21整式(第3课时)教学精品PPT课件
- 格式:pptx
- 大小:635.99 KB
- 文档页数:17
第二章整式的加减2.1 整式第3课时一、教学目标【知识与技能】使学生理解多项式、整式的概念,会准确确定一个多项式的项数和次数.【过程与方法】通过实例列整式,培养学生分析问题、解决问题的能力.【情感态度与价值观】培养学生积极思考的学习态度,合作交流意识,了解整式的实际背景,进一步感受字母表示数的意义.二、课型新授课三、课时第3课时,共3课时。
四、教学重难点【教学重点】多项式以及有关概念.【教学难点】准确确定多项式的次数和项.五、课前准备教师:课件、直尺、圆环截面图等。
学生:三角尺、练习本、圆珠笔或钢笔、铅笔。
六、教学过程(一)导入新课复习提问1.什么叫单项式?举例说明.的系数、次数分别是多少?(出2.怎样确定一个单项式的系数和次数?-3ab2c5示课件2)3.2a和3b都是单项式,那2a+3b又是什么呢?(二)探索新知1.师生互动,探究多项式的有关概念教师问1:列代数式表示下列数量:(出示课件4)(1)温度由t℃下降5℃后是℃;(2)买一个篮球需要x元,买一个排球需要y 元,买一个足球需要z元,买3个篮球、5个排球、2个足球共需要元.学生回答:(1)(t-5) ;(2)(3x+5y+2z)教师问2:观察以上所得出的四个代数式与上节课所学单项式有何区别?学生回答:它们都含有加减法运算.教师问3:下列各式是单项式吗?这些式子有什么共同特点?与单项式有什么关系?(出示课件5)t-5, 3x+5y+2z,1ab−πr2 ,x2+2x+18.2学生回答:不是单项式,上述几个式子都是两个或者多个单项式相加的形式.教师问4:这些式子叫做多项式,如何给多项式下定义呢?学生回答:几个单项式的和叫做多项式.教师问5:在多项式中,每个单项式叫做多项式的项.其中,不含字母的项,叫做常数项.例如,多项式有几项,它们分别是?其中常数项是?学生回答:多项式有三项,它们是,-2x ,5;其中5是常数项.教师问6:单项式有次数,什么是多项式的次数呢?例如多项式x 2+2y+18次数是几呢?学生回答:多项式中次数的和,多项式x 2+2y+18次数是3.教师问7:多项式x 2+2y+18次数是2,多项式里,次数最高项的次数,就是这个多项式的次数。
2.1整式(第3课时)教学目标1.理解多项式、多项式的项及其次数以及整式的概念.2.能确定一个多项式的项和次数,会用多项式表示简单的数量关系.教学重点理解整式及多项式的有关概念,会用多项式表示实际问题中的数量关系.教学难点准确确定多项式的项及次数.教学过程新课导入填空:1.买一个书包需要x元,买一支铅笔需要y元,买一个本子需要z元,买1个书包、2支铅笔、2个本子共需要(x+2y+2z)元.2.若三角形的三条边长分别为a,b,c,则三角形的周长是a+b+c .3.如下图,长方形的宽为a,长为b,圆的半径为r,则阴影部分面积是ab-πr² .新知探究一、探究学习【问题】思考:列出的这些式子有什么共同特点?与单项式有什么联系?x+2y+2z,a+b+c,ab-πr².【师生活动】学生先独立分析所写出的三个式子,尽自己努力找到它们的共同特点,师生再共同进行总结.【设计意图】通过自主探究,让学生更深刻地理解多项式和单项式之间的关系.二、新知精讲【新知】多项式的定义几个单项式的和叫做多项式.【师生活动】学生复述这一定义.【设计意图】通过重复记忆,让学生进一步加深对多项式的定义的理解.【新知】多项式的相关概念:x2-2x+18多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项.多项式里,次数最高项的次数,叫做这个多项式的次数.【师生活动】结合实例,让学生认识多项式的项和次数.【设计意图】为后面确定多项式的项和次数做好铺垫.【问题】多项式的次数与单项式的次数有什么区别?【师生活动】引导学生结合定义做出回答.【设计意图】通过对问题的解答,使学生理解多项式和单项式的次数之间的联系和区别.【思考】展示单项式与多项式的动图,想一想单项式和多项式有什么关系.【思考】多项式是几个单项式的和,那么多项式与单项式有统称吗?【新知】整式的概念单项式与多项式统称整式.【思考】单项式、多项式、整式之间有什么关系?【师生活动】对三者的定义进行区分,明确它们之间的关系.【设计意图】巩固并加深学生对概念的理解.三、典例精讲【例1】请指出下列式子中的多项式:(1)12xy3-5x+3;(2)222+a b;(3)2+mnm n;(4)-7.【答案】解:根据“多项式是几个单项式的和”进行判断即可.(1)12xy3-5x+3可看成单项式12xy3,-5x,3的和,是多项式;(2)222+a b可看成单项式22a,22b的和,是多项式;(3)2+mnm n的分母中含有字母,显然不符合题意;(4)-7是单项式.所以,(1)(2)是多项式.【师生活动】学生回答,老师点评.【设计意图】巩固学生对多项式的概念的理解和掌握.【例2】指出下列多项式的项与次数:(1)a3-a2b+ab2-b3;(2)3n4-2n2+1.【答案】解:(1)多项式a3-a2b+ab2-b3的项有a3,-a2b,ab2,-b3,次数是3.(2)多项式3n4-2n2+1的项有3n4,-2n2,1,次数是4.【师生活动】学生独立解决,组内探讨答案是否正确.【设计意图】让学生熟练找出多项式的项和次数.【例3】如图,用式子表示圆环的面积.当R=15 cm,r=10 cm时,求圆环的面积(π取3.14).【答案】解:外圆的面积减去内圆的面积就是圆环的面积,所以圆环的面积是πR2-πr2.当R=15 cm,r=10 cm时,圆环的面积(单位:cm2)是πR2-πr2=3.14×152-3.14×102=392.5.这个圆环的面积是392.5 cm2.【师生活动】首先用式子表示出圆环面积,再把数值代入求解.【设计意图】掌握用多项式表示数量关系的方法,并能对多项式进行求值.课堂小结板书设计一、多项式的定义二、多项式的项和次数三、整式的定义课后任务完成教材第58页练习1~2题.。
2.1 整式---代数式整式---列代数式1、代数式的概念; 3、代数式的书写注意事项。
2、文字语言和代数语言的相互转化;作业设计最佳解决方案个基础:一、选择题1.三个连续的偶数中若中间的一个是,是代数式表示其它两个偶数是().(A)(B)(C)(D)2.某钢铁厂每天生产钢铁吨,现在每天比原来增加,现在每天钢铁的产量是()吨.(A)(B)(C)(D)3.下列各式:(1);(2);(3);(4);(5);(6)其中代数式的个数为().A.2 B.3 C.4 D.54.代数式,用语言叙述正确的是().A.与的平方差 B.的平方减 5乘以的平方C.的平方与的平方的5倍的差D.与的差的平方综合:二、填空题1.用字母表示三个连续奇数的和_________.2.的2倍与3的差_________.3.的平方的5倍与的和_________.4.比、的积的小7的数_________.5.李明有本教科书,课外书比教科书多本,那么他共有_________本书.6.一件上衣售价为元,降价10%后的售价为_________.拓展:三、解答题1.如图,圆中挖掉一个正方形,试用r表示阴影部分面积.答案:一、1.C2.D3.B4.C二、1.设为自然数,则三个连续的奇数和为=2.3.4.5.6.元三、1.(提示:如答图,把正方形分成两个三角形,其中三角形的面积是.教学反思:《列代数式》是数学课程标准中“数与代数”领域的一部分,主要让学生通过探索发现最简单图形的变化规律、及某些数变化规律。
一、注重过程和体验,让学生自己去“感悟”。
这部分内容活动性和探究性比较强,注重过程体验,同时在过程体验中,培养学生观察、猜测、实验、推理等能力。
《数学新课程标解读》中关于“推理能力”的培养有这样一段阐述:“能力的形成并不是学生‘懂’了,也不是学生‘会’了,而是学生自己‘悟’出道理、规律和思考方法……”所以我想有必要给学生足够的时间去思考问题。
回答时暴露其思维过程。