人教版九年级数学上册启东中学作业本单元试题21单元
- 格式:docx
- 大小:263.23 KB
- 文档页数:5
第二十一章 一元二次方程全章测试一、填空题1.一元二次方程x 2-2x +1=0的解是______.2.若x =1是方程x 2-mx +2m =0的一个根,则方程的另一根为______.3.小华在解一元二次方程x 2-4x =0时,只得出一个根是x =4,则被他漏掉的另一个根是x =______.4.当a ______时,方程(x -b )2=-a 有实数解,实数解为______.5.已知关于x 的一元二次方程(m 2-1)x m -2+3mx -1=0,则m =______.6.若关于x 的一元二次方程x 2+ax +a =0的一个根是3,则a =______.7.若(x 2-5x +6)2+|x 2+3x -10|=0,则x =______.8.已知关于x 的方程x 2-2x +n -1=0有两个不相等的实数根,那么|n -2|+n +1的化简结果是______.二、选择题9.方程x 2-3x +2=0的解是( ).A .1和2B .-1和-2C .1和-2D .-1和210.关于x 的一元二次方程x 2-mx +(m -2)=0的根的情况是( ).A .有两个不相等的实数根B .有两个相等的实数根C .没有实数根D .无法确定11.已知a ,b ,c 分别是三角形的三边,则方程(a +b )x 2+2cx +(a +b )=0的根的情况是( ).A .没有实数根B .可能有且只有一个实数根C .有两个不相等的实数根D .有两个不相等的实数根12.如果关于x 的一元二次方程0222=+-k x x 没有实数根,那么k 的最小整数值是( ). A .0 B .1 C .2 D .313.关于x 的方程x 2+m (1-x )-2(1-x )=0,下面结论正确的是( ).A .m 不能为0,否则方程无解B .m 为任何实数时,方程都有实数解C .当2<m <6时,方程无实数解D .当m 取某些实数时,方程有无穷多个解三、解答题14.选择最佳方法解下列关于x 的方程:(1)(x +1)2=(1-2x )2. (2)x 2-6x +8=0.(3).02222=+-x x(4)x (x +4)=21.(5)-2x 2+2x +1=0.(6)x 2-(2a -b )x +a 2-ab =0.15.应用配方法把关于x 的二次三项式2x 2-4x +6变形,然后证明:无论x 取任何实数值,二次三项式的值都是正数.16.关于x 的方程x 2-2x +k -1=0有两个不等的实数根.(1)求k 的取值范围;(2)若k +1是方程x 2-2x +k -1=4的一个解,求k 的值.17.已知关于x 的两个一元二次方程:方程:02132)12(22=+-+-+k k x k x ① 方程:0492)2(2=+++-k x k x ② (1)若方程①、②都有实数根,求k 的最小整数值;(2)若方程①和②中只有一个方程有实数根;则方程①,②中没有实数根的方程是______(填方程的序号),并说明理由;(3)在(2)的条件下,若k 为正整数,解出有实数根的方程的根.18.已知a ,b ,c 分别是△ABC 的三边长,当m >0时,关于x 的一元二次方程+2(x c02)()2=--+ax m m x b m 有两个相等的实数根,试说明△ABC 一定是直角三角形.19.如图,菱形ABCD 中,AC ,BD 交于O ,AC =8m,BD =6m,动点M 从A 出发沿AC 方向以2m/s匀速直线运动到C ,动点N 从B 出发沿BD 方向以1m/s 匀速直线运动到D ,若M ,N 同时出发,问出发后几秒钟时,ΔMON 的面积为?m 412答案与提示第二十一章 一元二次方程全章测试1.x 1=x 2=1. 2.-2. 3.0. 4..,0a b x -±=≤5.4. 6.⋅-49 7.2. 8.3. 9.A. 10.A. 11.A. 12.D. 13.C. 14.(1)x 1=2,x 2=0; (2)x 1=2,x 2=4; (3);221==x x(4)x 1=-7,x 2=3; (5);231,23121-=+=x x (6)x 1=a ,x 2=a -b .15.变为2(x -1)2+4,证略.16.(1)k <2;(2)k =-3.17.(1)7;(2)①;∆2-∆1=(k -4)2+4>0,若方程①、②只有一个有实数根,则∆ 2>0> ∆ 1;(3)k=5时,方程②的根为;2721==x x k =6时,方程②的根为x 1=⋅-=+278,2782x 18.∆=4m (a 2+b 2-c 2)=0,∴a 2+b 2=c 2.19.设出发后x 秒时,⋅=∆41MON S (1)当x <2时,点M 在线段AO 上,点N 在线段BO 上.⋅=--41)3)(24(21x x 解得);s (225,2)s (225,21-=∴<±=x x x x (2)当2<x <3时,点M 在线段OC 上,点N 在线段BO 上,)3)(42(21x x --⋅=41 解得);s (2521==x x (3)当x >3时,点M 在线段OC 上,点N 在线段OD 上,=--)3)(42(21x x ⋅41 解得).s (225+=x 综上所述,出发后s,225+或s 25时,△MON 的面积为.m 412。
人教版数学九年级上册第21章一元二次方程单元训练题含答案一、选择题1.一元二次方程x2-2(3x-2)+(x+1)=0的普通方式是( )A.x2-5x+5=0 B.x2+5x-5=0C.x2+5x+5=0 D.x2+5=02.关于x的方程(m-3)xm2-2m-1-mx+6=0是一元二次方程,那么它的一次项系数是( )A.-1 B.1C.3 D.3或-13.关于x的方程ax2+bx+c=0,有以下说法:①假定a≠0,那么方程必是一元二次方程;②假定a=0,那么方程必是一元一次方程,那么上述说法( ) A.①②均正确B.①②均错误C.①正确,②错误D.①错误,②正确4.以下说法中,正确的有( )①假定x2=9,那么x是9的平方根;②x=3不是方程x2=3的根;③x2-12=0的根是x=±23;④x2-4x+4=(x-2)2.A.1个B.2个C.3个D.4个5.关于x的一元二次方程x2+ax-1=0的根的状况是( )A .没有实数根B .只要一个实数根C .有两个相等的实数根D .有两个不相等的实数根6.关于恣意实数a 、b ,定义f(a ,b)=a 2+5a -b ,如f(2,3)=22+5×2-3,假定f(x,2)=4,那么实数x 的值是( ) A .1或-6 B .-1或6 C .-5或1D .5或17. 假定关于x 的方程(a -2)x 2-2ax +a +2=0是一元二次方程,那么a( ) A .等于2 B .等于-2 C .等于0 D .不等于2 8. 用配方法解方程3x 2-6x +1=0,配方后失掉的方程是( ) A .(x -3)2=13 B .3(x -1)2=13C .(3x -1)2=1 D .(x -1)2=239. 假定方程3x 2-4x -4=0的两个实数根区分为x 1,x 2,那么x 1+x 2=( ) A .-4 B .3 C .-43 D.4310. 某商品的原价为289元,经过延续两次降价后售价为256元,设平均每次降价的百分率为x ,那么下面所列方程中正确的选项是( ) A .289(1-x)2=256 B .256(1-x)2=289C.289(1-2x)=256 D.256(1-2x)=289二、填空题11.把一元二次方程x2-6x+4=0化成(x+n)2=m的方式时,m=,n =.12.x=1是一元二次方程x2+ax+b=0的一个根,那么代数式a2+b2+2ab的值是.13.关于x2-x-6=0与2x+m =1x-3有一个解相反,那么m=.14.关于x的一元二次方程kx2-2x+1=0有实数根,那么k的取值范围是.15.当x=-1 时,代数式8-2x2-4x有值,其值为.三、解答题16.用恰当的方法解以下方程:(1)x2-10x+25=7;(2)3x(x-1)=2-2x;(3)3x2-10x+6=0.17.解方程2x2-23x=22,有一位同窗解答如下:解:∵a=2,b=-23,c=22,∴b2-4ac=(-23)2-4×2×22=12-82·2=-4<0.故原方程无实数根.请剖析以上解答有无错误,如有错误,指出错误的中央,并写出正确解答进程.18. 某一个一元二次方程被墨水染成为:■x2+■x+6=0,小明、小亮回想说:请依据上述对话,求出方程的另一个解.19.阅读题例,解答下题:例:解方程:x2-|x|-2=0.解:(1)当x≥0,x2-x-2=0,解得x1=-1(不合题意,舍去),x2=2;(2)当x<0,x2+x-2=0,解得x1=1(不合题意,舍去),x2=-2.综上所述,原方程的解是x=2或x=-2.依照上例解法,解方程x2+2|x+2|-4=0.20.关于x的方程x2-(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)假定等腰△ABC的一边长为a=6,另两边长b、c恰恰是这个方程的两个根,求此三角形的周长.参考答案;一、1---10 AACCD ADDD二、11. 5 -312. 113. -814. k≤1且k≠015. 最大 10三、16. 解:(1)x 2-10x +25=7,(x -5)2=7,x -5=±7,x 1=5+7,x 2=5-7;(2)方程变形得:3x(x -1)+2(x -1)=0,因式分解得:(x -1)(3x +2)=0,可得x -1=0,3x +2=0,解得:x 1=1,x 2=-23;(3)∵a =3,b =-10,c =6,∴b 2-4ac =(-10)2-4×3×6=100-72=28>0,∴x =10±276,∴x =5+73或x =5-73.17. 解:错在c 的符号上c =-22, ∵a =2,b =-23,c =-22,∴Δ=b 2-4ac =(-23)2-4×2×(-22)=12+16=28>0, ∴x =23±282×2=23±272×2=3±72=6±142.即x 1=6+142,x 2=6-142. 18. 解:设二次项系数为a ,那么一次项系数为a 2,∴方程为ax 2 +a 2 x +6=0,∵方程的一个根为x =3,那么有9a +3a 2 +6=0,即a 2 +3a +2=0,配方得(a +32)2=14,解得a 1 =-1,a 2 =-2,又由于二次项系数小于-1,∴a =-2.∴当a =-2时,方程为-2x 2 +4x +6=0,化简得:x 2-2x -3=0,配方得(x -1)2=4,解得x 1 =-1,x 2 =3.∴方程的另一个解为-1.19. 解:x +2≥0,x≥-2时,方程变形得:x 2+2(x +2)-4=0⇒x 2+2x =0⇒x(x +2)=0⇒x 1=0,x 2=-2.当x <-2时,x 2-2(x +2)-4=0⇒x 2-2x -8=0.(x +2)(x -4)=0⇒x 1=-2(舍去),x 2=4(舍去),综上所述:原方程的解是x 1=0或x 2=-2.20. 解:(1)∵b 2-4ac =[-(3k +1)]2-4(2k 2+2k)=9k 2+6k +1-8k 2-8k =k 2-2k +1=(k -1)2,∵(k -1)2≥0,∴b 2-4ac≥0,即无论k 取任何实数值,方程总有实数根;(2) ①当等腰三角形的底边长为a 时,∴方程有两个相等的实数根,∴(k -1)2=0,∴k =1,方程变形为:x 2-4x +4=0,解得x 1=x 2=2,由于2+2<6,故此三角形不存在; ②当等腰三角形的腰长为a 时,即方程的一个实数根为6,∴将x =6代入方程得,k 2-8k +15=0,∵Δ=4,∴k =8±42,∴k 1=5,k 2=3,当k =5时,方程变形为x 2-16x +60=0,∵Δ=16,∴x =16±162,∴x 1=10,x 2=6,∴三角形的三边为6,6,10,∴此三角形的周长为22;当k =3时,方程变形为:x 2-10x +24=0,∵Δ=4,∴x =10±42,∴x 1=4,x 2=6,∴三角形的三边为6,6,4,∴此三角形的周长为16.综上,三角形的周长为22或16.。
人教版九年级上册数学第二十一章练习和习题答案人教版九年级上册数学第4页练习答案1.解:(1)5x²-4x-1=0,二次相系数为5,一次项系数为-4,常数项为-1.(2)4x²-81=0,二次项系数为4,一次项系数为0,常数项为-81. (3)4x²+8x-25=0,二次项系数为4,一次项系数为8,常数项为-25.(4)3x²-7x+1=0,二次项系数为3,一次项系数为-7,常数项为1.【规律方式:化为一般形式即把所有的项都移到方程的左侧,右边化为0的行驶,在肯定二次项系数,一次项系数和常数项时,要特别注意各项系数及常数项均包括前面的符号.】2.解:(1)4x²=25,4x²-25=0.(2)x(x-2)=100,x²-2x-100=0.(3)x∙1=(1-x)²-3x+1=0.人教版九年级上册数学第6页练习答案解:(1)2x²-8=0,∴x²=4,∴x_1=2,x_2=-2.(2)9x^2-5=3,移项,得9x^2=8,x^2=8/9,∴x_1=(2√2)/3,x_2=-(2√2)/3.(3)(x+6)²-9=0,移项,得(x+6)²=9.∴x+6=±3,∴x_1=-3,x_3=-9.(4)3(x-1)²-6=0,移项,化简得(x-1)²=2,∴x-1=±√2,∴x_1=1-√2,x_2=1+√2.(5)x²-4x+4=5,(x-2)²=5,∴x-2=±√5,∴x_1=2-√5,x_2=2+√5.(6)9x²+5=1.9x²=1-5,9x^2=-4.∵-4<0,,9x^2+5=1-5,9x^2=-4.∵-4<0,,9x^2+5=1无实数根.【规律方式:利用直接开平方式,首先应把方程化为左侧是含未知数的完全平方的形式.】人教版九年级上册数学第9页练习答案1.(1)25 5 (2)36 6 (3)25/4 5/2 (4)1/9 1/3【规律方式:对一个式子进行配方,先将二次项的系数变成1,然后在一次项以后加上一次项系数一般的平方,即得完全平方式.】2.解:(1)x²+10x+9=0,x²+10x+25-25+9=0,(x+5)²=16,x+5=±4,∴x_1=-1,x_2=-9.(2) x^2-x-7/4=0,x^2-x+(1/2)^2-(1/2)²-7/4=0,(x-1/2)²=2,x-1/2=±√2,∴x_1=1/2-√2,x_2=1/2+√2.(3)3x²+6x-4=0,3(x²+2x)-4=0.3(x²+2x+1-1)-4=0.3(x+1)²=7,(x+1)²=7/3,x+1=±√21/3,x_1=-1-√21/3,x_2=-1+√21/3.(4)4x^2-6x-3=0,4(x^2-3/2 x)=3,(x-3/4)^2=21/16,x-3/4=±√21/4,∴x_1=3/4-√21/4,x_2=3/4+√21/4.(5)x²+4x-9=2x-11,x²+2x+2=0,(x+1)²=-1,∴原方程无实数根.(6)x(x+4)=8x+12,x²-4x-12=0,(x-2)²=16,x-2=±4,∴x_1=6,x_2=-2.【规律方式:配方式解方程时,补充的项应为一次项系数一半的平方,组成完全平方后,在用直接开平方式来解.】人教版九年级上册数学第12页练习答案1.解:(1)x²+x-6=0,∵a=1,b=1,c=-6,∴b²-4ab=1+24=25>0,∴x=(-1±√25)/2,∴x_1=(-1-5)/1=-3,x_2=(-1+5)/2=2. (2) x^2-√3 x- 1/4=0,∵a=1,b=-√(3,)c=-1/4,∴b²-4ac=3-4×(-1/4)=4>0,∴x= (√3±2)/2,∴x_1=(√3-2)/2,x_2=(√3+2)/2.(3)3x²-6x-2=0,∵a=3,b=-6,c=-2,∴b²-4ac=36-4×3×(-2)=60>0,∴x= (6±√60)/(2×3)=(6±2√15)/6=(3±√15)/3,∴x_1=(3-√15)/3,x_2=(3+√15)/3.(4)4x²-6x=0,∵a=4,b=-6,c=0,∴b²-4ac=36-4×4×0=36>0,∴x= (6±6)/(2×4),x_1=0,x_2=3/2.(5)x²+4x+8=4x+11,整理,得x²-3=0,∵a=1,b=0,c=-3,∴b²-4ac=0-4×1×(-3)=12>0,∴x= (±√12)/2=±√3,∴x_1=√3,x_2=-√3.(6)x(2x-4)=5-8x,整理,得2x²+4x-5=0,∵a=2,b=4,c=-5,∴b²-4ac=16-4×2×(-5)=56,∴=(-4+√56)/(2×2)=(-4±2√14)/4=(-2±√14)/2,∴x_1=(-2-√14)/2,x_2=(-2+√14)/2.【规律方式:利用公式法解方程有如下四个步骤:一是将方程化为一般形式,即ax²+bx+c=0(a≠0)的形式;二是找出二次项系数a,一次项系数b及常数项c;三是求出b²-4ac的值;四是将a,b,b²-4ac的值代入求根公式,求出方程解.】2.解:x²-75x+350=0,∵a=1,b=-75,c=350,∴b²-4ac=(-75)²-4×1×350=4225,∴x= (75±√4225)/(2×1)=(75±65)/2,∴x_1=5,x_2=70(舍去).答:应切去边长为5cm的正方形.人教版九年级上册数学第14页练习答案1.解:(1)x²+x=0,x(x+1)=0,∴x=0或x+1=0,∴x_1=0,x_2=-1.(2)x²-2√3 x=0,x(x-2√3)=0,∴=0或x-2√3=0,∴x_1=0,x_2=2√3.(3)3x²-6x=-3,x²-2x+1=0,(x-1)²=0,∴x_1=x_2=1.(4)4x²-121=0,(2x-11)∙(2x+11)=0,∴2x-11=0或2x+11=0,∴x_1=11/2,x_2=-11/2.(5)3x(2x+1)=4x+2,3x(2x+1)-2(2x+1)=0,(2x+1)(3x-2)=0,,2x+1=0或3x-2=0,∴x_1=-1/2,x_2=2/3.(6)(x-4)²=(5-2x)²,(x-4)²-(5-2x)²=0,(x-4+5-2x)(x-4-5+2x)=0,(1-x)(3x-9)=0,∴1-x=0或3x-9=0,∴x_1=1,x_2=3.2.解:设小圆形场地的半径为Rm,则大圆形场地的半径为(R+5)m,由题意,得2πR²=π(R+5)^2,2R²=(R+5)^2,R²-10R-25=0,∴R= (10±√(10²+4×25))/2=(10±10√2)/2=5±5√2,R1=5-5√2(舍去),R2=5+5√2.答:小圆形场地的半径为(5+5√2)m.人教版九年级上册数学第16页练习答案解:(1)设x_1,x_2是方程x²-3x=15的两根,整理x²-3x=15,x²-3x-15=0,所以x_1+x_2=3,x_1∙x_2=-15.(2)设x_1,x_2 是方程3x²+2=1-4x的两根,整理3x²+2=1-4x,得3x²+4x+1=0,所以x_1+x_2=-4/3,x_1∙x_2=1/3.(3)设x_1,x_2 是方程5x^2-1=4x^2+x的两根,整理5x^2-1=4x^2+x,得x^2-x-1=0,所以x_1+x_2=1,x_1∙x_2=-1.(4)设x_1 x_2是方程2x²-x+2=3x+1的两根,整理方程2x²-x+2=3x+1,得2x²-4x+1=0,所以x_1+x_2=2,x_1 x_2=1/2.人教版九年级上册数学习题21.1答案1.解:(1)3x²-6x+1=0,二次项系数为3,一次项系数-6,常数项为1.(2)4x²+5x-81=0,二次项系数为4,一次项系数为5,常数项为-81.(3)x²+5x=0,二次项系数为1,一次项系数为5,常数项为0.(4)x²-2x+1=0,二次项系数为1,一次项系数为-2,常数项为1.(5)x²+10=0,二次项系数为1,一次项系数为0,常数项为10.(6)x²+2x-2=0,二次项系数为1,一次项系数为2,常数项为-2.2.解:(1)设这个圆的半径为Rm,由圆的面积公式得πR²=6.28,∴πR²-6.28=0.(2)设这个直角三角形较长的直角边长为x cm,由直角三角形的面积公式,得1/2x(x-3)=9,∴x²-3x-18=0.3.解:方程x²+x-12=0的根是-4,3.4.解:设矩形的宽为x cm,则矩形的长为(x+1)cm,由矩形的面积公式,得x ∙(x+1)=132,∴x^2+x-132=0.5.解:设矩形的长为x m,则矩形的宽为(0.5-x)m,由矩形的面积公式,得∙(0.5-x)=0.06,∴x²-0.5x+0.06=0.6.解:设有n人参加聚会,按照题意,可知(n-1)+(n-2)+(n-3)+…+3+2+1=10.即(n(n-1))/2=10,n²-n-20=0.7.解:由题意可知2²-c=0,∴c=4,∴原方程为x²-4=0,∴=±2,∴这个方程的另一个根为-2.人教版九年级上册数学习题21.2答案1.解:(1)36x²-1=0,移项,得36x²=1,直接开平方,得6x=±1,,6x=1或6x=-1,∴原方程的解是x_1=1/6,x_2=-1/6.(2)4x²=81,直接开平方,得2=±9,,2x=9或2x=-9,∴原方程的解是x_1=9/2,x_2=-9/2.(3)(x+5)²=25,直接开平方,得x+5=±5,∴+5=5或x+5=-5,∴原方程的解是x_1=0,x_2=-10.(4)x²+2x+1=4,原方程化为(x+1)^2=4,直接开平方,得x+1=±2,∴x+1=2或x+1=-2,∴原方程的解是x_1=1,x_2=-3.2.(1)9 3 (2)1/4 1/2 (3)1 1 (4)1/25 1/53.解:(1)x²+10x+16=0,移项,得x²+10x=-16,配方,得x²+10x+5²=-16+5²,即(x+5)²=9,开平方,得x+5=±3,∴+5=3或x+5=-3,∴原方程的解为x_1=-2,x_2=-8.(2)x²-x-3/4=0,移项,得x^2-x=3/4,配方,得x^2-x=3/4,配方,得x^2-x+1/4=3/4+1/4,即(x-1/2)^2=1,开平方,得x- 1/2=±1,∴原方程的解为x_1=3/2,x_2=-1/2.(3)3x²+6x-5=0,二次项系数化为1,得x²+2x-5/3=0,移项,得x²+2x=5/3,配方,得x²+2x+1=5/3+1,即(x+1)²=8/3,开平方,得x+1=±2/3 √6,∴x+1=2/3 √6或x+1=-2/3 √6,∴原方程的解为x_1=-1+2/3 √6,x_2=-1-2/3 √6. (4)4x²-x-9=0,二次项系数化为1,得x²-1/4x-9/4=0,移项,得x²-1/4 x= 9/4,配方,得x²-1/4x+1/64=9/4+1/64,即(x-1/8)²=145/64,开平方,得x-1/8=±√145/8,∴x-1/8=√145/8 或x- 1/8=-√145/8,∴原方程的解为x_1=1/8+√145/8,x_2=1/8-√145/8.4.解:(1)因为△=(-3)²-4×2×(-3/2)=21>0,所以原方程有两个不相等的实数根.(2)因为△=(-24)²-4×16×9=0,所以与原方程有两个相等的实数根.(3)因为△=(-4√2)^2-4×1×9=-4<0,因为△=(-8)²-4×10=24>0,所以原方程有两个不相等的实数根.5.解:(1)x²+x-12=0,∵a=1,b=1,c=-12,∴b²-4ac=1-4×1×(-12)=49>0,∴x= (-1±√49)/2=(-1±7)/2,∴原方程的根为x_1=-4,x_2=3.(2)x²-√2x-1/4=0,∵a=1,b=-√2,c=-1/4,∴b²-4ac=2-4×1×(-1/4)=3>0,∴x= (√2+√3)/2,∴原方程的根为x_1=(√2+√3)/2,x_2=(√2-√3)/2.(3)x²+4x+8=2x+11,原方程化为x²+2x-3=0,∵a=1,b=2,c=-3,∴b²-4ac=2²-4×1×(-3)=16>0,∴x= (-2±√16)/(2×1)=(-2±4)/2,∴原方程的根为x_1=-3,x_2=1.(4)x(x-4)=2-8x,原方程化为x²+4x-2=0,∵a=1,b=4,c=-2,∴b²-4ac=4²-4×1×(-2)=24>0,∴x= (-4±√24)/(2×1)=(-4±2√6)/2,原方程的根为x_1=-2+√6,x_2=-2√6.(5)x²+2x=0,∵a=1,b=2,c=0,∴b²-4ac=2²-4×1×0=4>0,∴x= (-2±√4)/(2×1)=(-2±2)/2,∴原方程的根为x_1=0,x_2=-2. (6)x^2+2√5x+10=0,∵a=1,b=2√5,c=10,∴b^2-4ac=(2√5)²-4×1×10=-20<0,∴原方程无实数根.6.解:(1)3x²-12x=-12,原方程可化为x²-4x+4=0,即(x-2)²=0,∴原方程的根为x_1=x_2=2.(2)4x^2-144=0,原方程可化为4(x+6)(x-6),∴x+6=0或x-6=0,∴原方程的根为x_1=-6,x_2=6.(3)3x(x-1)=2(x-1),原方程可化为(x-1)∙(3x-2)=0,∴x-1=0或3x-2=0,∴原方程的根为x_1=1,x_2=2/3.(4)(2x-1)²=(3-x)²,原方程可化为【(2x-1)+(3-x)】【(2x-1)-(3-x)】=0,即(x+2)(3x-4)=0,∴x+2=0或3x-4=0,∴原方程的根为x_1=-2,x_2=4/3.7.解:设原方程的两根别离为x_1,x_2.(1)原方程可化为x^2-3x-8=0,所以x_1+x_2=3,x_1∙x_2=-8.(2)x_1+x_2=-1/5,x_1∙x_2=-1.(3)原方程可化为x²-4x-6=0,所以x_1+x_2=4,x_1∙x_2=-6.(4)原方程可化为7x²-x-13=0,所以x_1+x_2=1/7,x_1∙x_2=-13/7.8.解:设这个直角三角形的较短直角边长为 x cm,则较长直角边长为(x+5)cm,按照题意,得1/2 x(x+5)=7,所以x²+5x-14=0,解得x_1=-7,x_2=2,因为直角三角形的边长为√(x²+(x+5)^2 )=√(2²+7²)=√53 (cm).答:这个直角三角形斜边的长为√53cm.9.解:设共有x家公司参加商品交易会,由题意可知(x-1)+(x-2)+(x-3)+…+3+2+1=45,即x(x-1)/2=45,∴x^2-x-90=0,即(x-10)(x+9)=0,∴x-10=0或x+9=0,∴x_1=10,x_2=-9,∵x必需是正整数,∴x=-9不符合题意。
新人教版九年级数学上册《第21章一元二次方程》单元测试卷(2)一、选择题(每小题3分,共18分)1.(3分)下列方程中,你最喜欢的一个一元二次方程是()A.﹣x=9B.x3﹣x2+40=0C.=3D.3x3﹣2xy+y2=02.(3分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=5 3.(3分)下列一元二次方程两实数根和为﹣4的是()A.x2+2x﹣4=0B.x2﹣4x+4=0C.x2+4x+10=0D.x2+4x﹣5=0 4.(3分)方程x(x﹣2)+x﹣2=0的解是()A.2B.﹣2,1C.﹣1D.2,﹣1 5.(3分)已知一元二次方程x2﹣8x+15=0的两个解恰好分别是等腰△ABC的底边长和腰长,则△ABC的周长为()A.13B.11或13C.11D.126.(3分)长春市企业退休人员王大爷2011年的工资是每月2100元,连续两年增长后,2013年大王大爷的工资是每月2541元,若设这两年平均每年的增长率为x,根据题意可列方程()A.2100(1+x)=2541B.2541(1﹣x)2=2100C.2100(1+x)2=2541D.2541(1﹣x2)=2100二、填空题(每小题3分,共18分)7.(3分)一元二次方程3x2+2x﹣5=0的一次项系数是.8.(3分)方程(x﹣3)2﹣9=0的解为.9.(3分)若方程x2﹣x=0的两根为x1,x2(x1<x2),则x2﹣x1=.10.(3分)关于x的一元二次方程kx2﹣x+1=0有两个不相等的实数根,则k的取值范围是.11.(3分)若关于x的方程ax2+2(a+2)x+a=0有实数解,那么实数a的取值范围是.12.(3分)某种传染性牛疾在牛群中传播迅猛,平均一头牛每隔6小时能传染m头牛,现知一养牛场有a头牛染有此病,那么12小时后共有头牛染上此病(用含a、m的代数式表示).三、解答题(每小题0分,共64分)13.用适当方法解方程.(1)x2﹣2x=2x+1(2)(x+1)(x﹣1)+2(x+3)=8(3)x2﹣2x=5(4)2(x﹣3)=3x(x﹣3)14.若方程(m﹣1)+5x﹣3=0是关于x的一元二次方程,求m的值.15.已知a是方程x2﹣2013x+1=0的一个根,求代数式a2﹣2012a+的值.16.已知关于x的方程x2﹣(m+2)x+(2m﹣1)=0.(1)求证:方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求以此两根为边长的直角三角形的周长.17.教材或资料会出现这样的题目:把方程x2﹣x=2化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项.现在把上面的题目改编为下面的两个小题,请解答.(1)下列式子中,有哪几个是方程x2﹣x=2所化的一元二次方程的一般形式?(答案只写序号)①x2﹣x﹣2=0;②﹣x2+x+2=0;③x2﹣2x=4;④﹣x2+2x+4=0;⑤x2﹣2x﹣4=0.(2)方程x2﹣x=2化为一元二次方程的一般形式,它的二次项系数,一次项系数,常数项之间具有什么关系?18.如图①:要设计一幅宽20cm,长30cm的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?如图②:用含x的代数式表示:AB=cm;AD=cm;矩形ABCD的面积为cm2;列出方程并完成本题解答.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?20.如图,A、B、C、D为矩形的四个顶点,AB=16cm,AD=6cm,动点P、Q分别从点A、C同时出发,点P以3cm/s的速度向点B移动,一直到达B为止,点Q以2cm/s的速度向D移动.(1)P、Q两点从出发开始到几秒时,四边形PBCQ的面积为33cm2;(2)P、Q两点从出发开始到几秒时,点P和点Q的距离是10cm.新人教版九年级数学上册《第21章一元二次方程》单元测试卷(2)参考答案一、选择题(每小题3分,共18分)1.A;2.A;3.D;4.D;5.B;6.C;二、填空题(每小题3分,共18分)7.2;8.x1=6,x2=0;9.1;10.k<且k≠0;11.a≥﹣1;12.am2+2am+a;三、解答题(每小题0分,共64分)13.;14.;15.;16.;17.;18.(20﹣6x);(30﹣4x);(24x2﹣260x+600);19.;20.;。
九年级数学上册第21章单元检测题卷(时间100分钟,满分120分)一、选择(每小题3分,共30分)1.若代数式x-2在实数范围内有意义,则x的取值范围是( ) A.x≥-2B.x>-2C.x≥2D.x≤22.设实数a,b在数轴上对应的位置如图所示,化简a2+|a+b|的结果是( )A.-2a+b B.2a+b C.-b D.b3.计算912÷5412×36之值为( )A.312 B.36 C.33 D.3344.在根式①a2+b2;②x5;③x2-xy;④27abc中,最简二次根式是( )A.①②B.③④C.①③D.①④5.如果a<0,b<0,且a-b=6,那么a2-b2的值是( )A.6 B.-6 C.6或-6 D.无法确定6.已知x<0,那么(2x-x2)2的结果等于( )A.x B.-x C.3x D.-3x7.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长是( )A.20或16 B.20 C.16 D.以上选项都不正确8.已知a-b=23-1,ab=3,则(a+1)(b-1)的值为( )A.- 3 B.3 3 C.33-2 D.3-19.方程|4x-8|+x-y-m=0,当y>0时,m的取值范围是( )A.0<m<1 B.m≥2 C.m<2 D.m≤210.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( ) A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间二、填空(每小题3分,共24分)11.在实数范围内分解因式:x3-6x=__ __.12.若等式(x3-2)0=1成立,则x的取值范围是__ __.13.我们赋予“※”一个实际含义,规定a※b=a·b+ab,计算3※5=__14.已知a,b为两个连续的整数,且a<28<b,则a+b=__ __.15.计算:(3-2)2(5+26)=_ _.16.已知x-2+2-x=y+3,则y x的平方根为__ _.17.已知a为实数,则代数式a+2-2-4a+-a2的值为_ __.18.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是_ __.三、用心做一做(共66分)19.(16分)计算:(1)48÷3-12×12+24;(2)8-1848-(23412-234);(3) (2-3)2017×(2+3)2016-2⎪⎪⎪⎪⎪⎪-32-(-2)0;(4)(a +2ab +b )÷(a +b )-(b -a ).20.(6分)求不等式组⎩⎨⎧(1-2)·x <1,x +5>3(x +1)的整数解.21.(6分)已知a =23-b +3b -9+2,求ab -1a +b ÷a·b 的值.22.(7分)先化简,再求值:(2a +1+a +2a 2-1)÷aa -1,其中a =2-1.23.(7分)已知a =2+1,求a 3-a 2-3a +2016的值.24.(7分)已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.25.(7分)已知a =2-1,b =2+1.求:(1)a 2b +ab 2的值;(2)b a +a b 的值.26.(10分)已知实数x ,y ,z 满足x +y -32-32-x -y =3x -z +2x +y -433z ,试问长度分别为x ,y ,z 的三条线段能否组成一个三角形?若能,请求出该三角形的周长和面积;若不能,请说明理由.【解析】九年级数学上册第21章单元检测题卷(时间100分钟,满分120分)一、选择(每小题3分,共30分)1.若代数式x-2在实数范围内有意义,则x的取值范围是( C ) A.x≥-2B.x>-2C.x≥2D.x≤22.设实数a,b在数轴上对应的位置如图所示,化简a2+|a+b|的结果是( D )A.-2a+b B.2a+b C.-b D.b3.计算912÷5412×36之值为( B )A.312 B.36 C.33 D.3344.在根式①a2+b2;②x5;③x2-xy;④27abc中,最简二次根式是( C )A.①②B.③④C.①③D.①④5.如果a<0,b<0,且a-b=6,那么a2-b2的值是( B )A.6 B.-6 C.6或-6 D.无法确定6.已知x<0,那么(2x-x2)2的结果等于( D )A.x B.-x C.3x D.-3x7.已知实数x,y满足|x-4|+y-8=0,则以x,y的值为两边长的等腰三角形的周长是( B )A.20或16 B.20 C.16 D.以上选项都不正确8.已知a-b=23-1,ab=3,则(a+1)(b-1)的值为( A )A.- 3 B.3 3 C.33-2 D.3-19.方程|4x-8|+x-y-m=0,当y>0时,m的取值范围是( C )A.0<m<1 B.m≥2 C.m<2 D.m≤210.如图,在平面直角坐标系中,点P坐标为(-2,3),以点O为圆心,以OP 的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于( A ) A.-4和-3之间B.3和4之间C.-5和-4之间D.4和5之间二、填空(每小题3分,共24分)11.在实数范围内分解因式:x3-6x12.若等式(x3-2)0=1成立,则x的取值范围是__x≥0且x≠12__.13.我们赋予“※”一个实际含义,规定a※b=a·b+ab,计算3※5=__6514.已知a,b为两个连续的整数,且a<28<b,则a+b=__11__.15.计算:(3-2)2(5+26)=__1__.16.已知x-2+2-x=y+3,则y x的平方根为__±3__.17.已知a为实数,则代数式a+2-2-4a+-a2的值为__0__.18.若6-13的整数部分为x,小数部分为y,则(2x+13)y的值是__3__.三、用心做一做(共66分)19.(16分)计算:(1)48÷3-12×12+24;(2)8-1848-(23412-234);解:4+6解:2+1 23(4) (2-3)2017×(2+3)2016-2⎪⎪⎪⎪⎪⎪-32-(-2)0; 解:1-23(4)(a +2ab +b )÷(a +b )-(b -a ).解:2a20.(6分)求不等式组⎩⎨⎧(1-2)·x <1,x +5>3(x +1)的整数解. 解:x =-2,-1,021.(6分)已知a =23-b +3b -9+2,求ab -1a +b÷a·b 的值. 解:∵⎩⎪⎨⎪⎧3-b ≥0,3b -9≥0,∴b =3,a =2,∴ab =6,a +b =5, ∴原式=55÷2×3=126 23.(7分)(2015·鄂州)先化简,再求值:(2a +1+a +2a 2-1)÷a a -1, 其中a =2-1.解:原式=3a +1,当a =2-1时,原式=32=322 23.(7分)已知a =2+1,求a 3-a 2-3a +2016的值.解:∵a =2+1,∴a -1=2,∴(a -1)2=2,即a 2-2a =1,∴原式=a (a 2-2a )+(a 2-2a )-a +2016=a +1-a +2016=201724.(7分)已知长方形的长a =1232,宽b =1318.(1)求长方形的周长;(2)求与长方形等面积的正方形的周长,并比较与长方形周长的大小关系.解:(1)长方形周长=2(a +b )=62 (2)设正方形边长为x ,由x 2=1232×1318,得x =2,∴正方形的周长=8<62,∴正方形的周长小于长方形的周长25.(7分)已知a =2-1,b =2+1.求:(1)a 2b +ab 2的值;(2)b a +a b 的值.解:∵ab =1,a +b =22,∴(1)a 2b +ab 2=ab (a +b )=22 (2)b a +a b=(a +b )2ab-2=(22)2-2=6 26.(10分)已知实数x ,y ,z 满足x +y -32-32-x -y =3x -z +2x +y -433z ,试问长度分别为x ,y ,z 的三条线段能否组成一个三角形?若能,请求出该三角形的周长和面积;若不能,请说明理由.解:依题意得⎩⎨⎧x +y -32=0,z -3x =0,2x +y -433z =0,∴⎩⎪⎨⎪⎧x =2,y =22,z = 6.∵z 2+x 2=y 2,∴该三角形为直角三角形,∴周长=32+6,∴面积=126×2=3。
第21章一元二次方程一.选择题1.下列方程中是一元二次方程的是()A.B.2x(x﹣1)=2x2+3C.ax2+bx+c=0D.x2=22.一元二次方程4x2﹣1=5x的二次项系数、一次项系数、常数项分别为()A.4,﹣1,5B.4,﹣5,﹣1C.4,5,﹣1D.4,﹣1,﹣5 3.a是方程x2+x﹣1=0的一个根,则代数式﹣2a2﹣2a+2020的值是()A.2018B.2019C.2020D.20214.一元二次方程9x2﹣1=0的根是()A.x1=x2=3B.x1=3,x2=﹣3C.x1=,x2=﹣D.x1=x2=5.将一元二次方程x2﹣8x﹣5=0化成(x+a)2=b(a,b为常数)的形式,则a,b的值分别是()A.﹣4,21B.﹣4,11C.4,21D.﹣8,696.已知a是一元二次方程x2﹣3x﹣5=0的较小的根,则下面对a的估计正确的是()A.﹣2<a<﹣1B.2<a<3C.﹣3<a<﹣4D.4<a<57.实数x,y满足(x+y)(x+y+1)=2,x+y的值为()A.1B.2C.﹣2或1D.2或﹣18.关于x的一元二次方程kx2+4x﹣2=0有实数根,则k的取值范围是()A.k≥﹣2B.k>﹣2且k≠0C.k≥﹣2且k≠0D.k≤﹣29.设方程x2+x﹣2=0的两个根为α,β,那么α+β﹣αβ的值等于()A.﹣3B.﹣1C.1D.310.对于任意实数x,多项式x2﹣2x+3的值是一个()A.正数B.负数C.非负数D.不能确定11.一个矩形内放入两个边长分别为3cm和4cm的小正方形纸片,按照图①放置,矩形纸片没有被两个正方形纸片覆盖的部分(黑色阴影部分)的面积为8cm2;按照图②放置,矩形纸片没有被两个正方形纸片覆盖的部分的面积为11cm2,若把两张正方形纸片按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为()A.5cm2B.6cm2C.7cm2D.8cm2二.填空题12.方程5x2﹣x﹣3=x2﹣3+x的二次项系数是.13.已知m是一元二次方程x2﹣2x﹣5=0的一个根,则3m2﹣6m+3=.14.一元二次方程x2﹣x﹣=0配方后可化为.15.一元二次方程4x2=3x的解是.16.关于x的一元二次方程2x2﹣4x+m﹣=0有实数根,则实数m的取值范围是.17.已知﹣3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是18.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,求这次有多少队参加比赛?若设这次有x队参加比赛,则根据题意可列方程为.19.五个完全相同的小长方形拼成如图所示的大长方形,大长方形的面积是135cm2,则以小长方形的宽为边长的正方形面积是cm2.三.解答题20.已知x=2是方程x2+mx+2=0的一个根,则m的值是.21.如图所示,在Rt△ABC中,∠B=90°,AB=6cm,BC=8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动.如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后,△PBQ的面积等于8cm2?(2)经过几秒后,P,Q两点间距离是cm?22.解下列一元二次方程:(1)x2+6x+5=0(2)16(x+1)2=2523.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为15m的住房墙,另外三边用27m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长,宽分别为多少米时,猪舍面积为96m2?24.如图,在Rt△ABC中,∠B=90°,AB=2cm,AC=4cm,动点M从点B出发以每秒cm的速度沿B→C→A方向移动到点A,则点M出发几秒后,可使△ABC的面积是△ABM面积的4倍?参考答案一.选择题1.解:A、x2+﹣3=0,含有分式,不合题意;B、2x(x﹣1)=2x2+3,是一元一次方程,不合题意;C、ax2+bx+c=0(a≠0),不合题意;D、x2=2,是一元二次方程,符合题意.故选:D.2.解:∵一元二次方程4x2﹣1=5x,∴整理为:4x2﹣5x﹣1=0,故一元二次方程的二次项系数、一次项系数、常数项分别为:4,﹣5,﹣1.故选:B.3.解:∵a是方程x2+x﹣1=0的一个根,∴a2+a﹣1=0,即a2+a=1,∴﹣2a2﹣2a+2020=﹣2(a2+a)+2020=﹣2×1+2020=2018.故选:A.4.解:∵9x2﹣1=0,∴9x2=1,则x2=,解得x1=,x2=﹣,故选:C.5.解:∵x2﹣8x﹣5=0,∴x2﹣8x=5,则x2﹣8x+16=5+16,即(x﹣4)2=21,∴a=﹣4,b=21,故选:A.6.解:一元二次方程x2﹣3x﹣5=0,∵a=1,b=﹣3,c=﹣5,∴△=9+20=29,∴x=,则较小的根a=,即﹣2<a<﹣1,故选:A.7.解:设t=x+y,则原方程可化为:t2+t﹣2=0,解得t=﹣2或1,即x+y=﹣2或1.故选:C.8.解:根据题意得k≠0且△=42﹣4k×(﹣2)≥0,解得k≥﹣2且k≠0.故选:C.9.解:∵α,β是方程x2+x﹣2=0的两个根,∴α+β=﹣1,αβ=﹣2,∴原式=﹣1﹣(﹣2)=1.故选:C.10.解:多项式x2﹣2x+3变形得x2﹣2x+1+2=(x﹣1)2+2,任意实数的平方都是非负数,其最小值是0,所以(x﹣1)2+2的最小值是2,故多项式x2﹣2x+3的值是一个正数,故选:A.11.解:设矩形的长为xcm,宽为ycm,依题意,得:,(②﹣①)÷3,得:y﹣x+1=0,∴x=y+1③.将③代入②,得:y(y+1)=16+3(y﹣4)+11,整理,得:y2﹣2y﹣15=0,解得:y1=5,y2=﹣3(舍去),∴x=6.∴按图③放置时,矩形纸片没有被两个正方形纸片覆盖的部分的面积为(x﹣4)(y﹣3)+(x﹣3)(y﹣4)=2×2+3×1=7.故选:C.二.填空题12.解:方程整理得:4x2﹣2x=0,则方程的二次项系数为4.故答案为:4.13.解:∵m是一元二次方程x2﹣2x﹣5=0的一个实数根,∴m2﹣2m﹣5=0,即m2﹣2m=5,∴3m2﹣6m+3=3(m2﹣2m)+3=18,故答案为:18.14.解:∵x2﹣x﹣=0,∴x2﹣x=,则x2﹣x+=+,即(x﹣)2=,故答案为:(x﹣)2=.15.解:4x2=3x,4x2﹣3x=0,x(4x﹣3)=0,x=0,4x﹣3=0,x1=0,x2=故答案为:x1=0,x2=.16.解:∵关于x的一元二次方程2x2﹣4x+m﹣=0有实数根,∴△=(﹣4)2﹣4×2×(m﹣)=16﹣8m+12≥0,解得:m≤,故答案为:m≤.17.解:设方程的另一根为a,∵﹣3是一元二次方程x2﹣4x+c=0的一个根,∴﹣3+a=4,解得a=7,故答案为:7.18.解:设这次有x队参加比赛,则此次比赛的总场数为场,根据题意列出方程得:=45,故答案是:.19.解:设小长方形的长为xcm,宽为xcm,根据题意得:(x+2×x)•x=135,解得:x=9或x=﹣9(舍去),则x=3.所以3×3=9(cm2).故答案为:9.三.解答题20.解:将x=2代入x2+mx+2=0,∴4+2m+2=0,∴m=﹣3故答案为:﹣321.解:(1)设经过x秒后,△PBQ的面积等于8cm2,则BP=(6﹣x)cm,BQ=2xcm,依题意,得:(6﹣x)×2x=8,化简,得:x2﹣6x+8=0,解得:x1=2,x2=4.答:经过2秒或4秒后,△PBQ的面积等于8cm2.(2)设经过y秒后,P,Q两点间距离是cm,则BP=(6﹣y)cm,BQ=2ycm,依题意,得:(6﹣y)2+(2y)2=()2,化简,得:5y2﹣12y﹣17=0,解得:y1=,y2=﹣1(不合题意,舍去).答:经过秒后,P,Q两点间距离是cm.22.解:(1)∵a=1,b=6,c=5,∴△=62﹣4×1×5=16>0,则,∴x1=﹣1,x2=﹣5;(2)∵,∴,∴,,∴,.23.解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(27﹣2x+1)m,由题意得x(27﹣2x+1)=96,解得:x1=6,x2=8,当x=6时,27﹣2x+1=16>15(舍去),当x=8时,27﹣2x+1=12.答:所围矩形猪舍的长为12m、宽为8m.24.解:由题意可得:当BM=BC时,△ABC的面积是△ABM面积的4倍,∵∠B=90°,AB=2cm,AC=4cm,∴BC=2cm,故BM=×2=(cm)时,△ABC的面积是△ABM面积的4倍,即点M出发=秒时,△ABC的面积是△ABM面积的4倍,当AM=AC时,△ABC的面积是△ABM面积的4倍,故AM=×4=1(cm)时,△ABC的面积是△ABM面积的4倍,此时MC=3cm,则M运动的距离为5cm,即点M出发=秒时,△ABC的面积是△ABM面积的4倍.。
如果别人思考数学的真理像我一样深入持久,他也会找到我的发现。
——高斯一元二次方程单元测试试题(一)一.选择题1.下列方程属于一元二次方程的是()A.x2+y﹣2=0B.x+y=3C.x2+2x=3D.x+=﹣52.用配方法将二次三项式x2+4x﹣96变形,结果正确的是()A.(x+2)2﹣100B.(x+2)2+100C.(x-2)2﹣100D.(x-2)2+100 3.已知x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,则x1x2等于()A.﹣2B.﹣C.D.24.已知一元二次方程3x2=﹣4+2x的常数项为4,则二次项系数和一次项系数分别为()A.3,﹣2B.﹣3,2C.3,2D.﹣3,﹣25.老师出示问题:“解方程x2﹣4=0”,四位同学给出了以下答案:小琪:x=2;子航:x1=x2=2;一帆:x1=x2=﹣2;萱萱:x=±2.你认为谁的答案正确?你的选择是()A.小琪B.子航C.一帆D.萱萱6.对于实数a、b,定义运算“★”如下:a★b=a2﹣ab,如3★2=32﹣3×2,则方程(x+1)★3=2的根的情况是()A.没有实数根B.只有一个实数根C.有两个不相等的实数根D.有两个相等的实数根7.已知2是一元二次方程x2﹣c=0的一个根,则该方程的另一个根是()A.﹣4B.﹣2C.2D.48.下列方程中是关于x的一元二次方程的是()A.x2+=0B.ax2+by+c=0C.=1D.3x2﹣2xy﹣5y2=09.方程x2﹣5=0的实数解为()A.x1=,x2=﹣B.x1=5,x2=﹣5C.x=﹣D.x=10.如图,在长为100米,宽为80米的矩形场地上修建两条小路,剩余部分进行绿化,要使绿化面积为7644平方米,那么小路进出口的宽度应为多少米?设小路进出口的宽为x 米,则可列方程为(注:所有小路进出口的宽度都相等,且每段小路均为平行四边形)()A.100×80﹣100x﹣80x=7644B.+x2=7644C.=7644D.﹣x2=7644二.填空题11.一元二次方程(x+1)(x﹣3)=3x+4化为一般形式可得.12.某校九年级举行篮球赛,初赛采用单循环制(每两个班之间都进行场比赛),据统计,比赛共进行了28场,则九年级共有个班.13.若一元二次方程x2+2x﹣m=0无实数根,则一次函数y=(m+1)x+m﹣1的图象不经过第象限.14.若实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,则的值为.15.已知实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,则+3β的值为.三.解答题16.解方程:(1)x2+4x﹣5=0;(2)3x(x﹣2)=2x﹣4.17.解下列方程:(1)x2+2x=0;(2)3(x﹣2)2=x(x﹣2).18.已知x1、x2是关于x的一元二次方程(m﹣1)x2+2mx+m=0的两实数根.(1)求实数m的取值范围;(2)是否存在实数m,使﹣x1+x1x2=4+x2成立?若存在,求m的值;若不存在,请说明理由.19.如图,某中学准备在校园里利用围墙的一段MN,再砌三面墙,围成一个矩形花园ABCD (围墙MN最长可利用25m),现在已备足可以砌40m长的墙的材料.(1)当AB长度是多少时,矩形花园的面积为150m2;(2)能否围成矩形花园面积为210m2,为什么?参考答案与试题解析一.选择题1.【解答】解:A、该方程中含有两个未知数,不是一元二次方程,故本选项不符合题意;B、该方程中含有两个未知数,不是一元二次方程,故本选项不符合题意;C、该方程符合一元二次方程的定义,故本选项符合题意;D、该方程不是整式方程,即不是一元二次方程,故本选项不符合题意;故选:C.2.【解答】解:x2+4x﹣96=x2+4x+4﹣4﹣96=(x+2)2﹣100,故选:A.3.【解答】解:∵x1、x2是一元二次方程2x2﹣4x+1=0的两个实数根,∴x1x2=.故选:C.4.【解答】解:一元二次方程3x2=﹣4+2x化为一般形式可得:3x2﹣2x+4=0,∴二次项系数、一次项系数分别为:3,﹣2.故选:A.5.【解答】解:∵x2﹣4=0,∴x2=4,则x=±2,故选:D.6.【解答】解:∵(x+1)★3=2,∴(x+1)2﹣3(x+1)=2,即x2﹣x﹣4=0,∴△=(﹣1)2﹣4×1×(﹣4)=17>0,∴方程(x+1)★3=2有两个不相等的实数根.故选:C.7.【解答】解:把x=2代入方程x2﹣c=0得4﹣c=0,解得c=4,方程为x2﹣4=0,所以x2=4,解得x1=2,x2=﹣2,即该方程的另一个根是﹣2.故选:B.8.【解答】解:A、该方程不是整式方程,故本选项不符合题意.B、当a=0时,该方程不是关于x的一元二次方程,故本选项不符合题意.C、该方程符合一元二次方程的定义,故本选项符合题意.D、该方程中含有两个未知数,属于二元二次方程,故本选项不符合题意.故选:C.9.【解答】解:移项得,x2=5,两边开方得,x=±,所以方程的解为x1=,x2=﹣.故选:A.10.【解答】解:设道路的宽应为x米,由题意有=7644,故选:C.二.填空题(共5小题)11.【解答】解:(x+1)(x﹣3)=3x+4,x2﹣2x﹣3=3x+4,x2﹣5x﹣7=0.故答案是:x2﹣5x﹣7=0.12.【解答】解:设九年级共有x个班级.依题意得:x(x﹣1)=28.解得:x1=8,x2=﹣7(不合题意舍去).故答案为:8.13.【解答】解:由已知得:△=b2﹣4ac=22﹣4×1×(﹣m)=4+4m<0,解得:m<﹣1.∵一次函数y=(m+1)x+m﹣1中,k=m+1<0,b=m﹣1<0,∴该一次函数图象在第二、三、四象限,不经过第一象限.故答案为一.14.【解答】解:当a≠b时,由实数a、b满足a2﹣8a+5=0,b2﹣8b+5=0,可把a,b看成是方程x2﹣8x+5=0的两个根,∴a+b=8,ab=5,∴======﹣20,当a=b≠1时,∴=+=1+1=2,故答案为:﹣20或2.15.【解答】解:∵实数α,β满足α2+3α﹣1=0,β2﹣3β﹣1=0,且αβ≠1,∴、β是方程x2﹣3x﹣1=0的两根,∴+β=3,=﹣1,=1+,∴原式=1++3β=1+3(+β)=1+3×3=10,故答案为10.三.解答题(共4小题)16.【解答】解:(1)∵x2+4x﹣5=0,∴(x+5)(x﹣1)=0,则x+5=0或x﹣1=0,解得x1=﹣5,x2=1;(2)∵3x(x﹣2)﹣2(x﹣2)=0,∴(x﹣2)(3x﹣2)=0,则x﹣2=0或3x﹣2=0,解得x1=2,x2=.17.【解答】解:(1)x2+2x=0,x(x+2)=0,∴x1=0,x2=﹣2;(2)3(x﹣2)2=x(x﹣2),3(x﹣2)2﹣x(x﹣2)=0(x﹣2)[3(x﹣2)﹣x]=0(x﹣2)(2x﹣6)=0x﹣2=0或2x﹣6=0∴x1=2,x2=3.18.【解答】解:(1)根据题意得△=4m2﹣4(m﹣1)m≥0,m﹣1≠0,解得m≥0且m≠1;(2)存在,理由如下:根据根与系数的关系得x1+x2=﹣,x1x2=,∵﹣x1+x1x2=4+x2,∴x1x2=4+x1+x2,∴=4﹣,∵m≥0且m≠1;∴m=4.19.【解答】解:(1)设BC=xm,则AB=CD=(40﹣x)m,x≤25,则(40﹣x)x=150,解得:x=10或30(舍去30),故x=10(m);∴AB=15(m).答:当AB长度是15m时,矩形花园的面积为150m2;(2)由题意得:则(40﹣x)x=210,化简得:x2﹣40x+420=0,△=1600﹣4×420<0,故不能围成矩形花园面积为210m2.一天,毕达哥拉斯应邀到朋友家做客。
总分100分 一、选择题(每小题3分,共30分)1.A 下列方程为一元二次方程的是A.3J 72—(3T —1)(鼻+2)第二十一章检测卷 时间90分钟成绩评定 C.x 2(2—x )=0 2. A (2013•湖南)下列一元二次方程中无实数解的方程是A.工?+2工+1=0B.JC 2+1=0C.jr 2=2J 7—1D.云―虹一5=03. A (2014・湖南益阳)一元二次方程2工+血=0总有实数根,则观应满足的条件是 A.那>1B,7?i =lC.m<Zl D.4. A (2014•云南昆明〉已知初心2是一元二次方程工2—虹+1=0的两个实数根,则工山2等于 A.—4B.—1C.1D.45. A (2014•四川宜宾)若关于工的一元二次方程的两根为心=1々2=2,则这个方程是 A.工2+3工一2=0 C,工$—2工+3=06. A (2014-山东聊城)用配方法解一元二次方程QX I b 卄妥D.JC 2—2(x+l)(x 一1)=0 A. 24ac 4a z B.—3鼻+2=0 D.+3H +2=0•2+加•+c=0(aH0),此方程可变形为B (T=JD. __6 乂2a 4a 2 '_4ac —护 =4a2 匕L 2a )4a 2 7. B 若工=a 是方程才+工一1=0的一个根,则代数式/+2卅一7的值是 A.6B.8C.-6D.—88. B (2013-f 东湛江)由于受H7N9倉流感的影响,今年4月份鸡的价格两次大幅下降,由原来每斤 元,连续两次降价Q%后售价下调到每斤5元,下列所列的方程中正确的是( A.12(l+a%¥=5B.12(1-Q %)2=5C.12(1—2a 听)=5D.12(1—Q 2%)=59. B 关于卫的方程a 才一(3a +l )_r+2(a +l )=0有两个不相等的实根对,益,且有4卫+花=1— a,则Q 的值是()A.1B.-1C.1或TD.210. C a,g 是AABC 的三边长,且关于工的方程x 2-2,cx+a 2+l7=0有两个相等的实数根,这个三角 形是()A.等边三角形 C.直角三角形12 ) B 钝角三角形 D.等腰直角三角形。
一、选择题1.欧几里得在《几何原本》中,记载了用图解法解方程22x ax b +=的方法,类似地可以用折纸的方法求方程210x x +-=的一个正根,如图,裁一张边长为1的正方形的纸片ABCD ,先折出BC 的中点E ,再折出线段AE ,然后通过折叠使EB 落在线段EA 上,折出点B 的新位置F ,因而EF EB =,类似地,在AB 上折出点M 使AMAF =,表示方程210x x +-=的一个正根的线段是( )A .线段BMB .线段AMC .线段AED .线段EM B解析:B【分析】 设正方形的边长为1,AF =AM =x ,根据勾股定理即可求出答案.【详解】解:设正方形的边长为1,AF =AM =x ,则BE =EF =12,AE =x+12, 在Rt △ABE 中,∴AE 2=AB 2+BE 2,∴(x +12)2=1+(12)2, ∴x 2+x -1=0,∴AM 的长为x 2+x -1=0的一个正根,故选:B .【点睛】本题考查一元二次方程,解题的关键是根据勾股定理列出方程,本题属于中等题型. 2.据网络统计,某品牌手机2020年一月份销售量为400万部,二月份、三月份销售量连续增长,三月份销售量达到900万部,求二月份、三月份销售量的月平均增长率?若设月平均增长率为x ,根据题意列方程为( ).A .()40012900x +=B .()40021900x ⨯+=C .()24001900x +=D .()()240040014001900x x ++++=C 解析:C【分析】设月平均增长率为x ,根据三月及五月的销售量,即可得出关于x 的一元二次方程,此题得解.【详解】解:设月平均增长率为x ,根据题意得:400(1+x )2=900.故选:C .【点睛】本题考查了一元二次方程中增长率的知识.增长前的量×(1+年平均增长率)年数=增长后的量.3.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x = D .10x =,22x =C 解析:C【分析】移项并因式分解,得到两个关于x 的一元一次方程,即可求解.【详解】解:移项,得220x x -=,因式分解,得()20x x -=,∴0x =或20x -=,解得10x =,22x =, 故选:C .【点睛】本题考查解一元二次方程,掌握因式分解法是解题的关键.4.将4张长为a 、宽为b (a >b )的长方形纸片按如图的方式拼成一个边长为(a +b )的正方形,图中空白部分的面积之和为S 1,阴影部分的面积之和为S 2.若S 1=53S 2,则a ,b 满足( )A .2a =5bB .2a =3bC .a =3bD .3a =2b C解析:C【分析】 由题意可以得到关于a 、b 的方程,并进而变形为关于a b 的方程,求出a b的值即可得到a 、b 的关系式 .【详解】解:由图可知21422S ab ab =⨯=, ∵1253S S =,∴1255102333S S ab ab ==⨯=, 又()222122S S a b a ab b +=+=++, ∴2210223ab ab a ab b +=++,即 22103a b ab +=, ∴231030a a b b ⎛⎫-⨯+= ⎪⎝⎭, ∴133a ab b ==,(舍去), ∴a=3b ,故先C .【点睛】 本题考查正方形面积、三角形面积及一元二次方程的综合运用,熟练掌握正方形面积和三角形面积的计算方法及一元二次方程的解法是解题关键.5.设m 、n 是一元二次方程2430x x -+=的两个根,则23m m n -+=( ) A .1-B .1C .17-D .17B 解析:B【分析】根据一元二次方程的根的定义、根与系数的关系即可得.【详解】由一元二次方程的根的定义得:2430m m -+=,即243m m -=-, 由一元二次方程的根与系数的关系得:441m n -+=-=, 则2234m m n m m m n -+=-++, ()()24m m m n =-++,34=-+,1=,故选:B .【点睛】本题考查了一元二次方程的根的定义、根与系数的关系,熟练掌握一元二次方程的根与系数的关系是解题关键.6.方程29180x x -+=的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .15C .12或15D .18B解析:B【分析】首先求出方程的根,再根据三角形三边关系定理列出不等式,确定是否符合题意.【详解】解:解方程x 2-9x+18=0,得x 1=3,x 2=6,当3为腰,6为底时,不能构成等腰三角形;当6为腰,3为底时,能构成等腰三角形,周长为6+6+3=15.故选:B .【点睛】本题考查了解一元二次方程,从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.7.方程23x x =的解为( )A .3x =B .3x =-C .10x =,23x =D .10x =,23x =-C解析:C【分析】方程变形后分解因式,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.【详解】解:方程变形得:x 2-3x=0,分解因式得:x (x-3)=0,可得x=0或x-3=0,解得:x 1=3,x 2=0.故选:C .【点睛】此题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解本题的关键. 8.若关于x 的一元二次方程2(1)210m x x +--=有实数根,则m 的取值范围是( ) A .2m >- B .2m ≥- C .2m >-且1m ≠- D .2m ≥-且1m ≠-D解析:D【分析】根据一元二次方程的定义和判别式的意义得到10m +≠且240b ac =-≥,然后求写出两不等式的公共部分即可.【详解】根据题意得10m +≠且()()224(2)4110b ac m =-=--+⨯-≥, 解得1m ≠-且2m ≥-.故选:D .【点睛】本题考查了根的判别式:一元二次方程20ax bx c ++=(0a ≠)的根与24b ac =-有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.已知m 是方程2210x x --=的一个根,则代数式2242020m m -+的值为( ) A .2022B .2021C .2020D .2019A解析:A【分析】把x m =代入方程2210x x --=求出221m m -=,把2242020m m -+化成()2222020m m -+,再整体代入求出即可.【详解】∵把x m =代入方程2210x x --=得:2210m m --=,∴221m m -=,∴()222420202220202120202022m m m m -+=-+=⨯+=,故选:A .【点睛】本题考查了一元二次方程的解,采用了整体代入的方法.注意:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.10.已知一元二次方程x 2﹣6x+c =0有一个根为2,则另一根及c 的值分别为( ) A .2,8B .3,4C .4,3D .4,8D 解析:D【分析】设方程的另一个根为t ,根据根与系数的关系得到t +2=6,2t =c ,然后先求出t ,再计算c 的值.【详解】解:设方程的另一个根为t ,根据题意得t +2=6,2t =c ,解得t =4,c =8.故选:D .【点睛】本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2+bx+c=0(a≠0)的两根时,x 1+x 2=-b a ,x 1x 2=c a. 二、填空题11.把方程2230x x --=化为2()x h k +=的形式来求解的方法我们叫配方法,其中h ,k 为常数,那么本题中h k +的值是_________.3【分析】首先把常数项移到等号右边经配方h 和k 即可求得进而通过计算即可得到答案【详解】根据题意移项得配方得:即∴∴故答案是:3【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法解析:3【分析】首先把常数项移到等号右边,经配方,h 和k 即可求得,进而通过计算即可得到答案.【详解】根据题意,移项得223x x -=,配方得:22131x x -+=+,即2(1)4x -=,∴1h =-,4k =∴143h k +=-+=故答案是:3.【点睛】本题考查了配方法解一元二次方程的知识;解题的关键是熟练掌握配方法的性质,从而完成求解.12.将一元二次方程(32)(1)83x x x -+=-化成一般形式是_____.【分析】先计算多项式乘以多项式并移项再合并同类项即可【详解】故答案为:【点睛】此题考查一元二次方程的一般形式掌握多项式乘以多项式合并同类项计算法则是解题的关键解析:23710x x -+=【分析】先计算多项式乘以多项式,并移项,再合并同类项即可.【详解】(32)(1)83x x x -+=-23322830x x x x +---+=23710x x -+=故答案为:23710x x -+=.【点睛】此题考查一元二次方程的一般形式,掌握多项式乘以多项式,合并同类项计算法则是解题的关键.13.一元二次方程-+=(5)(2)0x x 的解是______________.x1=5x2=-2【分析】直接利用因式分解法得出方程的根【详解】解:∵(x-5)(x+2)=0∴x-5=0或x+2=0∴x1=5x2=-2故答案为:x1=5x2=-2【点睛】此题主要考查了一元二次方 解析:x 1=5,x 2=-2【分析】直接利用因式分解法得出方程的根.【详解】解:∵(x-5)(x+2)=0,∴x-5=0或x+2=0,∴x 1=5,x 2=-2,故答案为:x 1=5,x 2=-2.【点睛】此题主要考查了一元二次方程的解法,正确理解因式分解法解方程是解题关键. 14.用因式分解法解关于x 的方程 260x px --=,将左边分解因式后有一个因式为3x -,则的p 值为_______1【分析】方法一:根据题意因式分解得到再展开去括号根据恒等式即可求出p 的值;方法二:将代入方程可得一个关于p 的一元一次方程解方程即可得【详解】方法一:由题意得解得则;方法二:由题意得是关于x 的方程的解析:1【分析】方法一:根据题意因式分解得到26(3)()x px x x a --=-+,再展开去括号,根据恒等式即可求出p 的值;方法二:将3x =代入方程可得一个关于p 的一元一次方程,解方程即可得.【详解】方法一:由题意得,226(3)()(3)3x px x x a x a x a --=-+=+--, 3p a ∴-=-,36a -=-,解得2a =,则1p =;方法二:由题意得,3x =是关于x 的方程260x px --=的一个解,则将3x =代入得:23360p --=,解得1p =,故答案为:1.【点睛】本题考查了多项式因式分解的方法、利用因式分解法解一元二次方程,熟练掌握多项式的运算法则和方程的解法是解题关键.15.如图,要设计一幅宽20cm ,长30cm 的图案,其中有两横彩条、一竖彩条,横、竖彩条的宽度比为1:3,如果要使彩条所占面积是图案面积的19%,竖彩条的宽度为________. 3cm 【分析】设横彩条的宽度是xcm 竖彩条的宽度是3xcm 根据如果要使彩条所占面积是图案面积的19可列方程求解【详解】解:设横彩条的宽度是xcm 竖彩条的宽度是3xcm 则(30-3x )(20-2x )=解析:3cm【分析】设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,根据“如果要使彩条所占面积是图案面积的19%”,可列方程求解.【详解】解:设横彩条的宽度是xcm ,竖彩条的宽度是3xcm ,则(30-3x )(20-2x )=20×30×(1-19%),解得x 1=1,x 2=19(舍去).所以3x=3.答:竖彩条的宽度是3cm .故答案为:3cm【点睛】本题考查一元二次方程的应用,解题的关键是理解题意,学会正确寻找等量关系,构建方程解决问题.16.关于x 的方程222(1)0x m x m m +-+-=有两个实数根α,β,且2212αβ+=,那么m 的值为________.-1【分析】根据方程的根的判别式得出m 的取值范围然后根据根与系数的关系可得α+β=-2(m-1)α•β=m2-m 结合α2+β2=12即可得出关于m 的一元二次方程解之即可得出结论【详解】解:∵关于x 的解析:-1【分析】根据方程的根的判别式,得出m 的取值范围,然后根据根与系数的关系可得α+β=-2(m-1),α•β=m 2-m ,结合α2+β2=12即可得出关于m 的一元二次方程,解之即可得出结论.【详解】解:∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根,∴△=[2(m-1)]2-4×1×(m 2-m )=-4m+4≥0,解得:m≤1.∵关于x 的方程x 2+2(m-1)x+m 2-m=0有两个实数根α,β,∴α+β=-2(m-1),α•β=m 2-m ,∴α2+β2=(α+β)2-2α•β=[-2(m-1)]2-2(m 2-m )=12,即m 2-3m-4=0,解得:m=-1或m=4(舍去).故答案为:-1.【点睛】本题考查了根与系数的关系、根的判别式以及解一元二次方程,解题的关键是:(1)牢记“当△≥0时,方程有两个实数根”;(2)根据根与系数的关系得出关于m 的一元二次方程.17.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n =_____.﹣2【分析】直接根据根与系数的关系求解即【详解】解:∵mn 是一元二次方程x2+2x ﹣7=0的两个根∴m+n =﹣2故答案为﹣2【点睛】本题考查一元二次方程根与系数的关系是重要考点难度较易掌握相关知识是解析:﹣2.【分析】 直接根据根与系数的关系求解,即b m n a +=-. 【详解】解:∵m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,∴m+n =﹣2.故答案为﹣2.【点睛】本题考查一元二次方程根与系数的关系,是重要考点,难度较易,掌握相关知识是解题关键.18.已知关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,则a 的取值范围是______.且【分析】根据题意一元二次方程有两个不相等的实数根可知根的判别式据此解一元一次不等式即可解题注意二次项系数不为零【详解】关于x 的一元二次方程有两个不相等的实数根即且故答案为:且【点睛】本题考查一元二 解析:13a >-且0a ≠.【分析】根据题意,一元二次方程2230ax x +-=有两个不相等的实数根,可知根的判别式2=40b ac ∆->,据此解一元一次不等式即可解题,注意二次项系数不为零.【详解】关于x 的一元二次方程2230ax x +-=有两个不相等的实数根,2=40b ac ∴∆->即224(3)0a -⨯-> 4120a +>13a ∴>-且0a ≠ 故答案为:13a >-且0a ≠. 【点睛】本题考查一元二次方程根的判别式、一元一次不等式、一元二次方程的定义等知识,是重要考点,难度较易,掌握相关知识是解题关键.19.当m =___________时,方程(2150m m x mx --+=是一元二次方程.【分析】根据一元二次方程的定义解答【详解】∵是一元二次方程∴且解得故答案为:【点睛】本题考查了一元二次方程的概念只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程一般形式是(且)特别要注意【分析】根据一元二次方程的定义解答.【详解】∵(2150m m x mx -+-+=是一元二次方程,∴212m -=且0m +≠,解得m =,【点睛】本题考查了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是20ax bx c ++=(且0a ≠).特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.20.已知2x =是关于x 的方程220x x m ++=的一个根,则m =_________.-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程解这个方程即可【详解】已知是关于x 的方程的一个根故答案为:-8【点睛】本题考查一元二次方程的根问题掌握方程的根的性质会用方程的解代入构造解析:-8【分析】利用方程的根的性质把x=2代入方程得到关于m 的方程,解这个方程即可【详解】已知2x =是关于x 的方程220x x m ++=的一个根,22220m +⨯+=8m =-故答案为:-8【点睛】本题考查一元二次方程的根问题,掌握方程的根的性质,会用方程的解代入构造参数方程是解题关键三、解答题21.解下列方程:(1)2x 2﹣4x +1=0;(2)(2x ﹣1)2=(3﹣x )2.解析:(1)x 1=1x 2=1;(2)x 1=﹣2,x 2=43 【分析】(1)利用配方法解一元二次方程;(2)利用因式分解法解方程.【详解】(1)解:2x 2﹣4x +1=0,x 2﹣2x =﹣12, x 2﹣2x +1=﹣12+1,即(x ﹣1)2=12,∴x ﹣1=,∴x 1=1x 2=1 (2)解:(2x ﹣1)2=(3﹣x )2.(2x ﹣1)2﹣(3﹣x )2=0,[(2x ﹣1)+(3﹣x )][(2x ﹣1)﹣(3﹣x )]=0,∴x +2=0或3x ﹣4=0,∴x 1=﹣2,x 2=43. 【点睛】本题考查一元二次方程的解法,熟练掌握配方法、因式分解法、公式法,并熟练运用是关键.22.新冠疫情蔓延全球,口罩成了人们的生活必须品.某商店销售一款口罩,每袋进价为12元,计划每袋售价大于12元但不超过20元,通过市场调查发现,这种口罩每袋售价为18元时,日均销售量为50袋,而当每袋售价提高1元时,日均销售量就减少5袋. (1)在每袋售价为18元的基础上,将这种口罩的售价每袋提高x 元,则日均销售量是_________袋;(用含x 的代数式表示)(2)经综合考察,要想使这种口罩每天赢利315元,该商场每袋口罩的销售价应定为多少元?解析:(1)505x -;(2)19元.【分析】(1)销售量=原来销售量-下降销售量,据此列式即可;(2)设这种口罩的售价每袋提高x 元,根据销售量×每袋利润=总利润列出方程求解即可.【详解】(1)∵每袋售价提高1元时,日均销售量就减少5袋,∴每天销量减少5x 袋,∵售价为18元时,日均销售量为50袋,∴将这种口罩的售价每袋提高x 元,则日均销售量是:505x -.故答案为:505x -(2)设这种口罩的售价每袋提高x 元,根据题意得:(1812)(505)315x x +--=,化简得:2430x x -+=,解得:121,3x x ==,当11x =时,每袋售价是:18119+=(元);当23x =时,每袋售价是:18321+=(元);∵计划每袋售价大于12元但不超过20元,∴23x =舍去.∴当1x =时,每袋售价是19元.答:该商场每袋口罩的售价应定为19元.【点睛】本题考查一元二次方程的应用,关键是根据售价和销售量的关系,以利润做为等量关系列方程求解.23.5月10日,重庆正式启动“加快发展直播带货行动计划”,以推动直播带货和“网红经济”发展,已知云阳桃片糕每盒12元,仙女山红茶每盒50元,第一次直播期间,共卖出云阳桃片糕和仙女山红茶共计2000盒.(1)若卖出桃片糕和红茶的总销售额不低于54400元,则至少卖出仙女山红茶多少盒? (2)第一次直播结束,为了回馈顾客,在第二次直播期向,桃片糕每盒降价10%3a ,红茶每盒降价4a %,桃片糕数量在(1)问最多的数量下增加6a %,红茶数量在(1)问最少的数量下增加4a %,最终第二次直播总销售额比第一次直播的最低销售额54400元少80a 元,求a 的值.解析:(1)至少卖出仙女山红茶800盒;(2)a 的值为5.【分析】(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得关于x 的不等式,求解即可;(2)根据(1)的结果得出桃片糕最多卖出的盒数,根据题意得出关于x 的方程,解方程即可.【详解】解:(1)设卖出仙女山红茶x 盒,则卖出桃片糕(2000-x )盒,由题意得:50x+12(2000-x )≥54400,解得:x≥800,∴x 的最小值是800,∴至少卖出仙女山红茶800盒;(2)∵(1)中最少卖出仙女山红茶800盒,∴桃片糕最多卖出的盒数为:2000-800=1200(盒).由题意得:12×(110%3a -)×1200×(1+6a%)+50(1-4a%)×800×(1+4a%)=54400-80a , 解得:a 1=0(舍去),a 2=5.∴a 的值为5.【点睛】本题考查了一元一次不等式和一元二次方程在实际问题中的应用,理清题中的数量关系并正确列式是解题的关键.24.按要求的方法解方程,否则不得分.(1)2450x x -=+(配方法)(2)22730x x -+=(公式法)(3)(1)(2)24x x x ++=+(因式分解法)解析:(1)1215x x ==-,;(2)12132x x ==,;(3)1221x x ,=-=. 【分析】(1)利用配方法解方程即可;(2)利用公式法解方程即可;(3)方程整理后利用因式分解法解方程即可.【详解】(1)2450x x -=+,移项得:245x x +=,配方得:24454x x ++=+,即()229x +=,直接开平方得:23x +=±,∴1215x x ==-,;(2)22730x x -+=,∵2a =,7b =-,3c =, ()2247423250b ac =-=--⨯⨯=>,∴754x ±==, ∴12132x x ==,; (3)(1)(2)24x x x ++=+, 整理得:23224x x x ++=+,即220x x +-=,因式分解得:()()210x x +-=,∴20x +=或10x -=,∴1221x x ,=-=.【点睛】本题考查了解一元二次方程,解题的关键是会用配方法、公式法、因式分解法解方程. 25.某商场销售一批衬衫,每件进价是120元,当每件衬衫售价为160元时,平均每天可售出20件,为了扩大销售,尽快清库,增加盈利,商场经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件,据此规律,请回答:(1)当每件衬衫降价5元时,每天可销售多少件衬衫?商场获得的日盈利是多少? (2)若商场平均每天想盈利1200元,则每件衬衫应降价多少元?解析:(1)当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元;(2)每件衬衫应降价20元【分析】(1)利用日销售量202=+⨯每件衬衫降低的价格,即可求出每天可销售衬衫的数量,利用日盈利额=销售每件衬衫的利润×日销售量,即可求出日盈利额;(2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫,根据日盈利额=销售每件衬衫的利润×日销售量,即可得出关于x 的一元二次方程,解之取其较大值即可得出结论.【详解】(1)根据题意得,降价后,可售出:205230+⨯=(件)∴()1605120301050--⨯=(元)∴当每件衬衫降价5元时,每天可销售30件衬衫,商场获得的日盈利是1050元; (2)设每件衬衫应降价x 元,则每天可销售()202x +件衬衫依题意,得:()()1601202021200x x --+=,∴2302000x x -+=解得:110x =,220x =∵要尽快清库∴20x∴每件衬衫应降价20元.【点睛】本题考查了一元二次方程、有理数混合运算的知识;解题的关键是熟练掌握一元二次方程的性质,从而完成求解.26.解下列方程(1)2210x x ++= (2)233x x解析:(1)121x x ==-;(2)123,4x x ==.【分析】(1)利用配方法解一元二次方程即可得;(2)利用因式分解法解一元二次方程即可得.【详解】(1)2210x x ++=,2(1)0x +=,解得121x x ==-;(2)233x x ,2330x x ,3310x x ,即()()340x x --=,30x -=或40x -=,3x =或4x =,即123,4x x ==.【点睛】本题考查了解一元二次方程,主要解法包括:直接开平方法、配方法、因式分解法、公式法、换元法等,熟练掌握各解法是解题关键.27.计算题(1)解方程:2690x x ++= (2)解不等式组:3152(2)7x x x ->⎧⎨+<+⎩解析:(1)123x x ==-; (2)23x <<【分析】(1)利用因式分解法求解即可.(2)分别求出两个不等式的解集,最后找出公共部分即可.【详解】解:(1)2690x x ++=因式分解得:()230x +=解得:123x x ==-. (2)()31512272x x x ->⎧⎨+<+⎩ 解不等式1得:2x >解不等式2得:3x <∴不等式组的解集是23x <<.【点睛】本题考察解一元二次方程和一元一次不等式组,解题的关键是:(1)用因式分解法求解一元二次方程(2)不等式组解集的确定,原则是“同大取大,同小取小,大小小大中间找,大大小小找不到”.28.已知一次函数y kx b =+的图象经过点()0,1和点()1,1-(1)求一次函数的表达式;(2)若点()222,a a +在该一次函数图象上,求a 的值;(3)已知点()()1122,,,A x y B x y 在该一次函数图象上,设()()1212m x x y y =--,判断正比例函数y mx =的图象所在的象限,说明理由.解析:(1)21y x =-+;(2)a 的值是-1或-3;(3)在第二、四象限.【分析】(1)把点()0,1和点()1,1-两点坐标分别代入一次函数y kx b =+,进而求得k 、b 的值,即可求出一次函数的表达式;(2)将点()222,a a +代入一次函数21y x =-+,即可求得a 的值;(3)根据点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,由()()1212m x x y y =--可得()()()212121222112m x x x x x x =--+=--+-,据此可以判断m 的取值,结合正比例函数的性质解答即可.【详解】解:(1)∵一次函数y kx b =+的图象经过点()0,1和点()1,1-,根据题意得: 11b k b=⎧⎨-=+⎩, 解得21k b =-⎧⎨=⎩, ∴一次函数的表达式为21y x =-+;(2)∵点()222,a a +在一次函数21y x =-+的图象上,∴22(22)1a a =-++,解得1a =-或3a =-,即a 的值是-1或-3;(3)正比例函数y mx =的图象在第二、四象限.理由:∵点()()1122,,,A x y B x y 在一次函数21y x =-+图象上,()()1212m x x y y =--,∴()()()212121222112m x x x x x x =--+=--+-, ∴m <0,∴正比例函数y mx =的图象在第二、四象限.【点睛】本题考查了待定系数法求一次函数解析式、一次函数图象上点的坐标特征、正比例函数的性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用函数的思想解答.。