是什么,并注意和公式、等式区别开来。
(2)一个具体的代数式,能准确用语言表达其意义,并能把简单的与数量有关的词语化为代数式的形式。
(3)会用具体数值代替代数式中的字母,按其代数式指明的运算顺序进行计算。
(4)公式都是由代数式组成的。
2.例题分析:例1.说出下列各组代数式的意义有什么不同:(1)2(a+b),2a+b,a+2b 2a-b2b1222(2)a-,(a-b),()222 解:(1)2(a+b)是a与b的和的2倍。
2a+b是a的2倍与b 的和。
a+2b是a与b的2倍的和。
22b22(2)a-是a与b的一半的差。
212(a-b2)是a与b两数平方差的一半。
2a-b2()是a与b的差的一半的平方。
注意:用语言表达一个代数式的意义,具体说法上没有统一的规定,只要能正确表达即可。
比如2a+b,可以说是a的2倍与b的和,也可以说是2a与b的和。
例2.用代数式表示:(1)甲数与乙数平方的和;(2)甲、乙两数的平方差;(3)甲数与乙数的差的平方。
解:设甲数为x,乙数为y(1)x+y2(2)x2-y2(3)(x-y)2例3.某校大礼堂第一排有座位x个,后面每排比前一排多2个座位,求第n排的座位数。
若该礼堂一共有20排座位,且第一排的座位数也是20个,请您计算该礼堂共有多少座位?分析:找到座位的规律:第一排:x个第二排:x+2个第三排:x+4个第四排:x+6个第五排:x+8个MM第n排:x+(n-1)⨯2个解:由分析可得第n排的座位数:x+2(n-1)第一排有20个座位,共有20排,即a=20,n=20 所以,最后一排座位数:20+2⨯(20-1)=58(个)求整个礼堂中的座位数即做加法: 20+22+24+……+56+58=(20+58)+(22+56)+……+(38+40)=78⨯10=780例4.某地出租汽车收费标准:起步价10元,可乘3千米,3千米到5千米,每千米1.8元,5千米以后,每千米是2.7元。
第7讲:整式的加减
1、如果123+n m y x 与322
1+m y x 是同类项,则n m ,的值为( ) A.3,1=-=n m B.3,1==n m C.3,1-=-=n m D.3,1-==n m
2、由于受H7N9禽流感的影响,我市某城区今年2月份鸡的价格比1月份下降a%,3月份比2月份下降b%,已知1月份鸡的价格为24元/千克。
设3月份鸡的价格为m 元/千克,则 ( )
A.m =24(1−a %−b%)
B.m =24(1−a %)b%
C.m =24−a %−b%
D.m =24(1−a %)(1−b%)
3、若2=-b a ,3-=-c b ,则c a -等于( )
A.1
B.-1
C.5
D.-5
4、已知e dx cx bx ax y ++++=357,其中e d c b a 、、、、为常数,当2=x 时,23=y ;当2-=x 时,35-=y ,那么e 的值是( ) A.-6 B.6 C.-12 D.12
5、当3-=x 时,22017++bx ax 的值为-2008,那么当3-=x 时,72017++bx ax 的
7、小明背对小亮按小列四个步骤操作:
(1)分发左、中、右三堆牌,每堆牌不少于两张,且各堆牌现有的张数相同;
(2)从左边一堆拿出两张,放入中间一堆;
(3)从右边一堆拿出两张,放入中间一堆;
(4)左边一堆有几张牌,就从中间一堆拿几张牌放入左边一堆,当小亮知道小明操作的步骤后,便准确地说出中间一堆牌现有的张数,你认为中间一堆牌现在还剩有的张数是 .
8、有一组单项式:2
a ,−23a -,34a ,45
a -,….观察它们构成规律,用你发现的规律写出第10个单项式为 .
9、若关于b a ,的多项式()()222222b mab a b ab a ++--+中不含ab 项,则m = .
10、规定一种新运算:b a b a +=*,b a b a -=⊗,其中b a 、为有理数,如2=a ,1=b 时,312=+=*b a ,112=-=⊗b a 根据以上的运算法则化简:ab b a ab b a 45322⊗+*,并求出当3,.5==b a 时多项式的值。
11、(1)已知多项式4232--x x 与多项式A 的和为16-x ,且式子()1++mx A 的
计算结果中不含关于x 的一次项,求m 的值。
(2)已知()()1532222-+--+-+y x bx b y ax x 的值与字母x 的取值无关,求
()()222243b ab a b ab a ++---的值.
12、当3-=x 时,多项式535-++cx bx ax 的值为7,求3=x 时,多项式535-++cx bx ax 的值.
13、已知,1322=+mn m ,21232=+m mn 那么44613222-++n mn m 的值为 ( ) A.45 B.55 C.66 D.77。