工业自动化控制系统的抗干扰措施
- 格式:pdf
- 大小:169.88 KB
- 文档页数:2
模拟量信号干扰分析及11种解决秘诀关键词:PLC 模拟量 信号干扰1、概述随着科学技术的发展,PLC 在工业控制中的应用越来越广泛。
PLC 控制系统的可靠性直接影响到工业企业的安全生产和经济运行,系统的抗干扰能力是关系到整个系统可靠运行的关键。
自动化系统中所使用的各种类型PLC ,有的是集中安装在控制室,有的是安装在生产现场和各种电机设备上,它们大多处在强电电路和强电设备所形成的恶劣电磁环境中。
要提高PLC 控制系统可靠性,设计人员只有预先了解各种干扰才能有效保证系统可靠运行。
2、电磁干扰源及对系统的干扰影响PLC 控制系统的干扰源于一般影响工业控制设备的干扰源一样,大都产生在电流或电压剧烈变化的部位,这些电荷剧烈移动的部位就是噪声源,即干扰源。
干扰类型通常按干扰产生的原因、噪声的干扰模式和噪声的波形性质的不同划分。
其中:按噪声产生的原因不同,分为放电噪声、浪涌噪声、高频振荡噪声等;按噪声的波形、性质不同,分为持续噪声、偶发噪声等;按声音干扰模式不同,分为共模干扰和差模干扰。
共模干扰和差模干扰是一种比较常用的分类方法。
共模干扰是信号对地面的电位差,主要由电网串入、地电位差及空间电磁辐射在信号线上感应的共态(同方向)电压送加所形成。
共模电压有时较大,特别是采用隔离性能差的电器供电室,变送器输出信号的共模电压普遍较高,有的可高达130V 以上。
共模电压通过不对称电路可转换成差模电压,直接影响测控信号,造成元器件损坏(这就是一些系统I/O 模件损坏率较高的原因),这种共模干扰可为直流、亦可为交流。
差模干扰是指用于信号两极间得干扰电压,主要由空间电磁场在信号间耦合感应及由不平衡电路转换共模干扰所形成的电压,这种让直接叠加在信号上,直接影响测量与控制精度。
3、PLC 控制系统中电磁干扰的主要来源有哪些呢?(1) 来自空间的辐射干扰:空间的辐射电磁场(EMI )主要是由电力网络、电气设备的暂态过程、雷电、无线电广播、电视、雷达、高频感应加热设备等产生的,通常称为辐射干扰,其分布极为复杂。
自动化控制系统抗干扰技术应用摘要:在工业自动化控制现场应用中,为了防止信号干扰,提高系统运行的稳定性和可靠性,文章主要分析了自动化控制系统应对各种干扰源通过两种干扰传播方式,以便在实际应用当中如何抑制干抚信号,并介绍了控制系统常用的干扰抑制措施。
关键词:DCS、PLC、干扰源、屏蔽、接地、PROFIBUS、S7-300、控制系统在工业控制现场中分布着各种各样的杂散电磁干扰信号,对DCS及PLC系统等弱电检测信号具有很强的干扰作用,甚至使整个系统瘫痪,如何在自动化控制系统中减少干扰信号的干扰,保证系统的稳定可靠运行,这就使得我们必须在应用过程当中正确地处理。
一般地,电磁干扰可在多个方面影响PLC:• 电磁场对系统有直接影响。
• 由总线信号导致的干扰耦合(PROFIBUS DP 等)• 通过系统布线产生的干扰耦合。
• 干扰通过电源和/或保护接地来影响系统。
一、两种干扰传播途径通常产生干扰有三个要素:干扰源、耦合路径、易受干扰的潜在电子器件(DCS及PLC系统各种卡件)。
干扰源可以通过空间的辐射或电磁耦合传递到DCS及PLC系统的CPU和信号采集卡件,也可以通过信号电缆的传输进入控制系统。
1、干扰源通过空间传播干扰源的电磁能量以场的方式向四周传播, 频率较高时,干扰信号可以通过导线间的分布电容从一个回路传导到另一个回路,这是电容耦合或电场耦合;干扰信号通过导线间的分布电感,从一个回路传到另一个回路为电感性耦合或磁场耦合;电磁场的干扰还可以通过天线发送至电子装置,即干扰的天线效应,由信号源-传输线-负载组成电流环路,就相当于磁场天线。
2、干扰源通过导线传播信号通过导线传输,实际的传输导线都存在分布电容和电感,尤其在传送频率高的情况下,分布电容和电感参数的影响更不能忽视。
当设备或元件共用电源或地线时,会产生共阻抗耦合;当脉冲信号通过传输线传播,在一定条件下,信号会发生波反射,反射会改变正常信号而产生有危害的冲击电压;干扰源通过磁场耦合在两根导线和设备构成的回路上产生感应电压,会产生差模干扰;干扰源通过电场耦合在一根导线与系统地构成的回路上产生的感应电压,会产生共模电压。
抗干扰技术在工业自动化控制系统中的应用摘要:工业自动化的发展让自动化控制系统的抗干扰技术得到了长足进步。
本文指出了常见的干扰源,并由此而提出了一系列抗干扰措施,结合某燃气控制系统介绍了抗干扰措施的实际应用。
abstract:the development of industrial automation for automation control system anti-interference technology got rapid progress. this paper points out the common interference sources, from this put forward a series of anti-interference measures, combined with a gas control system introduced the practical application of anti-interference measures.关键词:自动控制;抗干扰;抗干扰抑制key words:automaticcontrol,anti-interference,interference restraint中图分类号:[f287.2] 文献标识码:a 文章编号:工业自动化控制系统的硬件由大规模集成微处理芯片构成的可编程控制器(plc)、现场总线控制系统(fcs)、分散型控制系统(dcs)、工业控制机(ipc)及各测量控制仪表构成。
器件的pcb板内部连接线路越来越细,传递信号电流越来越小,供电电压越来越低,对噪声也越趋敏感,容易被周围干扰源干扰。
因此,须采取一定抗干扰措施来提高控制系统的可靠性。
以保证提高生产效率。
一、干扰源分析1、辐射干扰辐射干扰指的是电弧电路、雷电、射频设备等产生的空间辐射电干扰。
此类干扰,一般无法抑制干扰源,主要通过切断或减弱传播途径来减少干扰影响,如等电位联机、屏蔽、保护隔离等措施,做全方位防雷保护。
分散控制系统抗射频干扰能力的要求和测试记录分散控制系统(DCS系统)是一种广泛应用于工业自动化领域的控制系统,用于监测和控制工业过程中的各类设备和参数。
由于工业现场常常存在复杂的电磁环境,其中包括射频(Radio Frequency,RF)干扰源,因此对DCS系统的抗射频干扰能力提出了要求。
在DCS系统的设计和制造过程中,需要考虑系统在可能的射频干扰环境下的工作能力,并进行相关的测试记录。
以下是对DCS系统抗射频干扰能力的要求和测试记录的详细介绍。
1.抗射频干扰能力的要求:-系统应能在射频电场强度较高的环境下正常工作,不受射频干扰影响;-系统对常见的射频干扰源如手机信号、电台等具有一定的抵抗能力;-系统在受到射频干扰时,能够及时发出报警并采取相应的措施,保证工业过程的安全运行;-系统本身的电磁辐射应符合相关的国家和行业标准,避免对周围设备和人员产生干扰。
2.抗射频干扰能力的测试记录:在DCS系统的设计和制造过程中,需要进行一系列的测试记录来验证系统的抗射频干扰能力,包括以下方面:-系统的基本功能测试:验证系统在正常工作环境中的基本功能是否正常;-系统的抗射频干扰测试:将DCS系统置于已知的射频干扰环境中,记录系统的工作状态和性能表现;-系统的抗射频干扰性能测试:在射频干扰环境中对系统的电磁辐射、抗干扰性、抑制性能等进行测试;-系统的报警功能测试:测试系统在受到射频干扰时,是否能够及时发出报警并采取相应的措施;-系统的电磁辐射测试:测试系统本身的电磁辐射是否符合国家和行业标准,是否会对周围设备和人员产生干扰。
测试记录应包括测试时间、测试环境、测试方法、测试结果等信息,并按照相关标准和规范进行存档和审核。
如有必要,还可以对测试过程中的关键数据和参数进行分析和评估,以进一步提升系统的抗射频干扰能力。
总之,对于分散控制系统(DCS系统)抗射频干扰能力的要求和测试记录是保证系统正常工作和工业过程安全运行的重要环节。
工业自动化控制系统的抗干扰技术分析工业自动化控制系统的抗干扰技术是工业控制中的关键技术之一。
这种技术的主要目的是降低外界干扰对工业自动化控制系统的影响,提高系统的稳定性和可靠性。
本文将对工业自动化控制系统的抗干扰技术进行分析。
首先,工业自动化控制系统中最常见的外界干扰包括电磁干扰、噪声干扰和电力干扰。
这些干扰会导致信号传输中的误差、控制信号的失真和噪声污染等问题,从而影响工业自动化控制系统的稳定性和可靠性。
为了抵御这些外界干扰,工业自动化控制系统采用各种抗干扰技术。
以下是常见的抗干扰技术:1. 硬件层面上的抗干扰技术硬件层面上的抗干扰技术主要包括信号隔离、滤波、屏蔽和接地等。
信号隔离可以将信号电气性质分离,从而解决信号传输中的地线干扰问题;滤波可以滤除高频噪声干扰,使信号传输更加稳定;屏蔽可以在电路板上采用金属盖板、金属屏蔽罩等,阻挡外界的电磁波干扰;接地可以使电路板内的各个不同电位达到相同电位,防止因接地问题产生的干扰。
软件层面上的抗干扰技术主要包括模拟电路技术和数字信号处理技术。
模拟电路技术可以通过设计合适的滤波器、锁相环、正交解调器等,对输入信号进行处理,从而达到抗干扰的目的;数字信号处理技术可以通过采样、滤波、数字噪声抑制等处理方法,对数字信号进行处理,降低外界干扰的影响。
3. 信号传输中的抗干扰技术信号传输中的抗干扰技术主要包括差分传输和光纤传输。
差分传输使用两个相反极性的信号同时传输,从而消除共模干扰;光纤传输使用光信号传输,避免了电磁干扰和磁场干扰。
总的来说,工业自动化控制系统的抗干扰技术是保证系统稳定性和可靠性的关键。
在设计控制系统的过程中,应选用合适的抗干扰技术,以确保系统能够在复杂的工业环境中正常运行。
DCS控制系统应用中的抗干扰问题分析DCS控制系统是现代化工自动化生产中的重要组成部分,其应用范围涵盖了化工、石化、电力、冶金等多个行业领域。
在实际应用中,DCS控制系统经常会受到各种外部干扰的影响,这些干扰可能来源于电磁干扰、物理环境变化、人为操作等多个方面,严重干扰可能导致系统运行不稳定、控制失效甚至系统瘫痪。
如何在DCS控制系统应用中解决和抵御各种干扰问题,成为了当前工业控制系统领域中的研究热点之一。
本文将对DCS控制系统中的抗干扰问题进行分析,并提出相应的解决方案。
一、电磁干扰对DCS控制系统的影响电磁干扰是DCS控制系统中常见且严重的干扰源之一。
其种类包括电磁辐射干扰、传导干扰等。
电磁干扰可能来自于外部设备、电力线路、无线电信号、雷电等多个方面,其频率范围也十分广泛。
电磁干扰会对DCS控制系统的传感器、执行元件、通信线路等组成部分造成影响,导致控制系统的工作异常,甚至失效。
电磁干扰不仅会使得传感器接收的信号产生误差,还可能引起控制命令的传输错误,从而对整个生产过程产生严重的影响。
为了解决电磁干扰对DCS控制系统的影响,可以采取一系列的技术手段。
在系统设计阶段应该合理规划布置设备,避免将敏感的传感器和执行元件置于强电磁干扰源附近。
可以采用屏蔽措施,如使用屏蔽电缆、屏蔽罩等设备,阻隔外部电磁干扰。
还可以采用滤波器、隔离器等设备对信号进行处理,消除电磁干扰对系统的影响。
通过以上技术手段的综合应用,可以有效提高DCS控制系统对电磁干扰的抵御能力,保障系统的正常稳定运行。
除了电磁干扰外,物理环境变化也会对DCS控制系统产生一定的影响。
物理环境变化主要包括温度、湿度、气压等因素的变化,这些因素的变化可能会导致系统中的传感器、执行元件的性能产生变化,从而对控制系统的稳定性产生影响。
在特殊工业环境中,如高温、高湿或者腐蚀性环境下,物理环境变化对DCS控制系统的影响尤为突出。
针对物理环境变化对DCS控制系统的影响,可以采取一系列的防护措施。
工业自动化控制系统的抗干扰技术分析随着工业自动化水平的不断提高,工业控制系统在生产过程中起着越来越重要的作用。
在现实生产环境中,各种干扰因素经常会给工业自动化控制系统带来一系列问题,如信号失真、控制误差等,严重影响了系统的稳定性、可靠性和性能。
提高工业自动化控制系统的抗干扰能力成为了亟需解决的技术难题。
本文将对工业自动化控制系统的抗干扰技术进行深入分析,为工业自动化领域的技术研发和实践提供有力支持。
一、工业自动化控制系统的干扰来源及特点工业自动化控制系统的干扰来源主要包括电磁干扰、机械干扰、温度变化、供电干扰等。
电磁干扰是最为常见和严重的一种干扰形式。
它不仅来自于外部环境中的电磁辐射,还可能由于系统内部的电磁干扰源,如电机、变频器等设备产生。
机械干扰主要来自于设备的运行、振动和冲击,在这种情况下,会导致传感器失灵、信号失真等问题。
温度变化对控制系统的干扰主要体现在传感器及电子元器件的工作温度范围内的波动。
供电干扰则包括电源电压波动、谐波干扰、电源噪声等,对于控制系统的正常工作有较大影响。
干扰的特点主要包括高频、低频、大幅度和突发性。
由于工业生产环境的复杂性,控制系统往往要在恶劣的环境中工作,因此对干扰的抗性要求较高。
工业自动化控制系统的稳定性和可靠性要求也较高,这就要求控制系统的抗干扰技术必须具有一定的鲁棒性和强健性。
目前,对工业自动化控制系统的抗干扰技术研究主要包括以下几个方面:信号处理技术、电磁兼容技术、隔离技术、滤波技术和自适应控制技术。
1. 信号处理技术信号处理技术是工业自动化控制系统抗干扰的重要手段之一。
它主要包括对信号进行采样、滤波、放大、数字转换等处理,以提高信号的抗干扰能力。
滤波技术是信号处理技术中的核心内容,它能够有效地去除信号中的干扰成分,提高信号的纯度和可靠性。
采用数字信号处理技术对信号进行处理,能够更好地抑制干扰,提高信号的抗干扰性。
信号处理技术在工业自动化控制系统的抗干扰中具有重要作用。
工业自动化控制系统的抗干扰技术分析工业自动化控制系统是现代工业生产的重要组成部分,其质量和稳定性对整个工业流程影响巨大。
与此同时,现代工业生产环境非常复杂多变,存在许多干扰因素,如传感器误差、电磁干扰、放大器失真等。
为保证工业自动化控制系统的稳定性和可靠性,必须采用一定的抗干扰技术。
现代工业生产环境中,电磁干扰是一个很普遍的问题。
电磁干扰可以产生高频干扰信号,这些信号会影响系统的传输和处理。
为了解决这个问题,可以采用屏蔽技术。
屏蔽技术可以把环境中的电磁辐射信号通过金属屏蔽掉,从而使系统免受电磁干扰的影响。
同时,还可以采用电磁兼容性(EMC)技术,以减少或消除电器设备之间的相互干扰。
EMC技术是一种综合性的技术,在系统设计中应尽可能考虑电磁兼容性问题,如地线接触问题、信号传输线阻抗匹配、电缆走向和屏蔽等方面。
另外,传感器误差也是影响工业自动化控制系统稳定性的重要因素之一。
传感器误差可以分为系统误差和随机误差。
系统误差可以通过校准,误差补偿等方法进行解决。
随机误差则需要采用滤波技术。
滤波技术可以利用滤波器对信号进行滤波处理,滤去干扰信号,保留有用信号。
滤波器种类繁多,包括低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。
滤波器的设计需要根据具体问题选择合适的滤波技术和滤波器类型。
在工业自动化控制系统中,放大器失真也是一个很普遍的问题。
放大器失真会导致信号失真,从而影响系统的控制效果。
为了解决这个问题,可以采用自适应控制技术。
自适应控制技术可以通过对系统状态和输出进行自适应调整,以适应环境变化和外界干扰,从而达到改善系统性能的目的。
自适应控制技术的实现需要充分考虑控制算法的稳定性和鲁棒性。
除了上述几种抗干扰技术外,还有一些其他的技术应用在工业自动化控制系统中。
例如,时域分析技术可以对干扰进行精细分析,确定采取何种抗干扰技术。
另外,可靠性工程可以在系统设计中充分考虑系统的可靠性和冗余性,从而提高系统的稳定性和可靠性。