专题10 解析几何小题问题之一角度-备战2020年高考数学二轮痛点突破专项归纳与提高(解析版)
- 格式:docx
- 大小:1.23 MB
- 文档页数:20
解答题(1)解析几何2020年高考对解析几何的考查主要包括以下内容:直线与圆的方程、圆锥曲线等,在高考试卷中一般有1~2个客观题和1个解答题,其中客观题主要考查直线斜率、直线方程、圆的方程、直线与圆的位置关系、圆锥曲线的定义应用、标准方程的求解、离心率的计算等,而解答题则主要考查直线与椭圆、抛物线等的位置关系问题,经常与平面向量、函数与不等式交汇等,考查一些存在性问题、证明问题、定点与定值、最值与范围问题等,解析几何试题的特点是思维量大、运算量大,所以应加强对解析几何重点题型的训练。
问题设置的方向为:(1)以椭圆为入口,求标准方程;(2)几何性质;(3)范围或最值性问题。
解题的策略有:1、注意直线倾斜角范围 、设直线方程时注意斜率是否存在,可以设成 ,包含斜率不存在情况,但不包含斜率为0情况。
注意截距为0的情况;注意点关于直线对称问题(光线的反射问题);注意证明曲线过定点方法(两种方法:特殊化、分离变量)2、注意二元二次方程表示圆的充要条件、善于利用切割线定理、相交弦定理、垂径定理等平面中圆的有关定理解题;注意将圆上动点到定点、定直线的距离的最值转化为圆心到它们的距离;注意圆的内接四边形的一些性质以及正弦定理、余弦定理。
以过某点的线段为弦的面积最小的圆是以线段为直径,而面积最大时,是以该点为线段中点。
3、注意圆与椭圆、三角、向量(注意利用加减法转化、利用模与夹角转化、然后考虑坐标化)结合;4、注意构建平面上的三点模型求最值,一般涉及“和”的问题有最小值,“差”的问题有最大值,只有当三点共线时才取得最值;5、熟练掌握求椭圆方程、双曲线方程、抛物线方程的方法:待定系数法或定义法,注意焦点位置的讨论,注意双曲线的渐近线方程:焦点在 轴上时为 ,焦点在 轴上时为 ;注意化抛物线方程为标准形式(即2p 、p 、 的关系);注意利用比例思想,减少变量,不知道焦点位置时,可设椭圆方程为 。
6、熟练利用圆锥曲线的第一、第二定义解题; 熟练掌握求离心率的题型与方法,特别提醒在求圆锥曲线方程或离心率的问题时注意利用比例思想方法,减少变量。
2020届高考数学专题复习《解析几何典例剖析及备考策略》近几年解析几何的试题,小题难度有所增加,解答题在难度、计算的复杂程度等方面都有所下降(特别是2018年开始理科解析几何大题位置的前移导致难度下降更为明显),但突出对解析几何基本思想和基本方法的考查,重点要掌握解析几何的一些基本方法来解决问题,解析几何中解题的基本方法有解析法、待定系数法、变换法、参数法等方法。
在复习时应做到牢固掌握圆锥曲线定义;重视基础知识,基本题型的训练;注意课本典型例题、习题的延伸,教材中的例题、习题虽然大多比较容易,但其解法往往具有示范性,可延伸性,适当地编拟题组进行复习训练,有利于系统地掌握知识,融会贯通;注意转化条件,优化解题方法。
解析几何中有一些基本问题,如两直线垂直的证明、求弦的中点、弦长的计算等等,对这些问题的处理方法要做到熟知。
但有不少题目,所给的条件无法直接使用,或者使用起来比较困难,此时,可考虑对条件进行适当的转化,使解题过程纳入到学生所熟悉的轨道。
强化数学思想方法的训练和运用,譬如:函数与方程思想,解析几何的研究对象和方法决定了它与函数、方程的“不解之缘”,很多解析几何问题实际上就是建立方程后研究方程的解或建立函数后研究函数的性质。
又如:分类讨论思想 ,解析几何中,有些公式,性质是有适用条件的,解题时必须注意分类讨论、区别处理。
例如直线方程的点斜式、斜截式中斜率必须存在,截距式只适用在两轴上的截距存在且不为零的情况,两点式不适用于与坐标轴垂直的直线。
再如:数形结合思想 ,解析几何的本质就是将“数”与“形”有机地联系起来,曲线的几何特征必然在方程、函数或不等式中有所反映,而函数、方程或不等式的数字特征也一定体现出曲线的特性。
总之,解析几何题综合性强、应用面广,有些题目对运算求解能力要求高、有些题目对推理论证能力要求高,所以在高三复习中,要在狠抓落实上下功夫,既要注重基础,又要有所创新提高,既要注重通性通法,又要注意技巧锻炼,要做到灵活多变,培养学生养成良好的学习习惯,自觉地运用数学思想方法进行分析、推理、运算,指导同学的复习,提高效率。
数学新高考二卷解析几何题答题技巧数学新高考二卷解析几何题答题技巧引言在数学新高考二卷中,解析几何题占据了相当的比重。
解析几何作为数学的重要分支和应用工具,在高考中占据了相当的重要性。
本文将介绍一些针对解析几何题的答题技巧,帮助考生高效解题。
技巧一:熟悉基本公式和定理•需要熟练掌握点、线、面之间的距离公式和斜率公式,这是解析几何题解答的基础。
•熟悉三角形、四边形等图形的周长和面积公式,能够快速运用并进行变形。
技巧二:画图解题•解析几何题通常需要通过画图来帮助理解和分析。
画图可以更直观地看出问题中的条件和求解思路。
•细心观察图形中给出的线段、角度等信息,合理选择参考点和坐标系,有助于简化计算。
技巧三:几何性质的灵活运用•利用几何性质来解析几何题是解题的关键。
比如利用垂直角、对称性、相似三角形、共线等性质来辅助求解。
•注意总结并熟悉一些常见的几何性质和定理,如垂心、重心、外心等,能够快速应用于解题过程中。
技巧四:建立方程求解•对于一些解析几何题目,可以通过建立方程解决问题。
这要求我们善于将几何条件转化为方程,并利用方程进行进一步的推导。
•熟悉直线、圆等几何图形的方程表达式,并掌握解方程的方法,能够帮助快速解决相关问题。
技巧五:几何题与代数题互相转化•高考数学考题中的解析几何与代数题经常有联系,可以通过将几何问题转化为代数问题或者将代数问题图像化的方式来解决。
•将几何问题转化为代数问题可以通过引入变量、利用直线的斜率等方式进行,能够帮助快速解决相关问题。
结论解析几何作为数学的一部分,在高考中占有重要地位。
熟悉基本公式和定理,善于画图、灵活运用几何性质,掌握建立方程和几何与代数互相转化的技巧,将会有助于考生在解析几何题上取得更好的成绩。
通过不断练习和积累,相信考生们能够更加熟练地运用这些技巧,提高解题效率。
技巧六:分类讨论•在解析几何题中,有时候问题较为复杂,无法直接得到结论。
这时候可以采用分类讨论的方法,将问题进行分情况讨论,找到每种情况下的解决方法。
解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用. 【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1.0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算. 【考查题型】选择,填空,解答题【限时检测】(建议用时:55分钟)1.(2019·福建三明一中高三月考)已知1F ,2F 为椭圆2222:1,(0)x y C a b a b+=>>的左、右焦点,过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A ,若12AF AF ⊥,122F AF S ∆=,则椭圆C 的方程是( )A .22184x y +=B .22182x y +=C .22162x y +=D .22164x y +=【答案】C 【解析】 【分析】先由题意,不妨设点(),A x y 位于第一象限,根据12AF AF ⊥,得到1212==OA F F c ,根据OA 与x 轴正方向的夹角为30︒,得到1,2⎫⎪⎪⎝⎭A c ,从而由122F AF S ∆=求出2c =,)A,得到22311a b+=,224a b -=,联立,即可求出结果. 【详解】因为过原点O 且倾斜角为30︒的直线l 与椭圆C 的一个交点为A , 不妨设点(),A x y 位于第一象限,因为12AF AF ⊥,所以12AF F ∆为直角三角形,因此1212==OA F F c ; 又OA 与x 轴正方向的夹角为30︒,所以3cos302==x OA c ,1sin 302==y OA c ,即1,22⎛⎫ ⎪ ⎪⎝⎭A c c ;所以12112222F AF S c c ∆=⋅⋅=,解得:2c =,所以)A ;因此22311a b+=①, 又2224a b c -==②,由①②解得:2262a b ⎧=⎨=⎩,因此所求椭圆方程为22162x y +=.故选:C【名师点睛】本题主要考查求椭圆的标准方程,熟记椭圆的标准方程,以及椭圆的简单性 质即可,属于常考题型.2.(2019·贵州高三月考(理))已知抛物线2:4C y x =的焦点为F ,Q 为抛物线上一点,连接PF 并延长交抛物线的准线于点P ,且点P |2||=PQ QF ,则直线PF 的方程为( )A 0y -=B 0y +C 0y -=0y +D .10x -= 【答案】D【解析】根据P 的纵坐标为负数,判断出直线PF 斜率大于零,设直线PF 的倾斜角为θ,根据抛物线的定义,求得cos θ的值,进而求得θ,从而求得tan θ也即直线PF 的斜率,利用点斜式求得直线PF 的方程. 【详解】由于P 的纵坐标为负数,所以直线PF 斜率大于零,由此排除B,C 选项.设直线PF 的倾斜角为θ.作出抛物线24y x =和准线1x =-的图像如下图所示.作QA PA ⊥,交准线1x =-于A 点.根据抛物线的定义可知QF QA =,且QFx AQP θ∠=∠=.依题意|2||=PQ QF ,故在直角三角形PQA 中cos QA QF PQ PQ θ===π6θ=,故直线PF 的斜率为πtan6=,所以直线PF 的方程为)01y x -=-,化简得10x -=.故选:D.。
2020年高考解析几何大招题型梳理(学生版)目录第1课面积问题 (2)第2课中点弦问题 (4)第3课圆锥曲线的垂直问题 (6)第4课定值问题 (8)第5课定点问题 (10)第6课对称问题 (13)第7课三点共线问题 (15)第8课切线问题 (18)第9课最值或取值范围问题 (21)第10课圆锥曲线中的探究问题 (24)第1课 面积问题基本方法:方法一:直线与圆锥曲线的位置关系常涉及圆锥曲线的性质和直线的基本知识,圆锥曲线中的面积问题经常会涉及到弦长公式和点到直线的距离公式.弦长公式:12AB x -=12y y =-=;点到直线距离公式d =.此时1||2S d AB =. 方法二:如图,当已知直线与坐标轴的交点时,也可用121||||2AOB S OM y y =⋅-V 求其面积.一、典型例题1. 已知抛物线2:4C y x =的焦点为F ,过点F 的直线l 与抛物线C 交于,A B 两点,O 为坐标原点,若3AF =,求AOB ∆的面积.2. 已知椭圆22:143x y C +=,设,,A B P 三点均在椭圆C 上,O 为坐标原点, OP OA OB =+u u u r u u u r u u u r ,求四边形OAPB 的面积.x二、课堂练习1. 已知抛物线24y x =,过点()2,0M 的直线l 交抛物线于,A B 两点,若ABO ∆的面积为,求直线l 的方程.2. 已知椭圆22:14x C y +=过点()1,0D 作直线l 与C 交于P ,Q 两点,A 为椭圆的右顶点,连接直线PA ,QA 分别与直线3x =交于M ,N 两点.若APQ V 和AMN V的面积相等,求直线l 的方程.三、课后作业1. 已知抛物线2:4C y x =,若O 为坐标原点,F 是C 的焦点,过点F 且倾斜角为45o 的直线l 交C 于A ,B 两点,求AOB ∆的面积.2. 已知椭圆22:14x E y +=,过点()1,0P 的直线l 交E 于M ,N 两点,O 为坐标原点,MON ∆,求直线l 的方程.3. 已知椭圆22:143x y C +=,过原点O 的两条直线EG ,FH ,交椭圆C 于E ,G ,F ,H 四点,若3·4EG FH k k =-,求四边形EFGH 的面积.第2课 中点弦问题基本方法:直线与圆锥曲线的位置关系常涉及圆锥曲线的性质和直线的基本知识,中点弦问题主要涉及点差法和中点坐标公式. 常用到的公式:中点坐标公式1202x x x +=. 涉及到中点和斜率问题,也可以考虑设而不求法,利用点差法求解.一、典型例题1. 已知抛物线2:2E x y =的焦点为F ,,A B 是E 上两点,且AF BF m +=.若线段AB 的垂直平分线与y 轴仅有一个公共点()0,2C ,求m 的值.2. 已知椭圆2222:1(0)x y C a b a b+=>>的一个顶点为()0,1B ,半焦距为c ,离心率e ,又直线():0l y kx m k =+≠交椭圆于()11,M x y ,()22,N x y 两点.(1)求椭圆C 的标准方程;(2)若1,1k m ==-,求弦MN 的长;(3)若点11,2Q ⎛⎫ ⎪⎝⎭恰好平分弦MN ,求实数,k m .x二、课堂练习1. 已知()(2,0),2,0A B -,斜率为k 的直l 上存在不同的两点,M N 满足MA MB -=,NA NB -=且线段MN 的中点为()6,1,求直线的斜率k .2. 已知椭圆22:14x C y +=,直线l 与椭圆C 交于,A B 两点,线段AB 的垂直平分线交y 轴于点30,2P ⎛⎫ ⎪⎝⎭,且AB =l 的方程.三、课后作业1. 已知椭圆22:1164x y C +=,过点()2,1P 作直线l 与该椭圆相交于,A B 两点,若线段AB 恰被点P 所平分,求直线l 的方程.2. 已知抛物线26y x =,过点()2,1P 引一条弦12P P 使它恰好被点P 平分,求这条弦所在的直线方程及12P P .3. 已知椭圆22:12x E y +=,设直线:(0)l y x m m =+<与椭圆E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于点T ,当点T 到直线l 时,求直线l 方程和线段AB 长.第3课 圆锥曲线的垂直问题基本方法:垂直转化为向量的数量积为零;联立方程,韦达定理;代入化简.一、典型例题1. 已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于,A B 两点,圆M 是以线段AB 为直径的圆.证明:坐标原点O 在圆M 上.2. 过圆222:3E x y +=上任意一点P 作圆的切线l 与椭圆22:12x C y +=交于,A B 两点,O 为坐标原点,求AOB ∠.二、课堂练习1. 已知直线l 是抛物线24x y =的准线,点M 在直线l 上运动,过点M 做抛物线C 的两条切线,切点分别为12,P P ,在平面内找一点N ,使得12MN PP⊥恒成立.2. 已知椭圆2222:1(0)x y C a b a b +=>>的焦距为,且C 过点12⎫⎪⎭. (1)求椭圆C 的方程;(2)设12,B B 分别是椭圆C 的下顶点和上顶点,P 是椭圆上异于12,B B 的任意一点,过点P 作PM y ⊥轴于M ,N 为线段PM 的中点,直线2B N 与直线1y =-交于点D ,E 为线段1B D 的中点,O 为坐标原点,求证:.ON EN ⊥三、课后作业1. 已知抛物线28y x =,直线8y x =-与抛物线交于,A B 两点,O 为坐标原点. 求证:OA OB ⊥.2. 动直线:l y kx m =+是圆2283x y +=的切线,且与椭圆22:184x y C +=交于,P Q 两点,求证OP OQ ⊥.3. 已知()2,0A -,()2,0B ,点C 是动点,且直线AC 和直线BC 的斜率之积为34-. (1)求动点C 的轨迹方程;(2)设直线l 与(1)中轨迹相切于点P ,与直线4x =相交于点Q ,且()1,0F ,求证:90PFQ ∠=o .第4课 定值问题基本方法:1. 求解定点和定值问题的思路是一致的,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数无关,定值问题是证明求解的量与参数无关.2.在解析几何中,有些几何量,如斜率、距离、面积、比值等基本量和动点坐标或动线中的参变量无关,这类问题统称为定值问题.3.探索圆锥曲线的定值问题常见方法有两种:① 从特殊入手,先根据特殊位置和数值求出定值,再证明这个值与变量无关;② 直接推理、计算,并在计算推理的过程中消去变量,从而得到定值.解答的关键是认真审题,理清问题与题设的关系,建立合理的方程或函数,利用等量关系统一变量,最后消元得出定值.一、典型例题1. 在平面直角坐标系xOy 中,22:1168x y E +=. 过点()4,0A -作直线l 交E 于点P ,交y 轴于点Q ,过O 作直线l l 'P ,l '交E 于点R .试判断2||AQ AP OR ⋅是否为定值?若是,求出其定值;若不是,请说明理由.2. 已知抛物线2:8E x y =,直线AB 与曲线E 交于不同两点()()1122,,,A x y B x y ,且2211x x m -=+(m 为常数),直线l '与AB 平行,且与曲线E 相切,切点为C ,试问ABC ∆的面积是否为定值.若为定值,求出ABC ∆的面积;若不是定值,说明理由.二、课堂练习1. 设抛物线2:2(0)C y px p =>的焦点为F ,准线为l .已知点A 在抛物线C 上,点B 在l 上, ABF ∆是边长为4的等边三角形.(1)求p 的值;(2)在x 轴上是否存在一点N ,当过点N 的直线l '与抛物线C 交于Q ,R 两点时,2211||||NQ NR +为定值?若存在,求出点N 的坐标,若不存在,请说明理由.2. 已知点31,2P ⎛⎫ ⎪⎝⎭,椭圆22:143x y C +=上不与P 点重合的两点D ,E 关于原点O 对称,若直线PD ,PE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被直线32y =截得的弦长是定值.三、课后作业 1. 已知椭圆C :22184x y +=,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M . 证明:直线OM 的斜率与直线l 的斜率的乘积为定值.2. 已知椭圆22:12x C y +=,若直线l :2y kx =+与椭圆C 相交于A ,B 两点,在y 轴上是否存在点D ,使直线AD 与BD 的斜率之和AD BD k k +为定值?若存在,求出点D 坐标及该定值,若不存在,试说明理由.3. 已知椭圆22:143x y C +=的右焦点为F ,过点F 的直线交椭圆C 于,A B 两点,交直线:4l x =于点P ,若1PA AF λ=,2PB BF λ=,求证:12λλ-为定值.第5课 定点问题基本方法:1. 求解定点和定值问题的思路是一致的,定点问题是求解的一个点(或几个点)的坐标,使得方程的成立与参数无关,定值问题是证明求解的量与参数无关.2. 直线过定点的解题策略一般有以下几种:(1)如果题设条件没有给出这个定点,那么,我们可以这样思考:由于这个定点对符合要求的一些特殊情况必然成立,那么我们根据特殊情况先找到这个定点,再证明这个点与变量无关.(2)直接推理、计算,找出参数之间的关系,并在计算过程中消去部分参数,将直线方程化为点斜式方程,从而得到定点. (3)若直线方程含多个参数并给出或能求出参数满足的方程,观察直线方程特征与参数方程满足的方程的特征,即可找出直线所过定点坐标,并代入直线方程进行检验.注意到繁难的代数运算是此类问题的特点,设而不求方法、整体思想和消元的思想的运用可有效地简化运算.3. 对于直线过定点,有以下常用结论:若直线l :y kx m =+(其中m 为常数),则直线l 必过定点()0,m ;若直线l :y kx nk =+(其中n 为常数),则直线l 必过定点(),0n -;若直线l :y kx nk b =++(其中,n b 为常数),则直线l 必过定点(),n b -;若直线l :x ty m =+(其中m 为常数),则直线l 必过定点(),0m ;若直线l :x ty nt =+(其中n 为常数),则直线l 必过定点()0,n -;若直线l :x ty nt b =++(其中,n b 为常数),则直线l 必过定点(),b n -.一、典型例题1. 已知椭圆C :22221x y a b +=()0a b >>,四点()11,1P ,()20,1P ,3P ⎛- ⎝⎭,4P ⎛ ⎝⎭中恰有三点在椭圆C 上.(1)求C 的方程;(2)设直线l 不经过2P 点且与C 相交于A 、B 两点,若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.2. 已知椭圆C :22142x y +=,如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P ,Q 两点,直线P A ,QA 分别与y 轴交于M ,N 两点,试问以MN 为直径的圆是否经过定点?请证明结论.二、课堂练习1. 已知抛物线()2:20C x py p =>过点()2,1,直线l 过点()0,1P -与抛物线C 交于A ,B 两点.点A 关于y 轴的对称点为A ',连接A B '. 问直线A B '是否过定点?若是,求出定点坐标;若不是,请说明理由.x2. 已知椭圆C :22142x y +=,过点()1,0做两条相互垂直的直线1l 、2l 分别与椭圆C 交于P 、Q 、M 、N 四点. 若MS SN =u u u r u u u r ,PT TQ =u u u r u u u r ,证明直线ST 是否过定点.三、课后作业1. 已知抛物线24y x Γ=:,过点()12,8P 的两条直线1l 、2l 分别交抛物线Γ于点C 、D 和E 、F ,线段CD 和EF 的中点分别为M 、N .如果直线1l 与2l 的倾斜角互余,求证:直线MN 经过一定点.2. 已知椭圆2212x y +=,直线l 不经过点A (0,1),且与椭圆交于M ,N 两点,若以MN 为直径的圆经过点A ,求证:直线l 过定点,并求出该定点的坐标.3. 已知过抛物线2:2(0)C y px p =>的焦点F ,()()112212,,,()A x y B x y x x <两点,且6AB =.(1)求该抛物线C 的方程;(2)已知抛物线上一点(),4M t ,过点M 作抛物线的两条弦MD 和ME ,且MD ME ⊥,判断直线DE 是否过定点?并说明理由.第6课 对称问题基本方法:对称问题是解析几何中的一个重要问题,主要类型有:1. 点关于点成中心对称问题(即线段中点坐标公式的应用问题)设点()000,P x y ,对称中心为(),A a b ,则点()000,P x y 关于(),A a b 的对称点为()002,2P a x b y '--.2. 点关于直线成轴对称问题由轴对称定义可知,对称轴即为两对称点连线的垂直平分线,利用“垂直”“平分”这两个条件建立方程,就可以求出对称点的坐标,一般情形如下:设点()000,P x y 关于直线y kx b =+的对称点为(),P x y ''',则有0000122y y k x x y y x x k b '-⎧⋅=-⎪'-⎪⎨''++⎪=⋅+⎪⎩,可求得(),P x y '''.特殊情形:①点()000,P x y 关于直线x a =对称的点为()002,P a x y '-;②点()000,P x y 关于直线y b =对称的点为()00,2P x b y '-;③若对称轴的斜率为1±,则可把()000,P x y 直接代入对称轴方程求得对称点P '的坐标.一、典型例题1.已知椭圆C :2214x y +=,A 为椭圆左顶点,设椭圆C 上不与A 点重合的两点D ,E 关于原点O 对称,直线AD ,AE 分别交y 轴于M ,N 两点.求证:以MN 为直径的圆被x 轴截得的弦长是定值.2.已知椭圆22143x y +=与直线y kx m =+相交于不同的两点,M N ,如果存在过点10,2P ⎛⎫- ⎪⎝⎭的直线l ,使得点M N ,关于l 对称,求实数m 的取值范围.二、课堂练习1.已知椭圆22184x y +=,上顶点为,P O 为坐标原点,设线段PO 的中点为M ,经过M 的直线l 与椭圆交于,A B 两点,()3,0C -,若点A 关于x 轴的对称点在直线BC 上,求直线l 方程.2.已知椭圆22:194x y C +=. 点P 为圆22:13M x y +=上任意一点,O 为坐标原点.设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,证明:直线PB 与椭圆C 相切.三、课后作业1.已知椭圆:Γ221106x y +=.ABC ∆的顶点都在椭圆Γ上,其中,A B 关于原点对称,试问ABC ∆能否为正三角形?并说明理由.2.已知椭圆2212y x +=,记椭圆的右顶点为C ,点(),D m n (0n ≠)在椭圆上,直线CD 交y 轴于点M ,点E 与点D 关于y 轴对称,直线CE 交y 轴于点N .问:x 轴上是否存在点Q ,使得OQM ONQ ∠=∠(O 为坐标原点)?若存在,求点Q坐标;若不存在,说明理由.3.已知椭圆22413yx+=,右顶点为A,设直线l:1x=-上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D. 若APDV AP的方程.第7课三点共线问题基本方法:三点共线问题解题策略一般有以下几种:①斜率法:若过任意两点的直线的斜率都存在,通过计算证明过任意两点的直线的斜率相等证明三点共线;②距离法:计算出任意两点间的距离,若某两点间的距离等于另外两个距离之和,则这三点共线;③向量法:利用向量共线定理证明三点共线;④直线方程法:求出过其中两点的直线方程,再证明第三点也在该直线上;⑤点到直线的距离法:求出过其中某两点的直线方程,计算出第三点到该直线的距离,若距离为0,则三点共线.⑥面积法:通过计算求出以这三点为三角形的面积,若面积为0,则三点共线.在处理三点共线问题时,离不开解析几何的重要思想:“设而不求思想”.一、典型例题1.已知椭圆22:12xC y+=,41,33M⎛⎫⎪⎝⎭为椭圆上一点,若,R S是椭圆C上的两个点,线段RS的中垂线l的斜率为12且直线l与RS交于点P,O为坐标原点,求证:,,P O M三点共线.2.已知椭圆的焦点在x轴上,它的一个顶点恰好是抛物线24x y=的焦点,离心率e=.过椭圆的右焦点F 作与坐标轴不垂直的直线l,交椭圆于A、B两点.(1)求椭圆的标准方程;(2)设点(,0)M m 是线段OF 上的一个动点,且()MA MB AB +⊥u u u r u u u r u u u r ,求m 的取值范围;(3)设点C 是点A 关于x 轴的对称点,在x 轴上是否存在一个定点N ,使得C 、B 、N 三点共线?若存在,求出定点N 的坐标,若不存在,请说明理由.二、课堂练习1.抛物线2:4C y x =,已知斜率为k 的直线l 交y 轴于点P ,且与曲线C 相切于点A ,点B 在曲线C 上,且直线PB x P 轴,P 关于点B 的对称点为Q ,判断点,,A Q O 是否共线,并说明理由.2.已知椭圆22143x y +=,点F 是椭圆的右焦点. 是否在x 轴上存在定点D ,使得过D 的直线l 交椭圆于,A B 两点.设点E 为点B 关于x 轴的对称点,且,,A F E 三点共线?若存在,求D 点坐标;若不存在,说明理由.三、课后作业1. 已知抛物线2:4C y x =的焦点为F ,直线l 过点()1,0-,直线l 与抛物线C 相交于,A B 两点,点A 关于x 轴的对称点为D . 证明:,,B F D 三点共线.2.已知椭圆:E 22162x y +=,其右焦点为F ,过x 轴上一点()3,0A 作直线l 与椭圆E 相交于,P Q 两点,设(1)AP AQ λλ=>u u u r u u u r ,过点P 且平行于y 轴的直线与椭圆E 相交于另一点M ,试问,,M F Q 是否共线,若共线请证明;反之说明理由.3.已知椭圆22:132x y E +=,过定点()3,4P -且斜率为k 的直线交椭圆E 于不同的两点,M N ,在线段MN 上取异于,M N 的点H ,满足PM MH PN NH =,证明:点H 恒在一条直线上,并求出这条直线的方程.第8课 切线问题基本方法:圆锥曲线的切线问题有两种处理思路:思路1,导数法,将圆锥曲线方程化为函数)(x f y =,利用导数法求出函数)(x f y =在点00(,)x y 处的切线方程,特别是焦点在y 轴上常用此法求切线;思路2,根据题中条件设出切线方程,将切线方程代入圆锥切线方程,化为关于x (或y )的一元二次方程,利用切线与圆锥曲线相切的充要条件为判别式0=∆,即可解出切线方程,注意关于x (或y )的一元二次方程的二次项系数不为0这一条件.圆锥曲线的切线问题要根据曲线不同,选择不同的方法.一、典型例题1.已知椭圆C :221(0)42x y a b +=>>上顶点为D ,右焦点为F ,过右顶点A 作直线l DF P ,且与y 轴交于点()0,P t ,又在直线y t =和椭圆C 上分别取点Q 和点E ,满足OQ OE ⊥(O 为坐标原点),连接EQ .(1)求t 的值,并证明直线AP 与圆222x y +=相切;(2)判断直线EQ 与圆222x y +=是否相切?若相切,请证明;若不相切,请说明理由.x2. 已知椭圆221:143x y C +=,在椭圆1C 上是否存在这样的点P ,过点P 引抛物线22:4C x y =的两条切线12,l l ,切点分别为,B C ,且直线BC 过点()1,1A ?若存在,指出这样的点P 有几个(不必求出点的坐标);若不存在,请说明理由.二、课堂练习1.已知椭圆22:194x y C +=. 点P 为圆22:13M x y +=上任意一点,O 为坐标原点.设直线l 经过点P 且与椭圆C 相切,l 与圆M 相交于另一点A ,点A 关于原点O 的对称点为B ,证明:直线PB 与椭圆C 相切.2.已知椭圆22221(0)x y a b a b+=>>与抛物线22(0)y px p =>共焦点2F ,抛物线上的点M 到y 轴的距离等于21MF -,且椭圆与抛物线的交点Q 满足252QF =. (1)求抛物线的方程和椭圆的方程;(2)过抛物线上的点P 作抛物线的切线y kx m =+交椭圆于A 、B 两点,求此切线在x 轴上的截距的取值范围.三、课后作业1.已知椭圆22:162x y C +=,点()3,0A ,P 是椭圆C 上的动点. 若直线AP 与椭圆C 相切,求点P 的坐标.2.对任意的椭圆()222210x y a b a b+=>>,有如下性质:若点()00,x y 是椭圆上的点,则椭圆在该点处的切线方程为00221x x y y a b+=.利用此结论解答下列问题.已知椭圆22143x y +=,若动点P 在直线3x y +=上,经过点P 的直线m ,n 与椭圆C 相切,切点分别为M ,N .求证:直线MN 必经过一定点.3.已知抛物线2:2E x y =,O 为坐标原点,设T 是E 上横坐标为2的点,OT 的平行线l 交于E 于A ,B 两点,交E 在T 处的切线于点N . 求证:25||2NT NA NB =⋅.第9课 最值或取值范围问题基本方法:最值或取值范围问题解题策略一般有以下几种:(1)几何法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用图形性质求解.(2)代数法:在利用代数法解决范围问题时常从以下五个方面考虑:①利用判别式来构造不等关系,从而确定参数(自变量)的取值范围;②利用已知参数(自变量)的范围,求新参数(新自变量)的范围,解这类问题的核心是在两个参数(自变量)之间建立等量关系;③利用隐含或已知的不等关系建立不等式,从而求出参数(自变量)的取值范围;④利用基本不等式求出参数(自变量)的取值范围;⑤利用函数的值域的求法,如导数法等,确定参数(自变量)的取值范围.最值或取值范围问题,是解析几何中的一类常见问题,解决这类问题的关键是构造含参数(自变量)的不等式,通过解不等式求出其范围,韦达定理、曲线与方程的关系等在构造不等式中起着重要作用.一、典型例题1. 已知抛物线2y x =和C e :()2211x y ++=,过抛物线上的一点()()000,1P x y y ≥,作C e 的两条切线,与y 轴分别相交于A ,B 两点.求ABP ∆面积的最小值.x2. 已知椭圆:C 2214y x +=,过点()0,3M 的直线l 与椭圆C 相交于不同的两点A ,B . 设P 为椭圆上一点,且OA OB OP λ+=u u u v u u u v u u u v (O 为坐标原点).求当AB <λ的取值范围.二、课堂练习1. 已知椭圆C :2214x y +=,过点()4,0M 的直线l 交椭圆于A ,B 两个不同的点,且MA MB λ=⋅,求λ的取值范围.2. 已知A ,B 为椭圆Γ:22142x y +=的左,右顶点,若点()()000,0P x y y ≠为直线4x =上的任意一点,PA ,PB 交椭圆Γ于C ,D 两点,求四边形ACBD 面积的最大值.三、课后作业1. 已知椭圆22:143x y C +=,过点1,02⎛⎫ ⎪⎝⎭作直线l 与椭圆C 交于点,E F (异于椭圆C 的左、右顶点),线段EF 的中点为M .点A 是椭圆C 的右顶点.求直线MA 的斜率k 的取值范围.2. 已知抛物线2:4C y x =的焦点为F ,准线为l ,过焦点F 的直线交C 于()11,A x y ,()22,B x y 两点,点B 在准线l 上的投影为E ,D 是C 上一点,且AD EF ⊥,求ABD V 面积的最小值及此时直线AD 的方程.3. 已知F 为椭圆2214x y +=的一个焦点,过点F 且不与坐标轴垂直的直线交椭圆于,A B 两点,线段AB 的垂直平分线与x 轴交于点G ,求点G 横坐标的取值范围.x第10课 圆锥曲线中的探究问题基本方法:解决直线与圆锥曲线位置关系的存在性问题,往往是先假设所求的元素存在,然后推理论证,检验说明假设是否正确.这类题型存在两类问题:一是判断位置关系,二是依据位置关系确定参数的范围. 这两类问题在解题方法上是一致的,都要将直线方程与圆锥曲线方程联立,利用判别式及根与系数的关系进行求解.一、典型例题1.已知菱形ABCD ,AB 在y 轴上且()0,1A ,C (),1t -(0t ≠,t ∈R ).(1)求D 点轨迹Γ的方程;(2)延长DA 交轨迹Γ于点M ,轨迹Γ在点M 处的切线与直线BD 交于点N ,试判断以N 为圆心,线段NA 为半径的圆与直线DA 的位置关系,并证明你的结论.2. 已知椭圆C :22198x y +=,过点()0,2P 作斜率为()0k k ≠的直线l 与椭圆C 交于两点A ,B ,试判断在x 轴上是否存在点D ,使得ADB ∆为以AB 为底边的等腰三角形.若存在,求出点D 的横坐标的取值范围,若不存在,请说明理由.x二、课堂练习1. 已知椭圆22:143x y E +=,31,2P ⎛⎫ ⎪⎝⎭,过点()1,1M 任作一条直线l ,l 与椭圆E 交于不同于点P 的A ,B 两点,l 与直线:34120m x y +-=交于C 点,记直线PA ,PB ,PC 的斜率分别为1k ,2k ,3k .试探究12k k +与3k 的关系,并证明你的结论.2. 已知椭圆C 的标准方程2214x y +=,直线l 过点(1,1),且与椭圆C 交于A ,B 两点,点M 满足AM MB =u u u u r u u u r ,点O 为坐标原点,延长线段OM 与椭圆C 交于点R ,四边形OARB 能否为平行四边形?若能,求出此时直线l 的方程,若不能,说明理由.三、课后作业1. 在直角坐标系xOy 中,曲线:C 24x y =与直线:l y kx a =+(0a >)交于M ,N 两点. 在y 轴上是否存在点P ,使得当k 变动时,总有OPM OPN ∠=∠?说明理由.2. 已知椭圆C 的标准方程2212x y +=,12,A A 是椭圆C 的长轴的两个端点(2A 位于1A 右侧),B 是椭圆在y轴正半轴上的顶点,是否存在经过点且斜率为k 的直线l 与椭圆C 交于不同两点P 和Q ,使得向量OP OQ +u u u r u u u r 与2A B u u u u r 共线?若存在,求出直线l 方程,若不存在,请说明理由.3. 已知抛物线E :24x y =,m ,n 是过点(,1)A a -且倾斜角互补的两条直线,其中m 与E 有唯一公共点B ,n 与E 相交于不同的两点C ,D .是否存在常数λ,使得2||||||AC AD AB λ⋅=?若存在,求λ的值;若不存在,说明理由.。
2020版新高考数学二轮复习小题专题:解析几何一、选择题1.(2019·福建省质量检查)已知双曲线C 的中心在坐标原点,一个焦点(5,0)到渐近线的距离等于2,则C 的渐近线方程为( )A .y =±12xB .y =±23xC .y =±32xD .y =±2x2.已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点分别为F 1、F 2,离心率为23,过F 2的直线l 交C 于A ,B 两点,若△AF 1B 的周长为12,则C 的方程为( )A.x 23+y 2=1 B.x 23+y 22=1 C.x 29+y 24=1 D.x 29+y 25=1 3.过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,则该切线的方程为( ) A .2x +y -5=0 B .2x +y -7=0 C .x -2y -5=0D .x -2y -7=04.(2019·石家庄市模拟(一))已知圆C 截两坐标轴所得的弦长相等,且圆C 过点(-1,0)和(2,3),则圆C 的半径为( )A .8B .2 2C .5D. 55.(2019·重庆市七校联合考试)两圆x 2+y 2+4x -4y =0和x 2+y 2+2x -8=0相交于两点M ,N ,则线段MN 的长为( )A.355B .4 C.655D.12556.直线l 过抛物线y 2=-2px (p >0)的焦点,且与该抛物线交于A ,B 两点,若线段AB 的长是8,AB 的中点到y 轴的距离是2,则此抛物线的方程是( )A .y 2=-12xB .y 2=-8xC .y 2=-6xD .y 2=-4x7.已知F 1,F 2分别为椭圆C :x 29+y 28=1的左、右焦点,点E 是椭圆C 上的动点,则EF 1→·EF 2→的最大值、最小值分别为( )A .9,7B .8,7C .9,8D .17,88.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为C 的焦点.若|F A |=2|FB |,则k =( )A.13B.23C.23D.2239.(2019·唐山市摸底考试)已知F 1,F 2为椭圆C :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,过原点O 且倾斜角为30°的直线l 与椭圆C 的一个交点为A ,若AF 1⊥AF 2,S △F 1AF 2=2,则椭圆C 的方程为( )A.x 26+y 22=1 B.x 28+y 24=1 C.x 28+y 22=1 D.x 220+y 216=1 10.如图,抛物线E :x 2=4y 与M :x 2+(y -1)2=16交于A ,B 两点,点P 为劣弧AB ︵上不同于A ,B 的一个动点,平行于y 轴的直线PN 交抛物线E 于点N ,则△PMN 的周长的取值范围是( )A .(6,12)B .(8,10)C .(6,10)D .(8,12)11.(多选)已知中心在原点,焦点在坐标轴上的双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0,则双曲线C 的方程可能为( )A.x 24-y 2=1 B .x 2-y 24=1C.y 24-x 2=1 D .y 2-x 24=112.(多选)已知F 1,F 2分别是双曲线C :y 2-x 2=1的上、下焦点,点P 是其一条渐近线上一点,且以线段F 1F 2为直径的圆经过点P ,则( )A .双曲线C 的渐近线方程为y =±xB .以F 1F 2为直径的圆的方程为x 2+y 2=1C .点P 的横坐标为±1D .△PF 1F 2的面积为 213.(多选)已知抛物线C :y 2=4x 的焦点为F ,准线为l ,P 为C 上一点,PQ 垂直于l 且交l 于点Q ,M ,N 分别为PQ ,PF 的中点,MN 与x 轴相交于点R ,若∠NRF =60°,则( )A .∠FQP =60°B .|QM |=1C .|FP |=4D .|FR |=4二、填空题14.已知圆C 1:x 2+(y -2)2=4,抛物线C 2:y 2=2px (p >0),C 1与C 2相交于A ,B 两点,|AB |=855,则抛物线C 2的方程为____________. 15.(2019·江西七校第一次联考)已知F 1,F 2为双曲线C :x 2-y 2=2的左、右焦点,点P 在C 上,|PF 1|=2|PF 2|,则cos ∠F 1PF 2=________.16.如图,椭圆C :x 2a 2+y 24=1(a >2),圆O :x 2+y 2=a 2+4,椭圆C的左、右焦点分别为F 1,F 2,过椭圆上一点P 和原点O 作直线l 交圆O 于M ,N 两点,若|PF 1|·|PF 2|=6,则|PM |·|PN |的值为________.17.已知椭圆M :x 2a 2+y 2b 2=1(a >b >0),双曲线N :x 2m 2-y 2n2=1.若双曲线N 的两条渐近线与椭圆M 的四个交点及椭圆M 的两个焦点恰为一个正六边形的顶点,则椭圆M 的离心率为________;双曲线N 的离心率为________.答案及解析1.解析:选D.设双曲线C 的方程为x 2a 2-y 2b 2=1(a >0,b >0),则由题意,得c = 5.双曲线C的渐近线方程为y =±b a x ,即bx ±ay =0,所以5b b 2+a 2=2,又c 2=a 2+b 2=5,所以b =2,所以a =c 2-b 2=1,所以双曲线C 的渐近线方程为y =±2x ,故选D.2.解析:选D.由椭圆的定义,知|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a ,所以△AF 1B 的周长为|AF 1|+|AF 2|+|BF 1|+|BF 2|=4a =12,所以a =3.因为椭圆的离心率e =c a =23,所以c =2,所以b 2=a 2-c 2=5,所以椭圆C 的方程为x 29+y 25=1,故选D.3.解析:选B.因为过点(3,1)作圆(x -1)2+y 2=r 2的切线有且只有一条,所以点(3,1)在圆(x -1)2+y 2=r 2上,因为圆心与切点连线的斜率k =1-03-1=12,所以切线的斜率为-2,则圆的切线方程为y -1=-2(x -3),即2x +y -7=0.故选B.4.解析:选D.通解: 设圆的标准方程为(x -a )2+(y -b )2=r 2(r >0),因为圆C 经过点(-1,0)和(2,3),所以⎩⎪⎨⎪⎧(a +1)2+b 2=r2(a -2)2+(b -3)2=r 2,所以a +b -2=0 ①,又圆C 截两坐标轴所得的弦长相等,所以|a |=|b | ②,由①②得a =b =1,所以圆C 的半径为5,故选D.优解: 因为圆C 经过点M (-1,0)和N (2,3),所以圆心C 在线段MN 的垂直平分线y =-x +2上,又圆C 截两坐标轴所得的弦长相等,所以圆心C 到两坐标的距离相等,所以圆心C 在直线y =±x 上,因为直线y =-x 和直线y =-x +2平行,所以圆心C 为直线y =x 和直线y =-x +2的交点(1,1),所以圆C 的半径为5,故选D.5.解析:选D.两圆方程相减,得直线MN 的方程为x -2y +4=0,圆x 2+y 2+2x -8=0的标准形式为(x +1)2+y 2=9,所以圆x 2+y 2+2x -8=0的圆心为(-1,0).半径为3,圆心(-1,0)到直线MN 的距离d =35,所以线段MN 的长为232-⎝⎛⎭⎫352=1255.故选D.6.解析:选B.设A (x 1,y 1),B (x 2,y 2),根据抛物线的定义可知|AB |=-(x 1+x 2)+p =8.又AB 的中点到y 轴的距离为2,所以-x 1+x 22=2,所以x 1+x 2=-4,所以p =4,所以所求抛物线的方程为y 2=-8x .故选B.7.解析:选B.由题意可知椭圆的左、右焦点坐标分别为F 1(-1,0),F 2(1,0),设E (x ,y )(-3≤x ≤3),则EF 1→=(-1-x ,-y ),EF 2→=(1-x ,-y ),所以EF 1→·EF 2→=x 2-1+y 2=x 2-1+8-89x 2=x 29+7,所以当x =0时,EF 1→·EF 2→有最小值7,当x =±3时,EF 1→·EF 2→有最大值8,故选B.8.解析:选D.设抛物线C :y 2=8x 的准线为l ,易知l :x =-2,直线y =k (x +2)恒过定点P (-2,0),如图,过A ,B 分别作AM ⊥l 于点M ,BN ⊥l 于点N ,由|F A |=2|FB |,知|AM |=2|BN |,所以点B 为线段AP 的中点,连接OB ,则|OB |=12|AF |,所以|OB |=|BF |,所以点B 的横坐标为1,因为k >0,所以点B 的坐标为(1,22),所以k =22-01-(-2)=223.故选D.9.解析:选A.因为点A 在椭圆上,所以|AF 1|+|AF 2|=2a ,对其平方,得|AF 1|2+|AF 2|2+2|AF 1||AF 2|=4a 2,又AF 1⊥AF 2,所以|AF 1|2+|AF 2|2=4c 2,则2|AF 1||AF 2|=4a 2-4c 2=4b 2,即|AF 1|·|AF 2|=2b 2,所以S △AF 1F 2=12|AF 1||AF 2|=b 2=2.又△AF 1F 2是直角三角形,∠F 1AF 2=90°,且O 为F 1F 2的中点,所以|OA |=12|F 1F 2|=c ,由已知不妨设A 点在第一象限,则∠AOF 2=30°,所以A (32c ,12c ),则S △AF 1F 2=12|F 1F 2|·12c =12c 2=2,c 2=4,故a 2=b 2+c 2=6,所以椭圆方程为x 26+y 22=1,故选A.10.解析:选B.由题意可得,抛物线E 的焦点为(0,1),圆M 的圆心为(0,1),半径为4,所以圆心M (0,1)为抛物线的焦点,故|NM |等于点N 到准线y =-1的距离,又PN ∥y 轴,故|PN |+|NM |等于点P 到准线y =-1的距离,由⎩⎪⎨⎪⎧x 2=4y x 2+(y -1)2=16,得y =3,又点P 为劣弧AB ︵上不同于A ,B 的一个动点,所以点P 到准线y =-1的距离的取值范围是(4,6),又|PM |=4,所以△PMN 的周长的取值范围是(8,10),选B.11.解析:选AD.在椭圆x 29+y 24=1中,c =9-4= 5.因为双曲线C 与椭圆x 29+y 24=1有相同的焦距,且一条渐近线方程为x -2y =0,所以可设双曲线方程为x 24-y 2=λ(λ≠0),化为标准方程为x 24λ-y 2λ=1.当λ>0时,c =λ+4λ=5,解得λ=1,所以双曲线C 的方程为x 24-y2=1;当λ<0时,c =-λ-4λ=5,解得λ=-1,所以双曲线C 的方程为y 2-x 24=1.综上,双曲线C 的方程为x 24-y 2=1或y 2-x 24=1,故选AD.12.解析:选ACD.等轴双曲线C :y 2-x 2=1的渐近线方程为y =±x ,故A 正确.由双曲线的方程可知|F 1F 2|=22,所以以F 1F 2为直径的圆的方程为x 2+y 2=2,故B 错误.点P (x 0,y 0)在圆x 2+y 2=2上,不妨设点P (x 0,y 0)在直线y =x 上,所以⎩⎪⎨⎪⎧x 20+y 20=2,y 0=x 0,解得|x 0|=1,则点P 的横坐标为±1,故C 正确.由上述分析可得△PF 1F 2的面积为12×22×1=2,故D 正确.故选ACD.13.解析:选AC.如图,连接FQ ,FM ,因为M ,N 分别为PQ ,PF 的中点,所以MN ∥FQ .又PQ ∥x 轴,∠NRF =60°,所以∠FQP =60°.由抛物线定义知,|PQ |=|PF |,所以△FQP 为等边三角形,则FM ⊥PQ ,|QM |=2,等边三角形FQP 的边长为4,|FP |=|PQ |=4,|FN |=12|PF |=2,则△FRN 为等边三角形,所以|FR |=2.故选AC.14.解析:由题意,知圆C 1与抛物线C 2的一个交点为原点,不妨记为B ,设A (m ,n ).因为|AB |=855,所以⎩⎪⎨⎪⎧m 2+n 2=855,m 2+(n -2)2=4,解得⎩⎨⎧m =85,n =165,即A ⎝⎛⎭⎫85,165.将点A 的坐标代入抛物线方程得⎝⎛⎭⎫1652=2p ×85,所以p =165,所以抛物线C 2的方程为y 2=325x . 答案:y 2=325x15.解析:化双曲线的方程为x 22-y 22=1,则a =b =2,c =2,因为|PF 1|=2|PF 2|,所以点P 在双曲线的右支上,则由双曲线的定义,知|PF 1|-|PF 2|=2a =22,解得|PF 1|=42,|PF 2|=22,根据余弦定理得cos ∠F 1PF 2=(22)2+(42)2-162×22×42=34.答案:3416.解析:由已知|PM |·|PN |=(R -|OP |)(R +|OP |)=R 2-|OP |2=a 2+4-|OP |2,|OP |2=|OP →|2=14(PF 1→+PF 2→)2=14(|PF 1→|2+|PF 2→|2+2|PF 1→||PF 2→|cos ∠F 1PF 2)=12(|PF 1→|2+|PF 2→|2)-14(|PF 1→|2+|PF 2→|2-2|PF 1→||PF 2→|cos ∠F 1PF 2)=12[(2a )2-2|PF 1||PF 2|]-14×(2c )2=a 2-2,所以|PM |·|PN |=(a 2+4)-(a 2-2)=6.答案:617.解析:如图,六边形ABF 1CDF 2为正六边形,直线OA ,OB 是双曲线的渐近线,则△AOF 2是正三角形.所以直线OA 的倾斜角为π3,所以其斜率k =|n ||m |=3,所以双曲线N 的离心率e 1=1+n 2m2=1+3=2.连接F 1A .因为正六边形的边长为c ,所以|F 1A |=3c .由椭圆定义得|F 1A |+|F 2A |=2a ,即c +3c =2a ,所以椭圆M 的离心率e 2=c a =21+3=3-1.答案:3-1 2。
备战2020高考数学二轮痛点突破专项归纳与提高专题10 解析几何小题之一 角度问题1.直线的倾斜角:在平面直角坐标系中,当直线l 与x 轴相交时,x 轴 方向与直线l 向上方向之间所成的角α叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时,规定它的倾斜角为0°,故直线的倾斜角α的取值范围为 .【答案】正,0°≤α<180°,k=tan α2.向量的夹角:已知两个非零向量a 和b ,记OA →=a ,OB →=b ,则 叫做向量a 与b 的夹角,记作 ;向量夹角b a ,的范围是 ,且a b b a ,,=;若2,π=b a ,则a 与b ,记作a ⊥b.【答案】.(1)∠AOB =θ,b a ,,],0[π,垂直 3.三角形的内角的性质(1)一个角为锐角:(2)一个角为直角:(3)一个角为钝角: ①.PA ⊥PB ⇔以AB 为直径的圆过点P ⇔0=⋅; ②∠APB 是钝角⇔点P 在以AB 为直径的圆内⇔0<⋅; ③∠APB 是锐角⇔点P 在以AB 为直径的圆外⇔0>⋅PB PA ; 4.两个角的关系:(1)两个角相等:cos cos αβαβ=⇔=⇔ 向量转化 (2)两个角互余:12cos tan tan 112sin k k παβαβαβ+=⇔=⇔=⇔=(3)两个角互补:12sin tan tan +0sin k k αβπαβαβ+=⇔=⇔=-⇔= 5.椭圆的焦点三角形中角:椭圆上任意一点P 与两焦点1F 、2F 构成的三角形:12PF F ∆。
性质:1.周长为定值:2()a c +;sin()sin sin e αβαβ+=+2.12,F PF θ∠=当点P 靠近短轴端点时θ增大,当点P 靠近长轴端点时θ减小;与短轴端点重合时θ最大。
类比:(注:椭圆中端点三角形(长轴两端点与椭圆上一点构成)当P 在短轴端点时顶角最大。
)3.三角形面积:212tan 22S c y c y b θ=⨯⨯=⨯=,max ,S bc =即P 与短轴端点重合时面积最大。
4.焦点直角三角形:底角为90︒,有四个(四个全等,P 点为通径端点)顶角为90︒,即以12F F 为直径的圆与椭圆交点为点P:(0),02(),22(142b c e b c e b c e ⎧>>>⎪⎪⎪⎪==⎨⎪⎪<>>⎪⎪⎩个个个 6.双曲线中渐近线的倾斜角:tan baθ=7.抛物线中过焦点弦的相关角:(1)弦长l =__2psin 2θ,__(θ为AB 的倾斜角).(2)抛物线中的直角弦:①抛物线中相对于曲线中心的直角弦:直线l 交)0(22>=p px y 于A (11,y x ),B (22,y x )两点,O 为原点,若OA OB ⊥,把AB 叫做相对于O 的直角弦,得秒杀结论:I.直线l 恒过定点()2,0p ,2214p y y -=,反之亦然。
II.AOB ∆面积的最小值为:24p ;1.角的几何意义应用:充分借助三角形中的角,借助正弦定理和余弦定理进行转化;用运动的观点探求角的变化情况,根据几何图形的理解位置确定最值情况.2.角的代数表达应用:充分利用三角函数的性质将问题角的关系转化,利用坐标运算达到求解目的.利用直线与曲线等联立,借助韦达定理和关系进行探究.1.(2017新课标全国卷Ⅰ文科)设A ,B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞UB .[9,)+∞UC .(0,1][4,)+∞UD .[4,)+∞U【答案】A【解析】当03m <<时,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab≥=o≥,得01m <≤;当3m >时,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=o ,则tan 60ab ≥=o ≥,得9m ≥,故m 的取值范围为(0,1][9,)+∞U ,选A . 2.双曲线C :22221(0,0)x y a b a b-=>>的 一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒【答案】D【解析】由已知可得tan130,tan 50b ba a-=︒∴=︒,1cos50c e a ∴======︒,故选D . 3.已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=︒,则m 的最大值为( )A .7B .6C .5D .4【答案】B【解析】由题意知,点P 在以原点(0,0)为圆心,以m 为半径的圆上,又因为点P 在已知圆上,所以只要两圆有交点即可,所以15m -=,故选B.4.已知1F ,2F 是椭圆22221(0)x y C a b a b +=>>:的左,右焦点,A 是C 的左顶点,点P 在过A 且斜率为6的直线上,12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为A .23B .12C .13D .14【答案】D【解析】因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c,由AP斜率为6得,222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 5.设1F 、2F 是椭圆E :22221(0)x y a b a b+=>>的左、右焦点,P 为直线32a x =上一点,21F PF ∆是底角为30o 的等腰三角形,则E 的离心率为( ) A .12B .23C .34D .45【答案】C【解析】如下图所示,21F PF ∆是底角为30o 的等腰三角形,则有1221221,30F F PF PF F F PF =∠=∠=o所以2260,30PF A F PA ∠=∠=o o,所以22322322PF AF a c a c ⎛⎫==-=- ⎪⎝⎭又因为122F F c =,所以,232c a c =-,所以34c e a == 所以答案选C.6.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥【答案】D【解析】依题意可得,M 点在单位圆上,所以直线1x ya b+=与单位圆有交点,则圆心即原点到直线的距离1d =≤,即22111a b+≥,故选D 7.设点()0,1M x ,若在圆22:+1O x y =上存在点N ,使得45OMN ∠=︒,则0x 的取值范围是( ) A .[]1,1- B .11,22⎡⎤-⎢⎥⎣⎦C.⎡⎣D.22⎡-⎢⎣⎦【答案】A【解析】依题意,直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,过O 作OA⊥MN ,垂足为A ,在Rt OMA ∆中,因为OMA ∠045=,故0sin 45OA OM ==1≤,所以OM ≤≤011x -≤≤.8.已知12,F F 是椭圆和双曲线的公共焦点,P 是他们的一个公共点,且123F PF π∠=,则椭圆和双曲线的离心率的倒数之和的最大值为( ) ABC .3D .2【答案】A【解析】设1122122PF r PF r F F c ===,,,,椭圆和双曲线的离心率分别为12e e , 12,3F PF π∠=∴Q 由余弦定理可得2221212423c r r r r cosπ=+-()(),①在椭圆中,①化简为即2212443c a r r =-,即122213114r r c e -=,② 在双曲线中,①化简为即221244c a r r =+,即12222114r r c e -+=,③ 联立②③得,2212431e e +=,由柯西不等式得22212121111331e e e e ⎛⎛⎫⎛⎫++≥⨯+ ⎪ ⎪ ⎝⎭⎝⎭⎝⎭,即(21211443e e ⎛⎫+≤⨯ ⎪⎝⎭,即12113e e +≤=,当且仅当123e e A 9.已知双曲线()2222100x y a b a b-=>>,的左、右焦点分别为12F F ,,过1F 作圆222x y a +=的切线,与双曲线右支交于点M ,若1230F MF ∠=°,则双曲线的渐近线斜率为( ) A.(3± B.(3±+C.13⎛±+ ⎝⎭ D.13⎛±- ⎝⎭【答案】A【解析】取切点为B ,连接BO ,作21AF MF ⊥,垂足于A 因为2BO AF P ,且O 为12F F ,的中点,所以222AF BO a == 在直角三角形2AF M 中,1230F MF ∠=°,所以2224MF AF a == 由双曲线的定义得: 1226F M a MF a =+=由余弦定理可知:()()()222264264cos30c a a a a =+-⨯⨯︒化简得:(2213c a =-,又222c a b =+所以(2212b a =-,即(222123b a=-=所以(3b a =±故双曲线的渐近线斜率为(3ba±=± 故选:A10.已知点F 为双曲线2222:1(x y E a a b-=,0b >的右焦点,直线(0)y kx k =>与E 交于M ,N 两点,若MF NF ⊥,设MNF β∠=,且[,]126ππβ∈,则该双曲线的离心率的取值范围是( )A. B .[21]C .[2D.1]【答案】D【解析】由MF NF ⊥可得||||||OM ON OF c ===,取双曲线的左焦点F ',连接MF ',NF ',可得四边形MFNF '为矩形,即有||||2cos NF MF c β'==,||2sin MF c β=, 由双曲线的定义可得2||||2cos 2sin a MF MF c c ββ'=-=-,可得11cos sin )4c e a πβββ===-+, 由[,]126ππβ∈,可得[43ππβ+∈,5]12π,即有cos()4πβ+∈,1]2,即有e的范围是1+, 故选:D .11.椭圆22221(0)x y a b a b+=>>上有一点P ,1F ,2F 分别为椭圆的左、右焦点,椭圆内一点Q 在线段2PF 的延长线上,且1,QF QP ⊥15sin 13F PQ ∠=,则该椭圆离心率的取值范围是( )A .26⎛⎫⎪⎪⎝⎭B .1,53⎛⎫⎪ ⎪⎝⎭C .1,52⎛ ⎝⎭D .262⎛⎫⎪⎪⎝⎭【答案】D【解析】∵QF 1⊥QP ,∴点Q 在以F 1F 2为直径,原点为圆心的圆上, ∵点Q 在椭圆的内部,∴以F 1F 2为直径的圆在椭圆内,∴c <b ;∴c 2<a 2﹣c 2,∴212e <,故0<e 2∵sin ∠F 1PQ 513=,∴cos ∠F 1PQ 1213=;设|PF 1|=m ,则|PF 2|=n ,而|F 1F 2|=2c ,|PF 1|+|PF 2|=m +n =2a ,在△PF 1F 2中,由余弦定理得4c 22212213m n mn =+-⋅.∴4c 2=(m +n )2﹣2mn ﹣2mn •1213; 即4c 2=4a 25013-mn ;∴mn ()222625a c =-;由基本不等式得:mn 2()2m n +≤=a 2, 当且仅当m =n 时取等号;由题意知:QF 1⊥QP ,∴m ≠n ,∴mn 2()2m n +=<a 2,∴()222625a c -<a 2∴a 2<26c 2;故2126e >,∴ee 2.故选:D .12.已知抛物线C :22(0)y px p =>的焦点F ,点00(2p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,以M 为圆心的圆与直线2p x =交于A 、B 两点(A 在B 的上方),若5sin 7MFA ∠=,则抛物线C 的方程为( ) A .24y x = B .28y x =C .212y x =D .216y x =【答案】C【解析】抛物线C :22(0)y px p =>,其焦点,02p F ⎛⎫⎪⎝⎭,准线方程2p x =-,因为点(002p M x x ⎛⎫>⎪⎝⎭是抛物线上一点,所以02pMF x =+ AB 所在直线2p x =,设MD AB ⊥于D ,则02p MD x =-, 因为5sin 7MFA ∠=,所以57MD MF =,即005272p x p x -=+ 整理得03x p =所以(3M p 将M点代入到抛物线方程,得(223p p =⨯,0p >解得6p =,所以抛物线方程为212y x =故选:C.13.已知点P 为椭圆221916x y +=上的任意一点,点12,F F 分别为该椭圆的上下焦点,设1221,PF F PF F αβ=∠=∠,则sin sin αβ+的最大值为( )ABC .98D .32【答案】D【解析】设|1PF |=m ,|2 PF |=n ,|12F F |=2c ,A ,B 为短轴两个端点,由正弦定理可得()2m n csin sin sin βααβ==+, 即有()2m n c sin sin sin αβαβ+=++,由椭圆定义可得e ()22sin c a sin sin αβαβ+===+,∴()sin sin sin αβαβ+=+.在三角形21F PF 中,由m+n=2a,cos 222222221242444122224m n c m n mn c b b F PF m n mn mn mn+-+--∠===-≥+⨯()()-1=22412b a-,当且仅当m=n 时,即P 为短轴端点时,cos 21F PF ∠最小,21F PF ∠最大, ∴()21sin sin F AF αβ+≤∠,∴3sin sin 2αβ+≤=,故选:D .14.已知椭圆22221x y a b+=(a>b>0)的左、右焦点分别是F 1,F 2,焦距为2c,若直线与椭圆交于M 点,且满足∠MF 1F 2=2∠MF 2F 1,则椭圆的离心率是 ( ) A.2B1C.12D.2【答案】B 【解析】∵椭圆的方程为22221(0)x y a b a b+=>>,作图如右图:∵椭圆的焦距为2c ,∴直线经过椭圆的左焦点F 1(-c ,0),又直线(x+c)与椭圆交于M 点,∴倾斜角∠MF 1F 2=60°,又∠MF 1F 2=2∠MF 2F 1, ∴∠MF 2F 1=30°,∴∠F 1MF 2=90°.设|MF 1|=x,则2MF = ,|F 1F 2|=2c=2x ,故x=c .∴1211MF MF x c +==)) ,又|MF 1|+|MF 2|=2a ,∴2a=(+1)c ,∴该椭圆的离心率1c e a ===. 故选:B .15.已知点P 是直线:4370l x y --=上动点,过点P 引圆222:(1)(0)C x y r r +-=>两条切线,PM PN ,,M N 为切点,当MPN ∠的最大值为2π时,则r 的值为( )A B C .D .1【答案】A【解析】Q 点P 在直线:4370l x y --=上,连接PC 当PC l ⊥时, MPN ∠最大,由题意知,此时MPN ∠最大值为2π时,∴ 4CPM π∠=,||PC =Q 圆222:(1)(0)C x y r r +-=>,可得其圆心为:()0,1根据点到直线距离公式可得圆心()0,1到l 距离为:1025d -== ∴ 2=,故r =故选:A.16.已知双曲线2222:1x y E a b-=(0,0a b >>)的左、右焦点分别为12,F F ,若E 上点A 满足122AF AF =,且12F AF ∠的取值范围为2π,π3⎡⎤⎢⎥⎣⎦,则E 的离心率的取值范围是( )A .B .⎤⎦C .[]3,5D .[]7,9【答案】B【解析】由双曲线的定义有122AF AF a -=,又122AF AF =,故14AF a =,22AF a =.故()()()()()222221224+225cos 2424a a c a c F AF a a a--∠==⨯⨯.又12F AF ∠的取值范围为2π,π3⎡⎤⎢⎥⎣⎦, 故121cos 1,2F AF ⎡⎤∠∈--⎢⎥⎣⎦.即22222515111794242a c e e a ---≤≤-⇒-≤≤-⇒≤≤.故e ⎤∈⎦.故选:B17.已知点12,F F 分别是双曲线C :2221(0)y x b b-=>的左、右焦点,O 为坐标原点,点P 在双曲线C 的右支上,且满足122F F OP =,21tan 3PF F ∠≥,则双曲线C 的离心率的取值范围为( )A .(1B .)+∞C .(1D .2] 【答案】A【解析】由122F F OP =得,OP c =,根据三角形的性质可知,12PF F △为直角三角形,且12PF PF ⊥,222212124PF PF F F c +==.由双曲线的定义可得,122PF PF a -=,又123PF PF …,可得2PF a „.所以222212124PF PF F F c +==可化为()2222224PFa PF c ++=,即()22222PF a c a +=-,而2PF a „,22224c a a ∴-„,解得2c a „,又1c e a =>,12e ∴<„. 故选:A .18.已知椭圆()222210x y a b a b +=>>上有一点A ,它关于原点的对称点为B ,点F 为椭圆的右焦点,且AF BF ⊥,设ABF α∠=,且,126ππα⎡⎤∈⎢⎥⎣⎦,则该椭圆的离心率e 的取值范围为( )A .⎦B .1,t ⎤⎦C .⎣⎦D .⎛ ⎝⎦【答案】A【解析】如图所示:设椭圆的左焦点为F ',连接AF ',BF '则四边形AFBF '为矩形,因此2AB FF c '==,2AF BF a +=,2AF csin α=,2BF ccos α=,∴222csin ccos a αα+=,∴114e sin cos πααα⎛⎫ ⎪⎝=++⎭=, ,126ππα⎡⎤⎢⎥⎣∈⎦Q ,5,4312πππα∴+⎛⎫⎡⎤ ⎪∈⎢⎥⎝⎭⎣⎦,,424sin πα∴+∈⎛⎫ ⎪⎝⎭⎣⎦,4πα⎛⎫ ⎪∈⎝⎭⎣⎦+,e ∴∈⎦.故选:A.19.已知双曲线2222:1(0,0)x y C a b a b-=>>的两个顶点分别为1(,0)A a -,2(,0)A a ,,P Q 的坐标分别为(0,)b ,(0,)b -,且四边形12A PA Q的面积为四边形12A PA Q,则C 的方程为( ) A .2212x y -=B .2212y x -=或2212x y -=C .22142x y -=D .2212y x -=或22142x y -=【答案】B【解析】因为1(,0)A a -,2(,0)A a ,,P Q 的坐标分别为(0,)b ,(0,)b -,122A A a ∴=,2PQ b =,1212A P A Q AQ A P c ∴===== 又因为四边形12A PA Q的面积为142a b ⨯⨯⨯=ab =,记四边形12A PA Q 内切圆半径为r,则2r π=,得r =,所以2cr =,所以c =2223c a b =+=,得1a b ⎧=⎪⎨=⎪⎩1a b =⎧⎪⎨=⎪⎩所以C 的方程为2212x y -=或2212y x -=.故选:B20.已知椭圆222210)x y a b a b+=>>(的两个焦点分别为12F F 、,若椭圆上存在点P 使得12F PF ∠是钝角,则椭圆离心率的取值范围是( )A.0,2⎛⎫⎪ ⎪⎝⎭B.2⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】B【解析】当动点P 从椭圆长轴端点处沿椭圆弧向短轴端点运动时,P 对两个焦点的张角12F PF ∠渐渐增大,当且仅当P 点位于短轴端点0P 处时,张角12F PF ∠达到最大值.∵椭圆上存在点P 使得12F PF ∠是钝角,∴102F P F V 中,10290F P F ∠>︒,∴Rt V 02OP F 中,0245OP F ∠>︒,∴b c <, ∴222a c c -<,∴222a c <,∴2e >, ∵01e <<,∴12e <<.椭圆离心率的取值范围是2⎛⎫ ⎪ ⎪⎝⎭,故选B . 二、填空题21.设点M (0x ,1),若在圆O:221x y +=上存在点N ,使得∠OMN=45°,则0x 的取值范围是________.【答案】[1,1]- 【解析】由题意知:直线MN 与圆O 有公共点即可,即圆心O 到直线MN 的距离小于等于1即可,如图,过OA ⊥MN ,垂足为A ,在Rt OMA ∆中,因为∠OMN=45,所以sin 45OA OM =o1≤,解得OM ≤,因为点M (0x ,1),所以OM =≤011x -≤≤,故0x 的取值范围是[1,1]-.22.设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为____________ .【答案】22(1)(1x y ++=【解析】设圆心坐标为(1,)C m -,则(0,)A m ,焦点(1,0)F ,(1,0),(1,)AC AF m =-=-u u u v u u u v,1cos 2AC AF CAF AC AF ⋅∠===-⋅u u u v u u u v u u u v u u u v,m = 由于圆C 与y 轴得正半轴相切,则取m,所求圆得圆心为(-,半径为1,所求圆的方程为22(1)(1x y ++-=.23.已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________.【答案】2【解析】详解:设()()1122A ,,B ,x y x y 则2112224{4y x y x ==所以22121244y y x x -=-所以1212124k y y x x y y -==-+取AB 中点()00M'x y ,,分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'' 因为AMB 90∠︒=,()()'111MM '222AB AF BF AA BB ∴==+=+', 因为M’为AB 中点,所以MM’平行于x 轴因为M(-1,1)所以01y =,则122y y +=即k 2=故答案为2.24.已知双曲线C :22221(0,0)x y a b a b-=>>的右顶点为A ,以A 为圆心,b 为半径作圆A ,圆A 与双曲线C 的一条渐近线于交M 、N 两点,若60MAN ∠=o ,则C 的离心率为__________.【答案】3【解析】如图所示,由题意可得|OA|=a ,|AN|=|AM|=b ,∵∠MAN=60°,∴, ∴=C 的一条渐近线y=b a x 的倾斜角为θ,则tanθ=||||AP OP = 又tan θ=b ab a =,解得a 2=3b 2,∴==.25.已知直线交抛物线于,A B 两点.若该抛物线上存在点,使得ACB ∠为直角,则a 的取值范围为___________. 【答案】[1,)+∞【解析】可知()),A a Ba ,设C ()2,m m,()()22,AC m m a BC m m a =-=-u u u r u u u r .∵该抛物线上存在点C ,使得∠ACB 为直角,(()220AC BC m m m a ∴⋅=++-=u u u r u u u r ,化为()2220m a m a -+-=.2101m m a a ≠=-≥∴≥Q ,∴a 的取值范围为[)1,+∞.26.已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12(,0),(,0)F c F c -,若双曲线上存在一点P 使1221sin sin PF F aPF F c∠=∠,则该双曲线的离心率的取值范围是__________.【答案】(11)【解析】因为在12PF F ∆中,由正弦定理得211221sin sin PF PF PF F PF F =∠∠,则由已知,得21a c PF PF =,即12aPF cPF =,12c PF PF a=,由双曲线的定义知 212222222c a PF PF a PF PF a PF a c a-=-=⇒=-,,由双曲线的几何性质知22222,20,a PF c a c a c ac a c a>->-⇒--<-所以2210,e e --<解得11e <<,又1()e ∈+∞,,故双曲线的离心率1)e ∈27.过双曲线22221(0,0)x y a b a b-=>>的右焦点且垂直于x 轴的直线与双曲线交于,A B 两点,D 为虚轴的一个端点,且ABD ∆为钝角三角形,则此双曲线离心率的取值范围为__________.【答案】()⋃+∞【解析】设双曲线22221(0,0)x y a b a b -=>>的左焦点F 1(﹣c ,0),令x=﹣c ,可得=±2b a , 可得A (﹣c ,2b a ),B (﹣c ,﹣2b a ),又设D (0,b ),可得AD u u u r =(c ,b ﹣2b a),AB u u u r =(0,﹣22b a ),DBuuu r =(﹣c ,﹣b ﹣2b a),由△ABD 为钝角三角形,可能∠DAB 为钝角,可得AD AB ⋅u u u v u u u v<0,即为0﹣22b a •(b ﹣2b a)<0,化为a >b ,即有a 2>b 2=c 2﹣a 2,可得c 2<2a 2,即e=c a ,又e >1,可得1<e ,可能△ADB 中,∠ADB 为钝角,可得AD AB ⋅u u u v u u u v<0,即为c 2﹣(2b a +b )(2b a﹣b )<0,化为c 4﹣4a 2c 2+2a 4>0,由e=c a ,可得e 4﹣4e 2+2>0,又e >1,可得e e 的范围为(1.+∞).故答案为()⋃+∞28.已知抛物线()220y px p =>,F 为其焦点,l 为其准线,过F 任作一条直线交抛物线于,A B 两点,1A 、1B 分别为A 、B 在l 上的射影,M 为11A B 的中点,给出下列命题:(1)11A F B F ⊥;(2)AM BM ⊥;(3)1//A F BM ; (4)1A F 与AM 的交点的y 轴上;(5)1AB 与1A B 交于原点. 其中真命题的序号为_________. 【答案】(1)(2)(3)(4)(5)【解析】(1)由于A 、B 在抛物线上,且1A 、1B 分别为A 、B 在准线l 上的射影, 根据抛物线的定义可知1AA AF =,1BB BF =,则11AA F AFA ∠=∠,11BB F BFB ∠=∠,11//AA BB Q ,11180FAA FBB ∠+∠=o ,则1111180AA F AFA BB F BFB ∠+∠+∠+∠=o ,即()112180AFA BFB ∠+∠=o,1190AFA BFB ∴∠+∠=o ,则1190A FB ∠=o ,即11A F B F ⊥,(1)正确;(2)取AB 的中点C ,则()1122CM AF BF AB =+=,90AMB ∴∠=o ,即AM BM ⊥, (2)正确;(3)由(2)知,1//CM AA ,1A AM AMC ∠=∠,12CM AB AC ==Q ,AMC CAM ∴∠=∠,1A AM CAM ∴∠=∠, AM ∴平分1A AF ∠,1AM A F ∴⊥,由于BM AM ⊥,11//A F B M ∴,(3)正确; (4)取1AA 与y 轴的交点D ,则12pA D OF ==,1//AA x Q 轴,可知1A DE FOE ∆≅∆, 1A E EF ∴=,即点E 为1A F 的中点,由(3)知,AM 平分1A AF ∠,1A M ∴过点E ,所以,1A F 与AM 的交点的y 轴上,(4)正确; (5)设直线AB 的方程为2p x my =+,设点()11,A x y 、()22,B x y ,则点11,2p A y ⎛⎫- ⎪⎝⎭、12,2p B y ⎛⎫- ⎪⎝⎭,将直线AB 的方程与抛物线的方程联立,消去x 得,2220y mpy p --=,由韦达定理得212y y p =-,122y y mp +=,直线1OA 的斜率为1221122222OAp y y y p k p p p y ⎛⎫⨯- ⎪⎝⎭==-=-=-, 直线OB 的斜率为22222222OB y y p k y x y p===,1OA OB k k ∴=,则1A 、O 、B 三点共线,同理得出A 、O 、1B 三点共线, 所以,1AB 与1A B 交于原点,(5)正确.综上所述,真命题的序号为:(1)(2)(3)(4)(5). 故答案为:(1)(2)(3)(4)(5).29.如图,已知椭圆22221(0)x y a b a b+=>>的左顶点为A ,左焦点为F ,上顶点为B ,若,则该椭圆的离心率是 .【答案】【解析】依题意可得,,,OA a OF c OB b ===因为90BAO BFO BAO ABO ∠+∠==∠+∠o ,所以BFO ABO ∠=∠ 所以Rt AOB Rt BOF ∆~∆ 所以OB OF OAOB=,即b ca b=,故222b ac a c ==-解得,12c a -±=因为0c a <<,所以c =,则c e a ==。