人教版七年级数学下5.2.2.2平行线的判定方法的应用相交线同步训练
- 格式:docx
- 大小:177.31 KB
- 文档页数:6
第五章 相交线与平行线第1课时 相交线1. 如图,直线AB ,CD 相交于点O ,∠AOC=34°,∠DOE=56°.(1)∠BOD = °,∠BOC = °,∠AOE = °;(2)写出下列各对角关系的名称:∠BOD 和∠EOD 是 , ∠BOD 和∠AOC 是 , ∠BOD 和∠AOD 是 ,∠AOC 和∠DOE 是 .2. 如图,直线AB ,CD 相交于点O , ∠AOD +∠BOC=220°,则∠AOC = °. 3. 如图,直线AB ,CD 相交于点O ,∠1-∠2=40°,则∠2= °,∠BOC = °.4. 如图,直线AB ,CD 相交于点O ,OE 平分∠AOC ,∠BOC =40°,求∠EOC 和∠AOD 的度数.5. 如图,直线AB ,CD 相交于点O ,OA 平分∠COE ,∠COE ∶∠EOD =4∶5,求∠BOC 的度数.A B C D E O(第1题)AB C D O (第2题)CAB DO (第3题) 1 2 ABD CE O (第4题) BCD AE O(第5题)1. 如图,直线AB ,CD 相交于点O ,OE ⊥AB ,垂足是O ,∠DOE =55°,则∠BOC 的度数为( )A .40°B .45°C .30°D .35°2. 如图,直线EF ⊥AB 于点E , CD 是过点E 的直线,且∠AEC =120°,则∠DEF = °. 3. 如图,∠ABD =90°.(1)点B 在直线 上,点D 在直线 外;(2)直线 与直线 相交于点A ,点D 是直线 与直线 的交点,也是直线 与直线 的交点,又是直线 与直线 的交点; (3)直线 ⊥ ,垂足为点 ;(4)过点D 有且只有 条直线与直线AC 垂直. 三、解答题4. 如图,点P 在∠AOB 的内部,点M 在∠AOB 的外部,点Q 在射线OA 上,利用三角板按以下要求画图:(1)过点P 画OA 的垂线,再画OB 的垂线; (2)过点Q 画OB 的垂线; (3)过点M 画OA 的垂线.5. 如图,直线AB ,CD ,EF 相交于点O ,且AB ⊥CD ,∠1=30°,求∠2、∠COF 、∠4、∠5的度数.6.直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,∠COE =40°,求∠BOD 的度数.(第2题)A B FE D C ·Q A B O(第4题)·M·P(第3题)A B C D (第5题)AB DCO EF123 45 CO A B D E(第1题)1.如图,P 是直线l 外一点,A ,B ,C 在直线l 上,且P B ⊥l ,那么下列说法错误的是( )A .线段BP 叫做点P 到直线l 的距离B .PA ,PB ,PC 三条线段中,PB 最短 C .PB 是点P 到直线l 的垂线段D .线段AB 的长是点A 到直线PB 的距离2. AC ⊥l 2,AB ⊥l 1,则点A 到直线l 1的距离是线段 的长度.3. 如图,∠AOB =90°,所以AB BO ;若OA =3cm ,OB =2cm ,则点A 到OB 的距离是 cm ,点B 到 OA 的距离是 cm ;点O 与AB 上各点连接的所 有线段中 最短.4. 如图,直线a 上有一点M ,直线b 上有一点N , 用三角板画图:(1)画点M 到直线b 的垂线段; (2)画点N 到直线a 的垂线段.5. 在如图所示的各个三角形中,分别画出AB 边上的高,并量出三角形顶点C 到直线AB 的距离.6.已知:如图,EF ⊥OA ,CD ⊥OB .用简单的推理,说明:(1)∠CDE =∠O ;(2)∠CDF +∠O =180°.ABC A BCAB C ab ·M · N (第4题)B AODC(第6题)FE C P A B l (第1题) A B O (第3题)第4课时 同位角、内错角、同旁内角1. 如图,∠1与∠2不是同位角的是 ( )2. 如图,∠1与∠2不是同旁内角的是 ( )3. 如图,∠1和∠3是 角,∠2和∠3是 角,∠1和∠2是 角,∠1和∠4是 角,∠2和∠5是 角. 4. 如图,直线BD 上有一点C ,则: (1)∠1和∠ABC 是 角,它是直线 和 直线 被直线______所截而成的;(2)∠2和∠BAC 是 角,它是直线 和直线 被直线______所截而成的;(3)∠3和∠ABC 是 角,它是直线 和直线 被直线______所截而成的; (4)∠ABC 和∠ACD 是 角,它是直线 和直线 被直线______所截而成的;(5)∠ABC 和∠BCE 是 角,它是直线 和直线 被直线______所截而成的;5.如图,当AB ,CD 被BD 所截时,内错角是______________________________; 当AD ,BC 被BD 所截时, 内错角是______________________________.三、解答题6.如图,试找出图中与∠1是同位角的所有的角.1 2 A . 12 1 22 1B .C .D .2 1 2 1 2 12 1 B . A . C . D . 214 35 (第3题)21 3 DC B A E(第4题) A B DC (第5题) (第6题)B 1ACF GD E H第5课时 平行线1.下列说法:①过一点有且只有一条直线垂直于已知直线;②过一点有且只有一条直线平行于已知直线;③与同一条直线平行的两直线必平行;④与同一条直线相交的两直线必相交,其中正确有 ( )A .1个B .2个C .3个D .4个 2.在同一平面内的两条直线的位置关系有 。
2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在下列4个判断中:①在同一平面内,不相交也不重合的两条线段一定平行;②在同一平面内,不相交也不重合的两条直线一定平行;③在同一平面内,不平行也不重合的两条线段一定相交;④在同一平面内,不平行也不重合的两条直线一定相交.正确判断的个数是()A.4B.3C.2D.12.如图,∠1和∠2分别为直线l3与直线l1和l2相交所成角.如果∠1=62°,那么添加下列哪个条件后,可判定l1∥l2()A.∠2=118°B.∠4=128°C.∠3=28°D.∠5=28°3.若将一副三角板按如图所示的方式放置,则下列结论正确的是()A.∠1=∠2B.如果∠2=30°,则有AC∥DEC.如果∠2=45°,则有∠4=∠D D.如果∠2=50°,则有BC∥AE4.如图,下列条件:①∠1=∠2;②∠4=∠5;③∠2+∠5=180°;④∠1=∠3;⑤∠6=∠1+∠2;其中能判断直线l1∥l2的有()A.5个B.4个C.3个D.2个5.在同一个平面内,不相邻的两个直角,如果它们有一条边共线,那么另一边互相()A.平行B.垂直C.共线D.平行或共线6.如图1,A、B两个村庄在一条河l(不计河的宽度)的两侧,现要建一座码头,使它到A、B两个村庄的距离之和最小.如图2,连接AB,与l交于点C,则C点即为所求的码头的位置,这样做的理由是()A.垂线段最短B.两点确定一条直线C.两点之间,线段最短D.平行于同一条直线的两条直线平行7.如图,①∠B+∠BFE=180°;②∠1=∠2;③∠3=∠4;④∠B=∠5.能判定AB∥EF 的条件有()A.1个B.2个C.3个D.4个8.下列画出的直线a与b不一定平行的是()A.B.C.D.二.填空题9.在同一平面内,直线a、b、c中,若a⊥b,b∥c,则a、c的位置关系是.10.如图,用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是.11.如图,共有组平行线段.12.一副三角板按如图所示叠放在一起,其中点B、D重合,若固定三角形AOB,改变三角板ACD的位置(其中A点位置始终不变),当∠BAD=时,CD∥AB.13.下列四种说法:①过一点有且只有一条直线与已知直线平行;②在同一平面内,两条不相交的线段是平行线段;③相等的角是对顶角;④在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交.其中,错误的是(填序号).14.如图:PC∥AB,QC∥AB,则点P、C、Q在一条直线上.理由是:.三.解答题15.如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?16.如图,AD⊥BC于D,EF⊥BC于F,∠1=∠2,AB与DG平行吗?为什么?17.证明:两直线平行,同位角的角平分线互相平行.18.如图1,已知AC∥BD,点P是直线AC,BD间的一点,连接AB,AP,BP,过点P作直线MN∥AC.(1)MN与BD的位置关系是什么,请说明理由;(2)试说明∠APB=∠PBD+∠P AC;(3)如图2,当点P在直线AC上方时,(2)中的三个角的数量关系是否仍然成立?如果成立,试说明理由;如果不成立,试探索它们存在的关系,并说明理由.19.如图,如果CD∥AB,CE∥AB,那么C,D,E三点是否共线?你能说明理由吗?20.如图,已知∠1+∠2=180°,∠3=∠B,求证:DE∥BC.21.如图,已知∠A=∠AGE,∠D=∠DGC.(1)求证:AB∥CD;(2)若∠2+∠1=180°,且∠BEC=2∠B+30°,求∠C的度数.22.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起(其中,∠A=60°,∠D=30°;∠E=∠B=45°):(1)若∠DCE=35°,求∠ACB的度数;(2)猜想∠ACB与∠DCE的数量关系,并说明理由;(3)请你动手操作,现将三角尺ACD固定,三角尺BCE的CE边与CA边重合,绕点C 顺时针方向旋转,当0°<∠ACE<180°且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请直接写出∠ACE角度所有可能的值(不必说明理由);若不存在,请说明理由.参考答案一.选择题1.解:在同一平面内,不相交也不重合的两条直线一定平行,故①错误,②正确;在同一平面内,不平行也不重合的两条直线一定相交故,③错误,④正确.故正确判断的个数是2.故选:C.2.解:∠1=62°,要使l1∥l2,则需∠3=62°(同位角相等,两直线平行),由图可知,∠2与∠3是邻补角,则只需∠2=180°﹣62°=118°,故选:A.3.解:∵∠CAB=∠DAE=90°,∴∠1=∠3,故A错误.∵∠2=30°,∴∠1=∠3=60°∴∠CAE=90°+60°=150°,∴∠E+∠CAE=180°,∴AC∥DE,故B正确,∵∠2=45°,∴∠1=∠2=∠3=45°,∵∠E+∠3=∠B+∠4,∴∠4=30°,∵∠D=60°,∴∠4≠∠D,故C错误,∵∠2=50°,∴∠3=40°,∴∠B≠∠3,∴BC不平行AE,故D错误.故选:B.4.解:①∵∠1=∠2不能得到l1∥l2,故本条件不合题意;②∵∠4=∠5,∴l1∥l2,故本条件符合题意;③∵∠2+∠5=180°不能得到l1∥l2,故本条件不合题意;④∵∠1=∠3,∴l1∥l2,故本条件符合题意;⑤∵∠6=∠2+∠3=∠1+∠2,∴∠1=∠3,∴l1∥l2,故本条件符合题意.故选:C.5.解:如图所示:不相邻的两个直角,如果它们有一条边共线,内错角相等,或同旁内角互补,那么另一边互相平行或共线.故选:D.6.解:由题意得,这样做的理由是:两点之间线段最短,故选:C.7.解:①当∠B+∠BFE=180°时,由同旁内角互补,两直线平行得AB∥EF,故①符合题意;②当∠1=∠2时,由内错角相等,两直线平行得DE∥BC,故②不符合题意;③当∠3=∠4时,由内错角相等,两直线平行得AB∥EF,故③符合题意;④当∠B=∠5时.由同位角相等,两直线平行得AB∥EF,故④符合题意;综上所述,能判定AB∥EF的有3个.故选:C.8.解:A.直线a与b不一定平行,故本选项符合题意;B.根据同旁内角互补,两直线平行可得a∥b,故本选项不符合题意;C.根据平行线的定义可得a∥b,故本选项不符合题意;D.根据同位角相等,两直线平行可得a∥b,故本选项不符合题意;故选:A.二.填空题9.解:∵c∥b,a⊥b,∴c⊥a.故答案为c⊥a10.解:用直尺和三角尺作出直线AB、CD,得到AB∥CD的理由是同位角相等,两直线平行;故答案为:同位角相等,两直线平行.11.解:图中的平行线段有AD∥EF;BD∥EF;DE∥FB;DE∥FC;DF∥AE;DF∥EC;DE∥BC;DF∥AC;EF∥AB.共有9对.故答案为:9.12.解:如图所示:当CD∥AB时,∠BAD=∠D=30°;如图所示,当AB∥CD时,∠C=∠BAC=60°,∴∠BAD=60°+90°=150°;故答案为:150°或30°.13.解:∵过直线外一点有且只有一条直线与已知直线平行,∴①错误;∵在同一平面内,两条不相交的线段可能在一条直线上,说两线段是平行线段不对,∴②错误;∵相等的角不一定是对顶角,∴③错误;∵在同一平面内,若直线AB∥CD,直线AB与EF相交,则CD与EF相交,正确,∴④正确;故答案为:①②③.14.解:∵PC∥AB,QC∥AB,∵PC和CQ都过点C,∴P、C、Q在一条直线上(过直线外一点有且只有一条直线与已知直线平行),故答案为:过直线外一点有且只有一条直线与已知直线平行.三.解答题15.解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.16.解:结论:AB∥DG.理由:∵AD⊥BC于D,EF⊥BC于F,∴AD∥EF,∴∠1=∠BAD,∵∠1=∠2,∴∠BAD=∠2,∴AB∥DG.17.解:已知:如图,AB∥CD,HI与AB,CD分别交于点M、N,EM,FN分别是∠AMH,∠CNH的平分线.求证:EM∥FN.证明:∵AB∥CD,∴∠AMH=∠CNH(两直线平行,同位角相等),∵EM,FN分别是∠AMH,∠CNH的平分线,∴∠1=∠AMH,∠2=∠CNH,∴∠1=∠2,∴EM∥FN(同位角相等,两直线平行).18.解:(1)平行;理由如下:∵AC∥BD,MN∥AC,∴MN∥BD;(2)∵AC∥BD,MN∥BD,∴∠PBD=∠1,∠P AC=∠2,∴∠APB=∠1+∠2=∠PBD+∠P AC.(3)答:不成立.它们的关系是∠APB=∠PBD﹣∠P AC.理由是:如图2,过点P作PQ∥AC,∵AC∥BD,∴PQ∥AC∥BD,∴∠P AC=∠APQ,∠PBD=∠BPQ,∴∠APB=∠BPQ﹣∠APQ=∠PBD﹣∠P AC.19.解:共线.因为过直线AB外一点C有且只有一条直线与AB平行,CD、DE都经过点C且与AB平行,所以点C、D、E三点共线.20.证明:∵∠1+∠2=180°(已知)∵∠1=∠4(对顶角相等)∴∠2+∠4=180°(等量代换)∴AB∥EF(同旁内角互补,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)21.证明:(1)∵∠A=∠AGE,∠D=∠DGC,又∵∠AGE=∠DGC,∴∠A=∠D,∴AB∥CD;(2)∵∠1+∠2=180°,又∵∠CGD+∠2=180°,∴∠CGD=∠1,∴CE∥FB,∴∠C=∠BFD,∠CEB+∠B=180°.又∵∠BEC=2∠B+30°,∴2∠B+30°+∠B=180°,∴∠B=50°.又∵AB∥CD,∴∠B=∠BFD,∴∠C=∠BFD=∠B=50°.22.解:(1)∵∠ECB=90°,∠DCE=35°,∴∠DCB=90°﹣35°=55°,∴∠ACB=∠ACD+∠DCB=90°+55°=145°;(2)∠ACB+∠DCE=180°,理由:∵∠ACB=∠ACD+∠DCB=90°+∠DCB,∴∠ACB+∠DCE=90°+∠DCB+∠DCE=90°+90°=180°;(3)存在,当∠ACE=30°时,AD∥BC,当∠ACE=∠E=45°时,AC∥BE,当∠ACE=120°时,AD∥CE,当∠ACE=135°时,BE∥CD,当∠ACE=165°时,BE∥AD.。
初中数学同步训练必刷题(人教版七年级下册 5.2.2 平行线的判定)一、单选题(每题3分,共30分)1.(2022七下·乐亭期末)如图,点E在BA延长线上,下列条件不能判断AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠EAD=∠ADC D.∠C+∠ABC=180°2.(2022七下·雷州期末)如图,下列条件中能判定直线l1//l2的是()A.∠1=∠2B.∠1=∠5C.∠1+∠3=180°D.∠3=∠53.(2022七下·迁安期末)如图,下列条件,不能判定AB∥DC的是()A.∠1=∠2B.∠3=∠4C.∠2+∠3+∠A=180∘D.∠4+∠1=∠54.(2022七下·喀什期末)如图,下列条件中,不能判断直线l1∥l2的是()A.∠1=∠2B.∠3=∠4C.∠4=∠6D.∠2+∠5=180°5.(2022七下·长沙期末)如图,能推断AB//CD的是()A.∠2=∠4B.∠1=∠5C.∠3=∠BAD D.∠B+∠BCD=180°6.(2022七下·承德期末)如图,下列条件中能判定AB∥CE的是()A.∠B=∠ACE B.∠B=∠ACB C.∠A=∠ECD D.∠A=∠ACE 7.(2022七下·无棣期末)如图,下列条件中不能判断直线a∥b的是()A.∠1=∠5B.∠6=∠7C.∠4+∠6=180°D.∠3=∠68.(2022七下·福田期末)如图,已知∠1=68°,要使AB∥CD,则需具备下列哪个条件()A.∠2=112°B.∠2=132°C.∠2=68°D.∠3=112°9.(2022七下·花都期末)如图,能判定AB∥CD的条件是()A.∠A+∠ABC=180°B.∠A=∠CC.∠CBD=∠ADB D.∠ABD=∠CDB10.(2022七下·上虞期末)在一次数学活动课上,老师让同学们用两个大小、形状都相同的三角板画平行线AB,CD,贝贝、晶晶、欢欢三位同学的做法如图所示:上述三位同学的做法中,依据“内错角相等,两直线平行”的是()A.仅贝贝同学B.贝贝和晶晶C.晶晶和欢欢D.贝贝和欢欢二、填空题(每题3分,共30分)11.(2022七下·双台子期末)如图,用直尺和三角尺作出直线AB、CD,得到AB∠CD的理由是.12.(2022七下·前进期末)如图,在四边形ABCD中,在不添加任何辅助线和字母的情况下,添加一个条件,使AB∥DC.(填一个即可)13.(2022七下·大安期末)如图,小明在两块按如图所示的方式摆放的含30°角的直角三角板的边缘画直线AB、CD,得到AB∥CD,这是根据,两直线平行.14.(2022七下·燕山期末)如图,要使CD∥BE,需要添加的一个条件为:.15.(2022七下·杭州期中)如图,下列条件中能推出a∠b的有.①∠3=∠5,②∠1=∠7,③∠2+∠5=180°,④∠1+∠4=180°.16.(2022七下·临清期中)如图,如果∠A+=180°,那么AD∥BC.17.(2022七下·田家庵期末)如图,直线AB,CD被直线CE所截,∠C=100°,请写出能判定AB∠CD 的一个条件:.18.(2022七下·津南期中)如图,点C在射线BD上,请你添加一个条件,使得AB∥CE.19.(2022七下·任丘期末)如图,下列错误的是(填序号)①如果∠ADE=∠B,那么DE∥BC;②如果∠AED=∠C,那么DE∥BC;③如果∠ADE=∠C,那么DE∥BC;④如果∠DFB=∠C,那么DF∥EC;⑤如果∠DFB=∠AED,那么DF∥AC.20.(2022七下·南昌期末)如图,将一副三角板按如图放置,则下列结论:①∠1=∠2=∠3;②当∠1=45°时,则有AD∥BC;③当∠2=30°时,则有AC∥DE;④当∠3=60°时,则有AB⊥DE.其中正确的序号是.三、解答题(共6题,共60分)21.(2022七下·大安期末)如图AF 与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.求证:AB∥CE.请完成下列推理过程:证明:∵CD 平分∠ECF∴∠ECD= ▲ ( )∵∠ACB=∠FCD( )∴∠ECD=∠ACB( )∵∠B=∠ACB∴∠B=∠▲( )∴AB∥CE( ).22.(2022七下·平谷期末)已知:如图,CF平分∠ACM,∠1=72°,∠2=36°,判断CM与DN是否平行,并说明理由.23.(2022七下·韩城期中)如图,一条街道的两个拐角∠ABC=128°,∠BCD=52°,这时街道AB 与CD平行吗?为什么?24.(2022七下·化州期末)如图,B,F,E,C在同一条直线上,∠A=∠D.(1)若∠A=78°,∠C=47°,求∠BFD的度数.(2)若∠AEB+∠BFD=180°,求证:AB∠CD.25.(2022七下·秦皇岛期中)如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)求证:CD//EF(2)如果∠1=∠2,求证:DG//BC.26.(2021七下·松原期末)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF∠AC,∠2=150°,求∠AFG的度数.答案解析部分1.【答案】B【知识点】平行线的判定【解析】【解答】∵∠1=∠2,∴AB∠CD,所以A选项不符合题意;∵∠3=∠4,∴AD∠CD,所以B选项符合题意;∵∠EAD=∠ADC,∴AB∠CD,所以C选项不符合题意;∵∠C+∠ABC=180°,∴AB∠CD,所以D选项不符合题意.故答案为:B.【分析】利用平行线的判定方法逐项判断即可。
2022-2023学年人教版七年级数学下册《5.2平行线及其判定》同步练习题(附答案)一.选择题1.在长方体中,对任意一条棱,与它平行的棱共有()A.1条B.2条C.3条D.4条2.如图,点E在AB的延长线上,下列条件中,能判定AB∥DC的是()A.∠A+∠ABC=180°B.∠ABD=∠CDBC.∠A=∠CBE D.∠ADB=∠CBD3.如图,已知∠A=∠BEF,那么()A.AD∥BC B.AB∥CD C.EF∥BC D.AD∥EF4.如图,∠1=∠2,则下列结论正确的是()A.∠3=∠4B.AD∥BC C.AB=CD D.AB∥CD5.如图,现给出下列条件:①∠1=∠B,②∠2=∠5,③∠3=∠4,④∠BCD+∠D=180°.其中能够得到AB∥CD的条件有()A.①②B.①③C.①④D.②④6.如图,在同一平面内,经过直线l外一点O有四条直线①②③④,借助直尺和三角板判断,与直线l平行的是()A.①B.②C.③D.④7.如图,工人师傅移动角尺在工件上画出直线CD∥EF,其中的道理是()A.同位角相等,两直线平行B.内错角相等,两直线平行C.同旁内角互补,两直线平行D.以上结论都不正确8.如图所示,已知∠1=65°,∠2=80°,∠3=35°,下列条件中,能得到AB∥CD的是()A.∠4=80°B.∠5=65°C.∠4=35°D.∠5=35°9.如图,直线a、b被直线c所截.若∠1=55°,则∠2的度数是()时能判定a∥b.A.35°B.45°C.125°D.145°10.如图,下列推理中,正确的是()A.因为∠1=∠3,所以AB∥CD B.因为∠1=∠3,所以AE∥CFC.因为∠2=∠4,所以AB∥CD D.因为∠2=∠4,所以AE∥CF二.填空题11.如图,由∠A+∠B=180°,可得:AD∥BC.理由是.12.如图,能判定DE∥BC的条件是(用图中的符号表示,填一个即可).13.将一副三角板如图摆放,则互相平行的两条线段是.14.如图,一个弯形管道ABCD,若它的两个拐角∠ABC=120°,∠BCD=60°,则管道AB∥CD.这里用到的推理依据是.15.经过直线外一点,有且只有直线与这条直线平行.16.如图,直线c与a、b相交,∠1=35°,∠2=80°,要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是.17.如图,点E在AB的延长线上,下列条件:①∠1=∠3;②∠2=∠4;③∠DAB=∠CBE;④∠D+∠BCD=180°;⑤∠DCB=∠CBE.其中能判断AD∥CB的是(填写正确的序号即可).18.在同一平面内,不重合的两条直线的位置关系是.19.如图,已知直线EF⊥MN垂足为F,且∠1=138°,则当∠2等于时,AB∥CD.20.如图,把三角尺的直角顶点放在直线b上.若∠1=40°,则当∠2=°时,a ∥b.三.解答题21.如图,已知AB⊥BC,∠1+∠2=90°,∠2=∠3.求证:BE∥DF.证明:∵AB⊥BC,∴∠ABC=°,即∠3+∠4=°.∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°.∴∠1=∠,∴BE∥DF.理由是:.22.如图,E在四边形ABCD的边CD的延长线上,连接BE交AD于F,已知∠A=∠C,∠1+∠2=180°,求证:AB∥CD.23.如图,∠EAD=130°,∠B=50°,试说明EF∥BC.24.已知:如图所示,∠ABD和∠BDC的平分线交于E,BE交CD于点F,∠1+∠2=90°.(1)求证:AB∥CD;(2)试探究∠2与∠3的数量关系.25.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.参考答案一.选择题1.解:由题意知,在长方体中,对任意一条棱,与它平行的棱共有3条,故选:C.2.解:A、当∠A+∠ABC=180°时,可得:AD∥BC,不合题意;B、当∠ABD=∠CDB时,可得:AB∥DC,符合题意;C、当∠A=∠CBE时,可得:AD∥BC,不符合题意;D、当∠ADB=∠CBD时,可得:AD∥BC,不合题意;故选:B.3.解:∵∠A=∠BEF,∴AD∥EF.故选:D.4.解:∵∠1=∠2,∴AB∥CD.故选:D.5.解:①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠D+∠BCD=180°,∴AD∥CB,故本小题错误.所以正确的有①②.故选:A.6.解:借助直尺和三角板,经过刻度尺平移测量,③符合题意,故选:C.7.解:∵∠CDB=∠FEB,∵CD∥EF(同位角相等,两直线平行),故选:A.8.解:∵∠3=35°,∠5=35°,∴∠3=∠5,∴AB∥CD(内错角相等,两直线平行),故选:D.9.解:如图,∵∠2=125°,∠2+∠3=180°,∴∠3=55°,∵∠1=55°,∴∠1=∠3,∴a∥b,故选:C.10.解:A.由∠1=∠3,不能得到AB∥CD,故本选项错误;B.由∠1=∠3,不能得到AE∥CF,故本选项错误;C.由∠2=∠4,不能得到AB∥CD,故本选项错误;D.由∠2=∠4,可以得到AE∥CF,故本选项正确;故选:D.二.填空题11.解:由∠A+∠B=180°,可得:AD∥BC,理由是同旁内角互补,两直线平行;故答案为:同旁内角互补,两直线平行.12.解:添加一个条件:∠1=∠C(答案不唯一),理由如下:∵∠1=∠C,∴DE∥BC(同位角相等,两直线平行),故答案为:∠1=∠C(答案不唯一).13.解:∵∠ACB=90°,∠DEF=90°,∴∠ACB=∠DEF,∴BC∥ED(内错角相等,两直线平行),故答案为:BC和ED.14.解:∵∠ABC=120°,∠BCD=60°∴∠ABC+∠BCD=180°,∴AB∥CD(同旁内角互补,两直线平行),故答案为:同旁内角互补,两直线平行.15.解:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:一条.16.解:如图,∵∠3=∠1=35°时,a∥b,∴要使直线a与b平行,直线a绕点O逆时针旋转的度数至少是80°﹣35°=45°.故答案为:45°.17.解:①当∠1=∠3时,AB∥DC,不符合题意;②当∠2=∠4时,AD∥CB,符合题意;③当∠DAB=∠CBE时,AD∥BC,符合题意;④当∠D+∠BCD=180°时,AD∥BC,符合题意;⑤当∠DCB=∠CBE时,AB∥CD,不符合题意;故选:②③④.18.解:在同一平面内,不重合的两条直线的位置关系是平行和相交,故答案为:平行和相交.19.解:∵AB∥CD,∴∠3=∠4,又∵∠1+∠3=180°,∠1=138°,∴∠3=∠4=42°;∵EF⊥MN,∴∠2+∠4=90°,∴∠2=48°;故答案为:48°.20.解:∵∠1=40°,∴∠3=90°﹣40°=50°,∵a∥b,∴∠2=∠3=50°,故答案为50.三.解答题21.证明:∵AB⊥BC,∴∠ABC=90°,即∠3+∠4=90°,∵∠1+∠2=90°,且∠2=∠3,∴∠1+∠3=90°,∴∠1=∠4,∴BE∥DF,理由是:同位角相等,两直线平行.故答案为:90;90;4;同位角相等,两直线平行.22.证明:∵∠1+∠2=180°,∴AD∥BC,∴∠3=∠C,∵∠A=∠C,∴∠A=∠3,∴AB∥CD.23.证明:∵∠EAD=∠F AB,∠EAD=130°,∴∠F AB=130°,∵∠B=50°,∴∠B+∠F AB=180°,∴EF∥BC(同旁内角互补,两直线平行).24.证明:(1)∵BE、DE平分∠ABD、∠BDC,∴∠1=∠ABD,∠2=∠BDC;∵∠1+∠2=90°,∴∠ABD+∠BDC=180°;∴AB∥CD;(同旁内角互补,两直线平行)解:(2)∵DE平分∠BDC,∴∠2=∠FDE;∵∠1+∠2=90°,∴∠BED=180﹣(∠1+∠2)=90°=∠DEF=90°;∴∠3+∠FDE=90°;∴∠2+∠3=90°.25.证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∴∠C=∠AMN,∵∠3=∠C,∴∠3=∠AMN,∴AB∥MN.。
平行线的判定一、学习目标会用平行线的判定定理判定两直线平行。
1、会用同位角相等,或内错角相等,或同旁内角互补判定两条直线平行。
2、能利用平行线判定的三个方法,进行较简单的综合运用和推理。
二、要点指津我们已经学习了四种证明两条直线平行的方法。
同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行,如果两条直线都和第三条直线平行,那么这两条直线也平行。
这四种方法是解题中常用的,要根据题目的不同条件,灵活选择方法。
三、例题分析[例1]如图,直线a、b被直线c所截,∠1=∠2,判断a、b的位置关系,如何证明?解题思路:∠1和∠2不是同位角、不是内错角、不是同旁内角。
应借助对顶角,转化成如上两种角的关系,来证明a∥b。
解:∵∠1=∠2(已知),∠1=∠3(对顶角相等)∴∠2=∠3∴a∥b(同位角相等,两直线平行)[例2]我们不能直接利用定义来判断两直线是否平行,因此,我们寻找另外一些判断方法。
看模型,将木条a,c固定在一起,转动b木条,可以看到当b转动到不同的位置时,∠2的大小也随之变化,换句话说,当∠2从小变大时,直线b使从原来在右边与直线a相交,变到在左边与a相交,在这个过程中,存在一个与a不相交,即与a平行的位置,那么∠2多大时,a//b呢?如图所示提示:从上节画平行线的过程可以看出,画平行线的过程,实际上是过P点画∠DHG=∠BGF 的过程,而∠DHG和∠BGF正是直线AB,CD被EF截得的同位角,这就是说,如果同位角相等,那么两直线平行。
参考答案:公理:两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简单说成:同位角相等,两直线平行。
说明:上述情境中的∠2的大小应与a与c所夹的角相等时,a//b。
即同位角相等,两直线平行。
[例3]两条直线被第三条直线所截,同时得到同位角,内错角,同旁内角。
我们已经知道,由同位角相等,可以判定两条直线平行,那么能不能利用内错角或同旁内角判定两条直线平行呢?提示:直线a,b被C所截,∠1与∠2是同位角,∠2与∠3是内错角,∠1与∠3是对顶角,如果∠3=∠2,由∠3=∠1可得到∠1=∠2,于是a//b。
5.2.2.1平行线的判定方法一、选择题1.如图,∠1=120°,要使a∥b,则∠2的大小是()A.60°B.80°C.100°D.120°2.如图,下列条件中,不能判定直线a∥b的是()A.∠1=∠3B.∠2+∠4=180°C.∠4=∠5D.∠2=∠33.如图,下列说法错误的是()A.若a∥b,b∥c,则a∥cB.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥cD.若∠3+∠5=180°,则a∥c4.如图,能判定EB∥AC的条件是()A.∠C=∠ABEB.∠A=∠EBDC.∠C=∠ABCD.∠A=∠ABE二、填空题5.如图,∠1=∠2,试说明AB∥CD.请补全以下说理过程.解:∵∠1=∠2(已知),且∠3=∠2(),∴∠1=(),∴AB∥CD().三、解答题6.如图,∠1=60°,∠2=60°,∠3=120°.试说明:(1)DE∥BC;(2)DF∥AB.7.如图,AB∥EF,∠1=60°,∠2=120°,则CD和EF平行吗?为什么?8. (1)如图所示,当∠BED与∠B,∠D满足条件时,可以判定AB∥CD;(2)试说明你填写的条件的正确性.参考答案1.D2.D3.C4.D5.对顶角相等∠3等量代换同位角相等,两直线平行6.解:(1)∵∠1=60°,∠2=60°,∴∠1=∠2,∴DE∥BC(同位角相等,两直线平行).(2)如图,∵∠1=60°,∴∠4=∠1=60°.∵∠3=120°,∴∠3+∠4=180°,∴DF∥AB(同旁内角互补,两直线平行).7.解:CD∥EF.理由:∵∠1=60°,∠2=120°(已知),∴∠1+∠2=180°,∴AB∥CD(同旁内角互补,两直线平行).∵AB∥EF(已知),∴CD∥EF(如果两条直线都与第三条直线平行,那么这两条直线也互相平行).8.解:(1)∠BED=∠B+∠D(2)如图,过点E在∠BED的内部作一个角∠BEF,使得∠BEF=∠B,∴AB∥EF.∵∠BED=∠B+∠D,∴∠FED=∠D,∴EF∥CD,∴AB∥CD.关于数学名言警句大全1、数学家本质上是个着迷者,不迷就没有数学。
5.2.2平行线的判定【学习目标】1、借助于直尺和三角板的画图过程,得出两条直线平行的判定方法一,进而推出判定方法二与方法三。
2、理解并掌握平行线的判定方法,并能运用它判定两条直线的平行关系。
【学习过程】 一.课前准备:1.如果a ∥b ,b ∥c ,那么。
理由是。
2.如图,请填空:①∠1与∠2是直线和直线被直线 所截而成的角;②∠3与∠2是直线和直线被直线 所截而成的角;③∠5与∠6是直线和直线被直线 所截而成的角;④∠4与∠7是直线和直线被直线所截而成的角; ⑤∠8与∠2是直线和直线被直线所截而成的角。
3. 填空:经过直线外一点,________与这条直线平行. 二、探索与思考(一)平行线判定方法1: 1、观察思考:(教材13页)请同学们利用直尺、三角板画直线CD ,使得它经过P 点,且平行于直线AB 。
2.画图后回答问题:过直线AB 外一点P 画直线AB 的平行线,①三角尺紧靠直尺的边和直线AB 所成的角在平移前的位置和平移后的位置构成了一对______角,其大小____________。
②只要保持_________相等,画出的直线就平行于已知直线。
③由上面的画图与问题,你能否用一句话来概括? 判定方法1:。
简单说成:。
87654321GFEDCBA符号语言:例如,如下图,直线a、b被直线l所截,如果∠1=∠2,那么。
问题1:在上图中,如果知道∠1=∠3,a∥b吗?判定方法2:。
简单说成:。
符号语言:例1如下图,直线a、b被直线l所截,已知∠1=115°,∠2=115°,直线a、b平行吗?为什么?问题2:如上图,如果知道∠1+ ∠5=180 0,能否证明a∥b?判定方法3:。
简单说成:。
符号语言:例2 如下图,在四边形ABCD中,已知∠B=60°,∠C=120°,AB与CD平行吗?AD与BC平行吗?例3直线CD、EF均与直线AB垂直,D、F为垂足。
七年级下册数学5.2.2平行线的判定知识点训练知识点一、平行线的判定公理两条直线被第三条直线所截,如果同位角相等,那么两直线平行。
简称:同位角相等,两直线平行。
二、平行线的两条判定定理1、两条直线被第三条直线所截,如果内错角相等,那么两直线平行。
简称:内错角相等,两直线平行。
2、两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。
简称:同旁内角互补,两直线平行。
三、补充平行线的判定方法1、平行于同一条直线的两直线平行。
2、垂直于同一条直线的两直线平行。
3、平行线的定义。
知识点训练一、选择。
1.如图,已知直线a、b、c,若∠1=∠2=60°,且∠2=∠3,则图中平行线组数为( )A .0B .1C .2D .32.如图,已知下列条件不能判定直线//a b 的是( )A .12∠=∠B .34∠=∠C .14∠=∠D .45180︒∠+∠=3.如图,下列给定的条件中,不能判定//AB DF 的是( )A .1A ∠=∠B .3A ∠=∠C .14∠=∠D .2180A ∠+∠=︒4.在同一平面内,不重合的三条直线a 、b 、c 中,如果a b ⊥,b c ⊥,那么a 与c 的位置关系是( )A .垂直B .平行C .相交D .不能确定5.在下列图形中,由∠1=∠2能得到AB ∥CD 的是( )A .B .C .D .6.如图,可以判定AB //CD 的条件是( )A .∠1=∠2B .∠BAD +∠B =180°C .∠3=∠4D .∠D =∠57.如图,下列条件:①∠1=∠3,②∠2=∠3,③∠4=∠5,④∠2+∠4=180°中,能判断直线l 1∥l 2的有( )A .1个B .2个C .3个D .4个8.如图,∠1=∠2,判断哪两条直线平行( )A .AB ∥CD B .AD ∥BC C .A 和B 都对D .无法判断9.如图所示,点E 在AC 的延长线上,下列条件中不能判断AC ∥BD 的是( )A .∠3=∠4B .∠D +∠ACD =180°C .∠D =∠DCE D .∠1=∠210.如图,点E 在BC 的延长线上,现给出下列条件:①180BAD ADC ∠+∠=︒;②;ABD BDC ∠=∠③ADB DBC ∠=∠;④ABE DCE ∠=∠.其中,能得到//AB CD的条件是()A.①②③B.①②④C.②③④D.①③④二、填空。
第五章相交线与平行线 5.2.2 平行线的判定1.如图,要使直线l∥OB,则∠1的度数是()A.120°B.30°C.40°D.60°2. 如图,已知∠1=70°,要使AB∥CD,则须具备的另一条件是()A.∠2=70°B.∠2=100°C.∠2=110°D.∠3=110°3. 如图,不能判定直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°4. 如图,直线a、b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3B.∠2+∠4=180°C.∠1=∠4 D.∠3=∠45. 如图,下列说法错误的是()A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥cC.若∠3=∠2,则b∥c D.若∠3+∠5=180°,则a∥c6. 如图,能判定EB∥AC的条件是()A.∠C=∠ABE B.∠A=∠EBD C.∠C=∠ABC D.∠A=∠ABE 7. 如图,∠1=110°,∠2=110°,则∥,理由是.8.如图,利用直尺和三角板过已知直线l外一点p作直线l平行线的方法,其理由是.9. 结合图形,用符号语言表达定理“同旁内角互补,两直线平行”的推理形式:∵,∴a∥b.10. 如图,若∠B=∠3,则∥,根据是;若∠2=∠A,则∥,根据是;若∠2=∠E,则∥,根据是;若∠D+∠ACD=180°,则∥,根据是.11. 如图,直线a、b都与直线c相交,下列条件:①∠1=∠2;②∠3=∠6;③∠1=∠8;④∠8+∠5=180°.其中能判断a∥b的条件是(填序号).12. 如图所示,一个弯形管道ABCD的拐角∠ABC=110°,∠BCD=70°,管道AB、CD的关系是,依据是.13. 如图,∠1=∠2,∠2=∠3,你能判断图中哪些直线平行吗?并说出理由.14. 如图所示,根据下列条件,可以得出哪两条直线平行?并说明根据.(1)∠ABD=∠CDB;(2)∠CBA+∠BAD=180°;(3)∠ABC=∠DCE.15. 如图,已知∠1=∠2,∠3+∠4=180°,试探究AB与EF的位置关系,并说明理由.16. 如图,已知∠1=70°,∠CDN=125°,CM平分∠DCF.试判断CM与DN是否平行?并说明理由.17. (1)如图①,若∠B+∠D=∠BED,试猜想AB与CD的位置关系并说明理由;(2)如图②,要想得到AB∥CD,则∠1、∠2、∠3之间应满足怎样的关系呢?请探索.答案:1---5 DCBDD D6. a b 内错角相等,两直线平行7. 同位角相等,两直线平行8. ∠1+∠3=180°9. AB CE 同位角相等,两直线平行AB CE 内错角相等,两直线平行AC ED 内错角相等,两直线平行AC ED 同旁内角互补,两直线平行10. ①②③④11. AB∥CD 同旁内角互补,两直线平行12. 解:DE∥BF,AB∥CD.理由如下:∵∠1=∠2,∴DE∥BF(同位角相等,两直线平行).∵∠2=∠3,∴∠1=∠3(等量代换).∴AB∥CD(内错角相等,两直线平行).13. (1)由∠ABD=∠CDB,可以得出AB∥CD,根据是“内错角相等,两直线平行”;(2)由∠CBA+∠BAD=180°,可以得出AD∥BC,根据是“同旁内角互补,两直线平行”;(3)由∠ABC=∠DCE,可以得出AB∥CD,根据是“同位角相等,两直线平行”.14. 解:AB∥EF,理由:∵∠1=∠2,∴AB∥CD,又∵∠3+∠4=180°,∴CD∥EF,∴AB∥EF.15. 解:CM∥DN.理由:∵∠1=70°,∴∠FCD=180°-70°=110°,∵CM平分∠FCD,∴∠MCD=55°,∵∠CDN=125°,∴∠MCD+∠CDN=180°,∴CM∥DN.16. 解:(1)AB∥CD.理由:过点E在∠BED的内部作∠BEF=∠B,则AB∥EF.∵∠B+∠D=∠BED,∠BEF+∠DEF=∠BED,∴∠D=∠DEF,∴EF∥CD,∴AB∥CD;(2)∠1=∠2+∠3.理由:过点E作∠AEM=∠1,则ME∥AB,∵∠1=∠2+∠3,∠AEM=∠2+∠MEC,∴∠3=∠MEC,∴ME∥CD,∴AB∥CD.。
5.2.2.2平行线的判定方法的应用
一、选择题
1.如图,由∠1=∠2能得到AB∥CD的是()
2.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a顺时针旋转的度数至少是()
A.15°
B.25°
C.35°
D.50°
3.如图是用直尺和一个含45°角的三角尺画平行线的示意图,图中∠α的度数为()
A.135°
B.90°
C.60°
D.45°
4.如图,在下列给出的条件中,不能判定AB∥CD的是()
A.∠BAD+∠ADC=180°
B.∠ABD=∠BDC
C.∠ADB=∠DBC
D.∠ABE=∠DCE
5.如图,工人师傅在工程施工中,需在同一平面内制作一个弯形管道ABCD,使其拐角
∠ABC=150°,∠BCD=30°,则()
A.AB∥BC
B.BC∥CD
C.AB∥CD
D.AB与CD相交
6.如图,下列推理错误的是()
A.因为∠1=∠4,所以DE∥AB
B.因为∠2=∠3,所以AD∥BE
C.因为∠5=∠A,所以AB∥DE
D.因为∠ADE+∠BED=180°,所以AD∥BE
二、填空题
7.如图,如果∠BAC=∠,那么根据, 可得AB∥CD;如果∠BAD+∠=180°或∠D+∠=180°,那么根据
,可得AD∥BC.
8.如图,E是AD延长线上的一点,若添加一个条件,使BC∥AD,则可添加的条件
为.(任意添加一个符合题意的条件即可)
9.如图,工人师傅用角尺画出工件边缘AB的垂线a和b,得到a∥b.理由
是.
10.如图,已知∠1=30°,∠B=60°,AB⊥AC,将说明AD∥BC的过程填写完整.
解:∵AB⊥AC,
∴∠=°().
∵∠1=30°,
∴∠BAD=∠+∠=°.
又∵∠B=60°,
∴∠BAD+∠B=°,
∴AD∥BC().
三、解答题
11.如图,已知∠B=∠C,点D在BA的延长线上,AE是∠DAC的平分线,试说明AE与BC平行的理由.
12.如图,已知∠AED=60°,∠EDB=30°,EF平分∠AED,那么EF与BD平行吗?为什么?
13.如图,AB⊥BC,BC⊥CD且∠1=∠2.试说明BE∥CF.
14.如图,∠ABC=∠ACB,BE平分∠ABC,CF平分∠ACB,∠EBD=∠D.试说明CF∥DE.
15.把一副三角尺按图①所示的方式拼接,固定三角尺ADC,将三角尺ABC绕点A按顺时针方向旋转一个大小为α(0°<α<180°)的角得到三角形AB'C',如图②所示.
(1)当α为多少度时,能使图②中的AB'∥CD?试说明理由;
(2)当α分别为多少度时,B'C'∥AD,AC'∥CD?
参考答案
1.B
2.C
3.D
4.C
5.C
6.C
7.ACD 内错角相等,两直线平行 B DCB 同旁内角互补,两直线平行
8.∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB 或∠C=∠CDE (答案不唯一) 9.同位角相等,两直线平行(或同旁内角互补,两直线平行) 10.BAC 90 垂直的定义 BAC 1 120 180 同旁内角互补,两直线平行 11.解:∵AE 是∠DAC 的平分线,
∴∠DAC=2∠DAE.
∵∠DAC+∠BAC=180°,∠B+∠C+∠BAC=180°, ∴∠DAC=∠B+∠C. ∵∠B=∠C , ∴∠DAC=2∠B , ∴∠DAE=∠B , ∴AE ∥BC.
12.解:EF ∥BD.理由如下:
∵∠AED=60°,EF 平分∠AED , ∴∠FED=30°.
又∵∠EDB=30°,∴∠FED=∠EDB ,
∴EF ∥BD (内错角相等,两直线平行).
13.解:∵AB ⊥BC ,BC ⊥CD (已知),
∴∠ABC=∠BCD=90°(垂直的定义). ∵∠1=∠2(已知),
∴∠ABC-∠1=∠BCD-∠2(等式的性质),
即∠EBC=∠FCB ,
∴BE ∥CF (内错角相等,两直线平行).
14.解:∵BE 平分∠ABC ,CF 平分∠ACB (已知),
∴∠EBC=12∠ABC ,∠FCB=1
2∠ACB (角平分线的定义). ∵∠ABC=∠ACB (已知),
∴∠EBC=∠FCB(等式的性质).
∵∠EBD=∠D(已知),
∴∠FCB=∠D(等量代换),
∴CF∥DE(同位角相等,两直线平行).
15.解:(1)当α=15°时,能使题图②中的AB'∥CD.
理由:∵∠B'AC'=45°,α=15°,
∴∠B'AC=30°.
∵∠C=30°,
∴∠B'AC=∠C,
∴AB'∥CD.
(2)当α=45°时,B'C'∥AD;
当α=150°时,AC'∥CD.。