地震勘探原理第6章地震波的速度
- 格式:ppt
- 大小:11.85 MB
- 文档页数:90
第四章地震波的速度
第1节地震波在岩层中的速度及与各种因素的关系
第2节几种速度的概念
第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
主讲教师:刘洋
第1节地震波在岩层中的速度及与
各种因素的关系
)速度比值(或泊松比)
112111212222−−=−⎟⎟⎠⎞⎜⎜⎝⎛−⎟⎟⎠⎞⎜⎜⎝⎛r r V V V V S P S P
对数-对数坐标0.25
0.31V ρ=)
、温度、压力
)随着温度的升高,速度降低
)随着压力的升高,速度增加
第2节几种速度的概念。
需总时间之比是平均速度。
第3节各种速度之间的关系
第4节平均速度的测定
第5节叠加速度谱的制作与解释
道集动校正速度:
3500m/s 动校正速度:
4400m/s 动校正速度:4150m/s
CMP。
地震波速度变化规律
地震波速度变化规律是指地震波在地壳中传播时速度的变化规律。
地震波分为两类: 纵波和横波。
纵波在地壳中传播时速度较慢,而横波速度较快。
在地壳中,纵波速度随着深度的增加而减小,在地壳的表层速度较快,而在地壳的深部速度较慢。
这是因为地壳的表层较软,纵波可以较快地传播,而地壳的深部则较硬,纵波传播较慢。
横波速度则随着深度的增加而增加,在地壳的表层速度较慢,而在地壳的深部速度较快。
这是因为地壳的表层较软,横波可以较慢地传播,而地壳的深部则较硬,横波传播较快。
总之,地震波的速度在地壳中的变化规律是不同的,纵波的速度随着深度的增加而减小,而横波的速度则随着深度的增加而增加。
这种速度变化规律在研究地震学中有重要意义。
地震波速度变化规律的研究主要用于地震深度和地壳结构的研究。
通过观测纵波和横波的速度变化,可以推测出地震发生的深度。
此外,地震波速度变化规律还可以用于地壳结构的研究。
通过观测地震波速度的变化,可以推断出地壳结构的性质,如地壳的密度和弹性模量等。
地震波速度变化规律的研究也有助于地震预测和地震灾害
防御。
通过对地震波速度变化规律的研究,可以提高地震预测的准确性,并为地震灾害防御提供有力的技术支持。
总之,地震波速度变化规律的研究对地震学、地质学和工程领域都有重要的意义。
绪论1、了解地下资源信息有那些主要手段1、地质法:(Geology Method)2、地球物理方法:(Exploration Methods )3、钻探法:Drill Way (Log/Well )4、综合方法:地质、物探(物化探)、钻探结合起来,进行综合勘探。
2 有几种主要地球物理勘探方法,它们的基本原理。
地震勘探、重力勘探、磁法勘探、电法勘探、地球物理测井3、什么是地震勘探?就是通过人工方法激发地震波(弹性波),研究地震波在地层中传播的规律,以查明地下的地质构造,从而来为寻找油气田或其它勘探目的服务的一种物探方法.4、地震勘探的主要工作环节。
野外资料采集、地震资料处理、地震资料解释第一章 地震波动力学地震波运动学:研究在地震波传播过程中的地震波波前的空间位置与其传播时间的关系,即研究波的传播规律,以及这种时空关系与地下地质构造的关系。
地震波动力学:研究地震波在传播过程中波形、振幅、频率、相位等特征的及其变化规律,以及这些变化规律与地下的地层结构,岩石性质及流体性质之间存在的联系.地震波:一种在岩层中传播的、频率较低的弹性波。
波阵面—波从震源出发向四周传播,在某一时刻,把波到达时间各点所连成的面,简称波面. 波前—某一时刻介质中刚开始振动与静止时的分界面。
波后—振动刚停止时刻的分界面为波后,也叫波尾。
波线-在一定条件下,认为波及其能量是沿着 一条“路径”从波源传到所观测的一点P .这是一条假想的路径,也叫射线。
是用来描述波的传播路线的。
振动曲线-—某点振动随时间的变化的曲线称为,也称振动图。
一条振动曲线只反映一个点的振动。
波形曲线-把在同一时刻各点的位移画在同一图上形成的曲线。
波形曲线表示某时刻各点振动位置 与各点位置的关系.不同的时刻有不同的波形曲线。
视速度—当波的传播方向与观测方向不一致(夹角θ)时,观测到的速度并不是波前的真速度V,而是视速度Va.透射定律1)透射线也位于入射面内,2)入射角的正弦和透射角的正弦之比等于第一和第二两种介质的波速之比,即声阻抗指的是介质(地层)的密度和波的速度的乘积(Zi=ρiVi ,i 为地层),在地震学中称波阻抗 斯奈尔(Snell )定律:P V V V V V V SiSi Pi pi S S P p S S P P =======θθθθθθsin sin ..........sin sin sin sin 22222211费马原理指出波在各种介质中的传播路线,满足所用时间为最短的条件(旅行时为极小)惠更斯(huygens)原理波在传播过程中,任意时刻的波前面上的每一点都可以看作是一个新的点震源,由它产生二次扰动,形成元波前,且以后时刻的新波前面的位置就是该时刻波前面所激发的所有二次波的包络面。
第一章 地震勘探的理论基础1、各向同性介质:弹性与空间方向无明确关系的介质称各向同性介质,否则是各向异性介质。
2、泊松比σ:弹性体受力纵向伸长(缩短)与横向收缩(膨胀)的比值. L L d d //∆∆=σ3、对于大多数沉积岩石,σ=0.25,∴V P =1.73V S 。
4、瑞雷面波(R 波)特点:(1) 波的能量分布在地表附近的介质中并随深度迅速衰减。
(2) 质点振动方向分上、下、坐、右,合成的振幅轨迹是椭圆(逆时针方向),长轴垂直地面,长短轴比值是2/3。
(3) 当σ=0.25时,V R = 0.92V S =0。
54V P ,速度低、频率低(10~30Hz),波形宽。
(4) 有频散(波散)现象,不同频率的成分传播速度(相速度)不同,即群速度不等于相速度.5、拉夫面波(L 波) 特点:能量沿地震界面分布,振动方向与传播方向垂直,振动平面平行界面,即为SH 波,由于水平振动,检波器接收不到。
6、地震波的特征:运动学特征——研究波在地层中传播的空间位置与传播时间的关系。
动力学特征—-研究波在地层中传播的能量(振幅)变化和波形特征(频谱)。
7、惠更斯原理(1690)也叫波前原理,说明波向前传播的规律。
在弹性介质中,任意时刻波前面上的每一点,都可看作是一个新的波源(子波)而产生二次扰动,新波前的位置可认为是该时刻各子波波前的包络.惠更斯原理只给出了波传播的空间位置,而不能给出波传播的物理状态。
菲涅尔(1814)对惠更斯原理进行了补充:波在传播时,任意点处的振动,相当于上一时刻波前面上全部新震源产生的子波在该点处相互干涉的合成波。
8、视速度定理地震波的传播是沿射线方向进行的,而观测地震波是沿测线方向进行的,其方向和射线方向不一致.波前沿测线传播的速度不是真速度V ,而是视速度*V 。
αsin //=∆∆=∆∆∆∆=*x s t x t s VV βαcos sin V V V ==* 式中 α——射线与地面法线的夹角,称入射角;β-—波前与地面法线的夹角,称出射角.图1—13 视速度定理结论:(1) 当α=90˚时,即波沿测线方向传播,V V =*。
论地震波速度在地震勘探中的应用论地震波速度在地震勘探中的应用论文提要地震勘探是地球物理勘探中的一种重要的方法,始于19世纪中叶,近五十年来经历了光点记录、模拟磁带记录、数字磁带记录三个阶段,广泛的应用于石油和天然气资源勘查、煤田勘查、工程地质勘查、及某些金属矿的勘查等方面。
地震勘探利用地震波在不同的岩石中的传播速度不同,研究地下的地质构造,判断油气藏等的可能储藏位置。
在这个过程中,地震波速度是一个重要的参数,根据不同的实际情况,可将地震波速度分为均一速度、层速度、等效速度、叠加速度、均方根速度等具有不同意义的速度,可谓是贯穿整个地震资料处理的过程。
正确的应用各种速度可以使所得资料更准确,更接近地下实际形态。
正文一、地震勘探发展史地震勘探是地球物理勘探中的一种最重要的方法。
它的原理是由人工制造的强烈的震动(一般是在地下不深处的爆炸)所引起的弹性波在岩石中的传播时,常遇到岩层的分界面,便产生反射波或折射波,在它返回地面时用高度灵敏的仪器记录下来,根据波的传播路线和时间,确定发生反射波或折射波的岩层介面的埋藏深度和形状,认识地下地质构造,以寻找油气圈闭。
地震勘探始于19世纪中叶。
1845年,R.马利特曾用人工激发的地震波来测量弹性波在地壳中的传播速度。
这可以说是地震勘探方法的萌芽。
在第一次世界大战期间,交战双方都曾利用重炮后坐力产生的地震波来确定对方的炮位。
反射法地震勘探最早起源于1913年前后R.费森登的工作,但当时的技术尚未达到能够实际应用的水平。
1921年,J.C.卡彻将反射法勘探投入实际应用,在美国俄克拉何马州首次记录到人工地震产生的清晰的反射波。
1930年,通过反射法地震勘探工作,在该地区发现了3个油田。
从此,反射法进入了工业应用的阶段。
50-60年代,反射法的光点照相记录方式被模拟磁带记录方式所代替,从而可选用不同因素进行多次回放,提高了记录质量。
70年代,模拟磁带记录又为数字磁带记录所取代,形成了以高速数字计算机为基础的数字记录、多次覆盖技术、地震数据处理技术相互结合的完整技术系统,大大提高了记录精度和解决地质的能力。
地震波速度资料的解释论文提要地震波速度是地震勘探中最重要的一个参数,是地震波运动学特征之一。
在资料处理和解释过程中,速度资料均十分重要。
例如在计算动校正时需要叠加速度,绘制构造图进行时深转换时需要平均速度。
近年来,速度资料在地震解释中应用得越来越广泛,概括起来有以下几方面:(1)进行时深转换、绘制深度剖面和构造图。
(2)根据速度资料识别波的性质,如多次波、绕射波和声波等。
(3)利用速度资料制作合成地震记录和理论地震模型,对地震记录作模拟解释。
(4)利用速度纵横向变化规律,研究地层沉积特征和相态展布。
(5)利用层速度资料,预测岩性分布和砂泥岩横向变化。
(6)利用速度资料计算反射系数图板,进行烃类检测,判别含气亮点。
(7)利用合成声波测井,进行砂体横向追踪和对比。
(8)利用速度资料预测地层异常压力。
由此可见,提取和分析速度资料是地震地质解释的一项重要的工作,熟悉各种有关的速度概念、速度资料的求取方法和影响速度的各种地质因素对于应用速度资料解决地质问题是很重要的。
正文一、理论研究和实际资料证实,地震波在岩层中的传播速度与岩层的性质、岩石的成分、密度、埋藏深度、地质时代、孔隙度、流体性质等因素有关,下面分别分析各种因素对速度的影响。
(一)影响速度的一般因素1.岩性由于各种岩石类型的成分不同,其传播地震波的速度是不同的(图5—1);有时即使是同一种岩石类型,由于结构不同其波速也在一定围变化。
地震波传播速度主要取决于构成这些岩石矿物的弹性性质,一般来说,火成岩孔隙很少或没有孔隙,地震波速度比变质岩和沉积岩的都高,且变化围小;变质岩的波速变化围较大,沉积岩波速最低,变化围大,这主要与沉积岩成分和结构复杂,受孔隙度和流体性质的影响较大有关。
表(5—1)是几种类型岩石与介质的波传播速度和波阻抗资料。
2.密度通过大量岩石样品物性研究和数据分析整理,发现地震波速度与岩石体积密度之间(图5—1(a)、(b)),存在着一种令人满意的近似关系。