(浙江专版)2018年高考数学二轮专题复习第一部分专题六复数、计数原理、概率、随机变量及其分布讲义
- 格式:doc
- 大小:850.02 KB
- 文档页数:51
集合与命题考情考向分析1.集合是高考必考知识点,经常以不等式解集、函数的定义域、值域为背景考查集合的运算,近几年有时也会出现一些集合的新定义问题.2.高考中考查命题的真假判断或命题的否定,考查充要条件的判断.热点分类突破热点一集合的关系及运算1.集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A.(2)A∩A=A,A∩∅=∅,A∩B=B∩A.(3)A∩(∁U A)=∅,A∪(∁U A)=U.(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.2.集合运算中的常用方法(1)若已知的集合是不等式的解集,用数轴求解.(2)若已知的集合是点集,用数形结合法求解.(3)若已知的集合是抽象集合,用Venn图求解.例1(1)(2017·台州调研)若集合A={x|-1<x<1,x∈R},B={x|y=x-2,x∈R},则A∪B等于()A.[0,1) B.(-1,+∞)C.(-1,1)∪[2,+∞) D.∅答案 C解析由题意得B={x|x≥2},所以A∪B={x|-1<x<1或x≥2},故选C.(2)已知集合A={(x,y)|x2+y2≤1,x,y∈Z},B={(x,y)||x|≤2,|y|≤2,x,y∈Z},定义集合A B={(x1+x2,y1+y2)|(x1,y1)∈A,(x2,y2)∈B},则A B中元素的个数为() A.77 B.49 C.45 D.30答案 C解析如图,集合A表示如图所示的所有圆点“”,集合B表示如图所示的所有圆点“”+所有圆点“”,集合A B显然是集合{(x,y)||x|≤3,|y|≤3,x,y∈Z}中除去四个点{(-3,-3),(-3,3),(3,-3),(3,3)}之外的所有整点(即横坐标与纵坐标都为整数的点),即集合A B表示如图所示的所有圆点“”+所有圆点“”+所有圆点“”,共45个.故A B中元素的个数为45.故选C.思维升华 (1)关于集合的关系及运算问题,要先对集合进行化简,然后再借助Venn 图或数轴求解.(2)对集合的新定义问题,要紧扣新定义集合的性质探究集合中元素的特征,将问题转化为熟悉的知识进行求解,也可利用特殊值法进行验证.跟踪演练1 (1)(2017·衢州质检)已知集合U ={1,2,3,4,5,6},集合A ={2,3},集合B ={1,2,4},则(∁U B )∩A 等于( ) A .{2} B .{3} C .{5,6} D .{3,5,6}答案 B解析 由题意得∁U B ={3,5,6},则(∁U B )∩A ={3}, 故选B.(2)用C (A )表示非空集合A 中的元素个数,定义A *B =⎩⎪⎨⎪⎧C (A )-C (B ),C (A )≥C (B ),C (B )-C (A ),C (A )<C (B ),若A ={1,2},B ={x |(x 2+ax )(x 2+ax +2)=0},且A *B =1,设实数a 的所有可能取值构成的集合是S ,则C (S )等于( ) A. 4 B. 3 C. 2 D. 1答案 B解析 由A ={1,2},得C (A )=2, 由A *B =1,得C (B )=1或C (B )=3. 由(x 2+ax )(x 2+ax +2)=0, 得x 2+ax =0或x 2+ax +2=0.当C (B )=1时,方程(x 2+ax )(x 2+ax +2)=0只有实根x =0,这时a =0;当C (B )=3时,必有a ≠0,这时x 2+ax =0有两个不相等的实根x 1=0,x 2=-a ,方程x 2+ax +2=0必有两个相等的实根,且异于x 1=0,x 2=-a .由Δ=a 2-8=0,得a =±22,可验证均满足题意,故S ={-22,0,22},故C (S )=3. 热点二 四种命题与充要条件1.四种命题中原命题与逆否命题同真同假,逆命题与否命题同真同假.2.若p ⇒q ,则p 是q 的充分条件,q 是p 的必要条件;若p ⇔q ,则p ,q 互为充要条件.例2 (1)(2017届抚州七校联考)A ,B ,C 三个学生参加了一次考试,A ,B 的得分均为70分,C 的得分为65分.已知命题p :若及格分低于70分,则A ,B ,C 都没有及格.在下列四个命题中,为p 的逆否命题的是( ) A .若及格分不低于70分,则A ,B ,C 都及格 B .若A ,B ,C 都及格,则及格分不低于70分 C .若A ,B ,C 至少有一人及格,则及格分不低于70分 D .若A ,B ,C 至少有一人及格,则及格分高于70分 答案 C解析 根据原命题与它的逆否命题之间的关系知,命题p :若及格分低于70分,则A ,B ,C 都没有及格,p 的逆否命题是:若A ,B ,C 至少有1人及格,则及格分不低于70分.故选C.(2)(2017·温州九校协作体联考)已知实数a ,b ,则“|a +b |+|a -b |≤1”是“a 2+b 2≤1”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 答案 A解析 由绝对值三角不等式|a ±b |≤|a |+|b |可得⎩⎪⎨⎪⎧|2a |≤|a +b |+|a -b |≤1,|2b |≤|a +b |+|a -b |≤1,即⎩⎨⎧-12≤a ≤12,-12≤b ≤12,此不等式组表示边长为1的正方形区域(含边界),而a 2+b 2≤1表示单位圆区域(含边界),故由⎩⎨⎧-12≤a ≤12,-12≤b ≤12可以推出a 2+b 2≤1,但是反之不成立,故选A. 思维升华 充分条件与必要条件的三种判定方法(1)定义法:正、反方向推理,若p ⇒q ,则p 是q 的充分条件(或q 是p 的必要条件);若p ⇒q 且qD ⇒p ,则p 是q 的充分不必要条件(或q 是p 的必要不充分条件).(2)集合法:利用集合间的包含关系.例如,若A ⊆B ,则A 是B 的充分条件(B 是A 的必要条件);若A =B ,则A 是B 的充要条件.(3)等价法:将命题等价转化为另一个便于判断真假的命题.跟踪演练2 (1)(2017·绍兴模拟)已知平面α⊥平面β,且α∩β=b ,a ⊂α,则“a ⊥b ”是“a ⊥β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 C解析 平面α⊥平面β,且α∩β=b ,a ⊂α,若a ⊥b ,则a ⊥β,充分性成立;平面α⊥平面β,因为α∩β=b ,所以b ⊂β,若a ⊥β,则a ⊥b ,必要性成立,所以“a ⊥b ”是“a ⊥β”的充要条件,故选C. (2)下列命题:①已知m ,n 表示两条不同的直线,α,β表示两个不同的平面,并且m ⊥α,n ⊂β,则“α⊥β”是“m ∥n ”的必要不充分条件; ②不存在x ∈(0,1),使不等式log 2x <log 3x 成立; ③“若am 2<bm 2,则a <b ”的逆命题为真命题. 其中正确的命题序号是________. 答案 ①解析 ①当α⊥β时,n ⊂β可以是平面内任意一条直线,所以得不到m ∥n ,当m ∥n 时,m ⊥α,所以n ⊥α,从而α⊥β,故“α⊥β”是“m ∥n ”的必要不充分条件,所以①正确;②log 2x =lg x lg 2,log 3x =lg x lg 3,因为lg 2<lg 3,所以1lg 2>1lg 3,当x ∈(0,1)时,lg x lg 2<lg xlg 3,即log 2x <log 3x 恒成立,所以②错误;③中原命题的逆命题为“若a <b ,则am 2<bm 2”,显然当m 2=0时不正确,所以③错误.故填①.真题体验1.(2016·浙江改编)已知集合P ={x ∈R |1≤x ≤3},Q ={x ∈R |x 2≥4},则P ∪(∁R Q )=____________. 答案 (-2,3]解析 由已知得Q ={x |x ≥2或x ≤-2}.∴∁R Q =(-2,2).又P =[1,3],∴P ∪∁R Q =[1,3]∪(-2,2)=(-2,3].2.(2017·天津改编)设θ∈R ,则“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的__________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要 解析 ∵⎪⎪⎪⎪θ-π12<π12, ∴-π12<θ-π12<π12,即0<θ<π6.显然当0<θ<π6时,sin θ<12成立.但当sin θ<12时,由周期函数的性质知,0<θ<π6不一定成立.故0<θ<π6是sin θ<12的充分不必要条件,即“⎪⎪⎪⎪θ-π12<π12”是“sin θ<12”的充分不必要条件. 3.(2017·浙江改编)已知集合P ={x |-1<x <1},Q ={x |0<x <2},则P ∪Q =________. 答案 (-1,2)解析 ∵P ={x |-1<x <1},Q ={x |0<x <2}, ∴P ∪Q ={x |-1<x <2}.4.(2017·北京改编)设m ,n 为非零向量,则“存在负数λ,使得m =λn ”是“m ·n <0”的____________条件.(填“充分不必要”“必要不充分”“充要”“既不充分也不必要”) 答案 充分不必要解析 方法一 由题意知|m |≠0,|n |≠0. 设m 与n 的夹角为θ. 若存在负数λ,使得m =λn , 则m 与n 反向共线,θ=180°, ∴m ·n =|m ||n |cos θ=-|m ||n |<0. 当90°<θ<180°时,m ·n <0, 此时不存在负数λ,使得m =λn .故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 方法二 ∵m =λn ,∴m ·n =λn ·n =λ|n |2. ∴当λ<0,n ≠0时,m ·n <0.反之,由m ·n =|m ||n |cos m ,n <0⇔cos m ,n <0 ⇔ m ,n ∈⎝⎛⎦⎤π2,π,当 m ,n ∈⎝⎛⎭⎫π2,π时,m ,n 不共线.故“存在负数λ,使得m =λn ”是“m ·n <0”的充分不必要条件. 押题预测1.若集合A ={x |1≤2x ≤8},B ={x |log 2(x 2-x )>1},则A ∩B 等于( ) A .(2,3] B .[2,3]C .(-∞,0)∪(0,2]D .(-∞,-1)∪[0,3]押题依据 集合的运算在历年高考中的地位都很重要,已成为送分必考试题.集合的运算常与不等式(特别是一元一次不等式、一元二次不等式)的求解、函数的定义域、函数的值域等知识相交汇. 答案 A解析 A =[0,3].又log 2(x 2-x )>log 22,即x 2-x >2, 解得x <-1或x >2,所以B =(-∞,-1)∪(2,+∞). 所以A ∩B =(2,3].2.设x >0,则“a =1”是“x +ax ≥2恒成立”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件押题依据 充分、必要条件的判定一直是高考考查的重点,该类问题必须以其他知识为载体,综合考查数学概念. 答案 A解析 由题意得x +a x ≥2⇔⎝⎛⎭⎫x +a x min ≥2⇔2a ≥2⇔a ≥1,故“a =1”是“x +ax ≥2恒成立”的充分不必要条件,故选A.3.已知集合M ={(x ,y )|y =f (x )},若对于任意(x 1,y 1)∈M ,存在(x 2,y 2)∈M ,使得x 1x 2+y 1y 2=0成立,则称集合M 是“Ω集合”.给出下列4个集合:①M =⎩⎨⎧⎭⎬⎫(x ,y )⎪⎪y =1x ; ②M ={(x ,y )|y =e x -2}; ③M ={(x ,y )|y =cos x }; ④M ={(x ,y )|y =ln x }.其中是“Ω集合”的所有序号为( ) A .②③ B .③④ C .①②④D .①③④押题依据 以新定义为背景,考查元素与集合的关系,是近几年高考的热点,解题时可从集合的性质(元素的性质、运算性质)作为突破口. 答案 A解析 对于①,若x 1x 2+y 1y 2=0,则x 1x 2+1x 1·1x 2=0,即(x 1x 2)2=-1,可知①错误;对于④,取(1,0)∈M ,且存在(x 2,y 2)∈M ,则x 1x 2+y 1y 2=1×x 2+0×y 2=x 2>0,可知④错误.同理,可证得②和③都是正确的.故选A. 强化练习A 组 专题通关1.(2017·全国Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B 等于( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5} 答案 C解析 ∵A ∩B ={1},∴1∈B ,∴1-4+m =0,即m =3. ∴B ={x |x 2-4x +3=0}={1,3}.故选C.2.设集合A ={y |y =sin x ,x ∈R },B ={x |y =lg(-x )},则A ∩B 等于( ) A .(0,1] B .[-1,0) C .[-1,0] D .(-∞,1]答案 B解析 因为A =[-1,1],B =(-∞,0), 所以A ∩B =[-1,0).故选B.3.(2017·浙江省五校联考)设全集U =R ,集合A ={x |x ≥3},B ={x |0≤x <5},则集合(∁U A )∩B等于( )A .{x |0<x <3}B .{x |0≤x ≤3}C .{x |0<x ≤3}D .{x |0≤x <3}答案 D解析 因为U =R ,A ={x |x ≥3},所以∁U A ={x |x <3},又因为B ={x |0≤x <5},所以(∁U A )∩B ={x |0≤x <3},故选D.4.(2017·全国Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0 答案 B解析 集合A 表示以原点O 为圆心,1为半径的圆上的所有点的集合, 集合B 表示直线y =x 上的所有点的集合. 结合图形可知,直线与圆有两个交点, 所以A ∩B 中元素的个数为2. 故选B.5.(2017·绍兴一中适应性考试)设集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈Z ⎪⎪⎪x +1x -3≤0,B ={y |y =x 2+1,x ∈A },则集合B 中含有元素1的子集个数为( ) A .5 B .4 C .3 D .2 答案 B解析 由于A ={x ∈Z |-1≤x <3}={-1,0,1,2},则B ={y |y =x 2+1,x ∈A }={1,2,5},则集合B 中含有元素1的子集为{1},{1,2},{1,5},{1,2,5},共4个,故选B. 6.(2017·全国Ⅰ)设有下面四个命题: p 1:若复数z 满足1z ∈R ,则z ∈R ;p 2:若复数z 满足z 2∈R ,则z ∈R ; p 3:若复数z 1,z 2满足z 1z 2∈R ,则z 1=z -2; p 4:若复数z ∈R ,则z -∈R . 其中的真命题为( )A .p 1,p 3B .p 1,p 4C .p 2,p 3D .p 2,p 4 答案 B解析 设z =a +b i(a ,b ∈R ),z 1=a 1+b 1i(a 1,b 1∈R ), z 2=a 2+b 2i(a 2,b 2∈R ).对于p 1,若1z ∈R ,即1a +b i =a -b i a 2+b 2∈R ,则b =0⇒z =a +b i =a ∈R ,所以p 1为真命题;对于p 2,若z 2∈R ,即(a +b i)2=a 2+2ab i -b 2∈R , 则ab =0.当a =0,b ≠0时,z =a +b i =b i ∉R , 所以p 2为假命题;对于p 3,若z 1z 2∈R ,即(a 1+b 1i)(a 2+b 2i)=(a 1a 2-b 1b 2)+(a 1b 2+a 2b 1)i ∈R ,则a 1b 2+a 2b 1=0.而z 1=z 2,即a 1+b 1i =a 2-b 2i ⇔a 1=a 2,b 1=-b 2.因为a 1b 2+a 2b 1=0D ⇒/a 1=a 2,b 1=-b 2,所以p 3为假命题;对于p 4,若z ∈R ,即a +b i ∈R ,则b =0⇒z =a -b i =a ∈R ,所以p 4为真命题.故选B. 7.(2017·杭州学军中学模拟)已知q 是等比数列{a n }的公比,则“q <1”是“数列{a n }是递减数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 答案 D解析 由于公比q <1时数列{a n }未必是递减数列,如q =-1<1,数列{a n }为摆动数列,所以充分性不成立;另一方面,当数列{a n }为递减数列时,不一定有公比q <1,例如:-2,-4,-8,所以必要性不成立,故选D. 8.以下四个命题中,正确的个数是( )①命题“若f (x )是周期函数,则f (x )是三角函数”的否命题是“若f (x )是周期函数,则f (x )不是三角函数”;②已知函数f (x )=log a (x 2-2x +2),若f ⎝⎛⎭⎫12>0,则0<a <1; ③在△ABC 中,“sin A >sin B ”是“A >B 成立”的充要条件; ④若函数f (x )在(2 015,2 017)上有零点,则一定有f (2 015)·f (2 017)<0. A .0 B .1 C .2 D .3 答案 B解析 对于①,命题“若f (x )是周期函数,则f (x )是三角函数”的否命题是“若f (x )不是周期函数,则f (x )不是三角函数”,①错;对于②,f ⎝⎛⎭⎫12=log a54>0,则a >1,②错;对于③,在△ABC 中,当sin A >sin B 时,由正弦定理a sin A =bsin B 有a >b ,由大边对大角有A >B ,当A >B 时,得a >b ,由正弦定理有sin A >sin B ,所以“sin A >sin B ”是“A >B 成立”的充要条件, ③正确;对于④,举例:函数f (x )=(x -2 016)2在(2 015,2 017)上有零点x =2 016,但f (2 015)·f (2 017)=1>0,④错.故只有1个正确.9.(2017·诸暨质检)已知A ={x |-2≤x ≤0},B ={x |x 2-x -2≤0},则A ∪B =______,(∁R A )∩B =________.答案 [-2,2] (0,2] 解析 ∵A ={x |-2≤x ≤0}, ∴∁R A ={x |x <-2或x >0},又B ={x |x 2-x -2≤0}={x |-1≤x ≤2}, ∴A ∪B ={x |-2≤x ≤2}, ∴(∁R A )∩B ={x |0<x ≤2}.10.设全集U =R ,函数f (x )=lg(|x +1|+a -1)(a <1)的定义域为A ,集合B ={x |cos πx =1},若(∁U A )∩B 恰好有两个元素,则a 的取值的集合为__________. 答案 {a |-2<a ≤0}解析 由|x +1|+a -1>0,可得x >-a 或x <a -2,故∁U A =[a -2,-a ].而B ={x |x =2k ,k ∈Z },注意到[a -2,-a ]关于x =-1对称,所以由题设可得⎩⎪⎨⎪⎧-a ≥0,-a <2,即-2<a ≤0.11.“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的______________.(填“充分不必要条件”“必要不充分条件”“充要条件”或“既不充分也不必要条件”) 答案 充分不必要条件解析 f (x )=a ·x +cos x 在R 上单调递增⇒f ′(x )=a -sin x ≥0在R 上恒成立⇒a ≥(sin x )max =1,所以“a >1”是“函数f (x )=a ·x +cos x 在R 上单调递增”的充分不必要条件.12.给出下列命题:①命题“若方程ax 2+x +1=0有两个实数根,则a ≤14”的逆否命题是真命题;②“函数f (x )=cos 2ax -sin 2ax 的最小正周期为π”是“a =1”的必要不充分条件; ③函数f (x )=2x -x 2的零点个数为2;④幂函数y =x a ()a ∈R 的图象恒过定点()0,0;⑤“向量a 与b 的夹角是钝角”的充要条件是“a·b <0”; ⑥方程sin x =x 有三个实根. 其中正确命题的序号为________. 答案 ②解析 ①若方程ax 2+x +1=0有两个实数根,则a ≠0且Δ≥0,解得a ≠0且a ≤14,可知原命题为假命题,其逆否命题也为假命题,①错误;②f (x )=cos 2ax -sin 2ax =cos 2ax ,由函数f (x )的最小正周期为π,可得a =±1,充分性不成立,由a =1,可得函数f (x )的最小正周期为π,②正确;③由函数y =2x 及y =x 2的图象可知,两函数图象有三个交点,故函数f (x )=2x -x 2的零点个数为3,③错误;④当a <0时,幂函数y =x a 的图象不过点()0,0,④错误;⑤“向量a 与b 的夹角是钝角或平角”的充要条件是“a ·b <0”,⑤错误;⑥函数y =sin x 在⎝⎛⎭⎫0,π2内切线斜率为(0,1),可知其函数图象在⎝⎛⎭⎫0,π2内与函数y =x 没有交点,故方程sin x =x 只有一个实根x =0,⑥错误.B 组 能力提高13.已知圆C 的方程为(x -1)2+y 2=r 2 (r >0),若p :1≤r ≤3;q :圆C 上至多有3个点到直线x -3y +3=0的距离为1,则p 是q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 由点到直线的距离公式,得圆心(1,0)到直线x -3y +3=0的距离为2,故当0<r <1时,圆上到直线的距离为1的点有0个;当r =1时,圆上有1个点满足;当1<r <3时,圆上有2个点满足;当r =3时,圆上有3个点满足;当r >3时,圆上有4个点满足.故选A. 14.如果对于任意实数x ,[x ]表示不超过x 的最大整数,例如[3.27]=3,[0.6]=0,那么“[x ]=[y ]”是“|x -y |<1”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 答案 A解析 由[x ]的定义,当[x ]=[y ]时,则|x -y |<1,若|x -y |<1时,比如x =3.5,y =2.9,此时[x ]=3,[y ]=2,[x ]≠[y ],所以“[x ]=[y ]”是“|x -y |<1”的充分不必要条件.15.已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ax -5x 2-a <0,若3∈M,5∉M ,则实数a 的取值范围是____________. 答案 ⎣⎡⎭⎫1,53∪(9,25] 解析 ∵集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪ ax -5x 2-a <0, 得(ax -5)(x 2-a )<0,当a =0时,显然不成立.当a >0时,原不等式可化为⎝⎛⎭⎫x -5a ()x -a (x +a )<0, 若a <5a ,只需满足⎩⎨⎧ a <3<5a ,5a≤5, 解得1≤a <53; 若a >5a ,只需满足⎩⎪⎨⎪⎧ 5a <3<a ,a ≤5,解得9<a ≤25.当a <0时,不符合题意.综上,答案为⎣⎡⎭⎫1,53∪(9,25]. 16.(2017届福建连城县二中期中)设P 是一个数集,且至少含有两个数,若对任意a ,b ∈P ,都有a +b ,a -b ,ab ,a b∈P (除数b ≠0),则称P 是一个数域,例如有理数集Q 是数域,有下列命题:①数域必含有0,1两个数;②整数集是数域;③若有理数集Q ⊆M ,则数集M 必为数域;④数域必为无限集.其中正确的命题的序号是________.答案 ①④ 解析 当a =b 时,a -b =0,a b =1∈P ,故可知①正确;当a =1,b =2,12∉Z 不满足条件,故可知②不正确;对③,当M 中多一个元素i 则会出现1+i ∉M ,所以它也不是一个数域,故可知③不正确;根据数域的性质易得数域有无限多个元素,必为无限集,故可知④正确.。
专题限时集训(十七) 集合与常用逻辑用语(对应学生用书第151页)[建议A、B组各用时:45分钟][A组高考题、模拟题重组练]一、集合1.(2015·浙江高考)已知集合P={x|x2-2x≥3},Q={x|2<x<4},则P∩Q=( ) A.[3,4) B.(2,3]C.(-1,2) D.(-1,3]A[P={x|x2-2x≥3}={x|(x-3)(x+1)≥0}={x|x≥3或x≤-1},∴P∩Q={x|x≥3或x≤-1}∩{x|2<x<4}={x|3≤x<4},即P∩Q=[3,4).]2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)A[∵P={x|-1<x<1},Q={x|0<x<2},∴P∪Q={x|-1<x<2}.故选A.]3.设集合A={y|y=2x,x∈R},B={x|x2-1<0},则A∪B=( )A.(-1,1) B.(0,1)C.(-1,+∞)D.(0,+∞)C[由已知得A={y|y>0},B={x|-1<x<1},则A∪B={x|x>-1}.故选C.]4.(2016·浙江高考)已知集合P={x∈R|1≤x≤3},Q={x∈R|x2≥4},则P∪(∁R Q)=( ) A.[2,3] B.(-2,3]C.[1,2) D.(-∞,-2]∪[1,+∞)B[∵Q={x∈R|x2≥4},∴∁R Q={x∈R|x2<4}={x|-2<x<2}.∵P={x∈R|1≤x≤3},∴P∪(∁R Q)={x|-2<x≤3}=(-2,3].]5.(2015·浙江高考)已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁R P)∩Q=( ) A.[0,1) B.(0,2]C.(1,2) D.[1,2]C[由x2-2x≥0,得x≤0或x≥2,即P={x|x≤0或x≥2},所以∁R P={x|0<x<2}=(0,2).又Q={x|1<x≤2}=(1,2],所以(∁R P)∩Q=(1,2).]6.(2014·浙江高考)设全集U={x∈N|x≥2),集合A={x∈N|x2≥5},则∁U A=( )A .∅B .{2}C .{5}D .{2,5}B [因为A ={x ∈N |x ≤-5或x ≥5}, 所以∁U A ={x ∈N |2≤x <5),故∁U A ={2}.] 二、命题及其关系、充分条件与必要条件7.(2015·浙江高考)设a ,b 是实数,则“a +b >0”是“ab >0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件D [特值法:当a =10,b =-1时,a +b >0,ab <0,故a +b >0D ⇒/ab >0;当a =-2,b =-1时,ab >0,但a +b <0,所以ab >0D ⇒/a +b >0.故“a +b >0”是“ab >0”的既不充分也不必要条件.]8.(2017·湖州市高三第一学期期末调研测试)已知{a n }是等比数列,则“a 2<a 4”是“{a n }是单调递增数列”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件B [若a n =(-2)n,是等比数列,且a 2=4<a 4=16,但该数列不具有单调性,所以充分性不成立;若{a n }是单调递增的等比数列,则必有a 2<a 4,所以必要性成立,即“a 2<a 4”是“{a n }是单调递增数列”的必要不充分条件,故选B.]9.设p :实数x ,y 满足(x -1)2+(y -1)2≤2,q :实数x ,y 满足⎩⎪⎨⎪⎧y ≥x -1,y ≥1-x ,y ≤1,则p 是q 的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件A [p 表示以点(1,1)为圆心,2为半径的圆面(含边界),如图所示.q 表示的平面区域为图中阴影部分(含边界).由图可知,p是q的必要不充分条件.故选A.]10.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件A[由题意知a⊂α,b⊂β,若a,b相交,则a,b有公共点,从而α,β有公共点,可得出α,β相交;反之,若α,β相交,则a,b的位置关系可能为平行、相交或异面.因此“直线a和直线b相交”是“平面α和平面β相交”的充分不必要条件.故选A.]11.设集合A={x|x>-1},B={x|x≥1},则“x∈A且x∉B”成立的充要条件是( ) A.-1<x≤1B.x≤1C.x>-1 D.-1<x<1D[由x∈A且x∉B知x∈A∩(∁R B),又∁R B={x|x<1},则A∩(∁R B)={x|-1<x<1}.][B组“8+7”模拟题提速练]一、选择题1.已知集合A={x|y=lg(x-x2)},集合B={x|x2-cx<0,c>0},若A⊆B,则c的取值范围为( ) A.(0,1] B.(0,1)C.[1,+∞)D.(1,+∞)C[由题意将两个集合化简得:A=(0,1),B=(0,c),因为A⊆B,所以c≥1.]2.(2017·杭州市高三年级第二学期教学质量检测)设α,β是两个不同的平面,m是一条直线,给出下列命题:①若m⊥α,m⊂β,则α⊥β;②若m∥α,α⊥β,则m⊥β,则A.①②都是假命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是真命题B[由面面垂直的判定可知m⊥α,m⊂β,则α⊥β,故命题①为真命题;m∥α,α⊥β,m与β可能平行,在β内,或与α相交,故②为假命题.]3.(2014·浙江高考)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+b i)2=2i”的( ) A.充分不必要条件B.必要不充分条件C .充分必要条件D .既不充分也不必要条件A [当a =b =1时,(a +b i)2=(1+i)2=2i ;当(a +b i)2=2i 时,得⎩⎪⎨⎪⎧a 2-b 2=0,ab =1,解得a =b =1或a =b =-1,所以“a =b =1”是“(a +b i)2=2i”的充分不必要条件.]4.(2017·浙江省名校新高考研究联盟高三第三次联考)已知集合P ={x ∈R |0<x <1},Q ={x ∈R |x 2+x -2≤0},则( ) A .P ∈Q B .P ∈∁R Q C .∁R P ⊆QD .∁R Q ⊆∁R PD [由题意得集合P ={x |0<x <1},Q ={x |-2≤x ≤1},所以∁R P ={x |x ≤0或x ≥1},∁R Q ={x |x <-2或x >1},所以∁R Q ⊆∁R P ,故选D.]5.函数f (x )的定义域为实数集R ,“f (x )是奇函数”是“|f (x )|是偶函数”的( ) 【导学号:68334154】A .充分不必要条件B .必要不充分条件C .既不充分也不必要条件D .充要条件A [f (x )为奇函数,则f (-x )=-f (x ),所以|f (-x )|=|-f (x )|=|f (x )|,因此|f (x )|是偶函数,但当f (x )为奇函数时,|f (x )|为偶函数,但由|f (x )|为偶函数不能得出结论f (x )为奇函数,因此本题选A.]6.“a =0”是“函数f (x )=sin x -1x+a 为奇函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件C [f (x )的定义域为{x |x ≠0},关于原点对称,当a =0时,f (x )=sin x -1x,f (-x )=sin(-x )-1-x =-sin x +1x =-⎝ ⎛⎭⎪⎫sin x -1x =-f (x ),故f (x )为奇函数; 反之,当f (x )=sin x -1x+a 为奇函数时,f (-x )+f (x )=0,又f (-x )+f (x )=sin(-x )-1-x +a +sin x -1x +a =2a ,故a =0,所以“a =0”是“函数f (x )=sin x -1x+a 为奇函数“的充要条件,故选C.]7.已知集合A ={x |x 2-3x +2=0,x ∈R },B ={x |0<x <5,x ∈N },则满足条件A ⊆C ⊆B 的集合C 的个数为( ) A .1 B .2 C .3D .4D [A ={x |(x -1)(x -2)=0,x ∈R }={1,2},B ={x |0<x <5,x ∈N }={1,2,3,4}. 因为A ⊆C ⊆B ,所以C 可以为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.]8.(2015·浙江高考)设A ,B 是有限集,定义:d (A ,B )=card(A ∪B )-card(A ∩B ),其中card(A )表示有限集A 中元素的个数.( )命题①:对任意有限集A ,B ,“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②:对任意有限集A ,B ,C ,d (A ,C )≤d (A ,B )+d (B ,C ). A .命题①和命题②都成立 B .命题①和命题②都不成立 C .命题①成立,命题②不成立 D .命题①不成立,命题②成立A [命题①成立,若A ≠B ,则card(A ∪B )>card(A ∩B ),所以d (A ,B )=card(A ∪B )-card(A ∩B )>0.反之可以把上述过程逆推,故“A ≠B ”是“d (A ,B )>0”的充分必要条件; 命题②成立,由Venn 图,知card(A ∪B )=card(A )+card(B )-card(A ∩B ),d (A ,C )=card(A )+card(C )-2card(A ∩C ), d (B ,C )=card(B )+card(C )-2card(B ∩C ),所以d (A ,B )+d (B ,C )-d (A ,C )=card(A )+card(B )-2card(A ∩B )+card(B )+card(C )-2card(B ∩C )-[card(A )+card(C )-2card(A ∩C )]=2card(B )-2card(A ∩B )-2card(B ∩C )+2card(A ∩C ) =2card(B )+2card(A ∩C )-2[card(A ∩B )+card(B ∩C )] ≥2card(B )+2card(A ∩C )-2[card((A ∪C )∩B )+card(A ∩B ∩C )] =[2card(B )-2card ( A ∪CB+[2card(A ∩C )-2card(A ∩B ∩C )]≥0,所以d (A ,C )≤d (A ,B )+d (B ,C )得证.] 二、填空题9.(2017·浙江省名师原创预测卷(二))已知集合M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪y =lnx -1x ,N ={y |y =x 2+2x +2},则(∁RM )∩N =________.{1} [由题意得M =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x -1x >0,即M =(-∞,0)∪(1,+∞),N ={y |y ≥1},所以(∁R M )∩N =[0,1]∩[1,+∞)={1}.]10.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8,B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.(2,+∞) [A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8={x |-1<x <3}, 因为x ∈B 成立的一个充分不必要条件是x ∈A , 所以A ⊆B ,所以m +1>3,即m >2.]11.(2017·浙江省名师原创预测卷(四))已知集合A ={1,2,3,…,10},若集合A 的一个非空子集中的奇数的个数不多于偶数的个数,则称该子集为“偏偶集”,那么集合A 的所有非空子集中,“偏偶集”的个数为________.637 [集合A 的所有非空子集可分为三类:偶数的个数多于奇数的个数、奇数的个数多于偶数的个数、偶数的个数与奇数的个数相等.其中前两种情况的子集数相等,现考虑第三种情况,即考虑元素个数为2,4,6,8,10的子集,则共有子集数:(C 15)2+(C 25)2+(C 35)2+(C 45)2+(C 55)2=251,从而“偏偶集”的个数为251+12(210-1-251)=637.]12.设p :(x -a )2≤9,q :(x +1)(2x -1)≥0,若p 是q 的充分不必要条件,则实数a 的取值范围是________.(-∞,-4]∪⎣⎢⎡⎭⎪⎫72,+∞ [p :(x -a )2≤9,所以a -3≤x ≤a +3,q :x ≤-1或x ≥12.因为p 是q 的充分不必要条件,所以a +3≤-1或a -3≥12,即a ≤-4或a ≥72.]13.(2014·浙江高考)设集合S ={x |x ≥2},T ={x |x ≤5},则S ∩T =________.[2,5] [因为S ={x |x ≥2},T ={x |x ≤5},所以S ∩T ={x |x ≥2且x ≤5}={x |2≤x ≤5}.] 14.已知集合A ={1,2,3,4},B ={x ∈Z ||x |≤1},则A ∩(∁Z B )=________.{2,3,4} [因为集合A ={1,2,3,4},B ={x ∈Z ||x |≤1}={-1,0,1},所以A ∩(∁Z B )={2,3,4}.] 15.(2016·江南十校一模)已知集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z },若P ∩Q ≠∅,则b 的最小值等于________.2 [集合P ={x |-1<x <b ,b ∈N },Q ={x |x 2-3x <0,x ∈Z }={1,2},P ∩Q ≠∅,可得b 的最小值为2.]专题限时集训(十八) 不等式与线性规划(对应学生用书第153页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、基本不等式1.已知a >0,b >0,a +b =1a +1b ,则1a +2b的最小值为( )A .4B .2 2C .8D .16B [由a +b =1a +1b,有ab =1,则1a +2b≥21a ×2b=2 2.]2.(2017·温州九校协作体高三期末联考)已知实数x >0,y >0,且满足x +y =1,则2x +xy的最小值为________.2+22 [因为x +y =1,所以2x +x y =2x +2y x +x y =2+2y x +xy≥2+22,当且仅当⎩⎪⎨⎪⎧2y x =x y,x +y =1,即x =2-2,y =2-1时等号成立.]3.(2014·浙江高考)已知实数a ,b ,c 满足a +b +c =0,a 2+b 2+c 2=1,则a 的最大值是________.63[因为a +b +c =0,所以b +c =-a . 因为a 2+b 2+c 2=1,所以-a 2+1=b 2+c 2=(b +c )2-2bc =a 2-2bc , 所以2a 2-1=2bc ≤b 2+c 2=1-a 2, 所以3a 2≤2,所以a 2≤23,所以-63≤a ≤63. 所以a max =63.] 4.(2015·浙江高考)已知函数f (x )=⎩⎪⎨⎪⎧x 2,x ≤1,x +6x-6,x >1,则f (f (-2))=________,f (x )的最小值是________.-12 26-6 [f (f (-2))=f (4)=4+64-6=-12.当x ≤1时,f (x )min =0; 当x >1时,f (x )=x +6x-6.令f ′(x )=1-6x2=0,解得x =6(负值舍去).当1<x <6时,f ′(x )<0;当x >6时,f ′(x )>0, ∴f (x )的最小值为f (6)=6+66-6=26-6.综上,f (x )的最小值是26-6.] 二、线性规划问题5.(2017·浙江高考)若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,x +y -3≥0,x -2y ≤0,则z =x +2y 的取值范围是( )A .[0,6]B .[0,4]C .[6,+∞)D .[4,+∞)D [作出不等式组表示的平面区域,如图中阴影部分所示.由题意可知,当直线y =-12x +z2过点A (2,1)时,z 取得最小值,即z min =2+2×1=4.所以z =x +2y的取值范围是[4,+∞). 故选D.]6.(2016·山东高考)若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( )A .4B .9C .10D .12C [作出不等式组表示的平面区域,如图中阴影部分所示.x 2+y 2表示平面区域内的点到原点距离的平方,由⎩⎪⎨⎪⎧x +y =2,2x -3y =9得A (3,-1),由图易得(x 2+y 2)max =|OA |2=32+(-1)2=10.故选C.]7.(2016·浙江高考)若平面区域⎩⎪⎨⎪⎧x +y -3≥0,2x -y -3≤0,x -2y +3≥0夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是( ) A.355 B. 2 C.322D. 5B [根据约束条件作出可行域如图阴影部分,当斜率为1的直线分别过A 点和B 点时满足条件,联立方程组⎩⎪⎨⎪⎧x +y -3=0,x -2y +3=0求得A (1,2),联立方程组⎩⎪⎨⎪⎧2x -y -3=0,x +y -3=0求得B (2,1),可求得分别过A ,B 点且斜率为1的两条直线方程为x -y +1=0和x -y -1=0,由两平行线间的距离公式得距离为|1+1|2=2,故选B.]8.设x ,y 满足约束条件⎩⎪⎨⎪⎧2x -y +1≥0,x -2y -1≤0,x ≤1,则z =2x +3y -5的最小值为________.-10 [画出不等式组表示的平面区域如图中阴影部分所示.由题意可知,当直线y =-23x +53+z3过点A (-1,-1)时,z 取得最小值,即z min=2×(-1)+3×(-1)-5=-10.]9.某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5 kg ,乙材料1 kg ,用5个工时;生产一件产品B需要甲材料0.5 kg ,乙材料0.3 kg ,用3个工时.生产一件产品A 的利润为2 100元,生产一件产品B 的利润为900元.该企业现有甲材料150 kg ,乙材料90 kg ,则在不超过600个工时的条件下,生产产品A 、产品B 的利润之和的最大值为________元.216 000 [设生产A 产品x 件,B 产品y 件,则⎩⎪⎨⎪⎧1.5x +0.5y ≤150,x +0.3y ≤90,5x +3y ≤600,x ≥0,x ∈N *,y ≥0,y ∈N *.目标函数z =2 100x +900y .作出可行域为图中的阴影部分(包括边界)内的整数点,图中阴影四边形的顶点坐标分别为(60,100),(0,200),(0,0),(90,0).当直线z =2 100x +900y 经过点(60,100)时,z 取得最大值,z max =2 100×60+900×100=216 000(元).]10.(2015·浙江高考)若实数x ,y 满足x 2+y 2≤1,则|2x +y -2|+|6-x -3y |的最小值是________. 3 [满足x 2+y 2≤1的实数x ,y 表示的点(x ,y )构成的区域是单位圆及其内部.f (x ,y )=|2x +y -2|+|6-x -3y |=|2x +y -2|+6-x -3y=⎩⎪⎨⎪⎧4+x -2y ,y ≥-2x +2,8-3x -4y ,y <-2x +2.直线y =-2x +2与圆x 2+y 2=1交于A ,B 两点,如图所示,易得B ⎝ ⎛⎭⎪⎫35,45.设z 1=4+x -2y ,z 2=8-3x -4y ,分别作直线y =12x 和y =-34x 并平移,则z 1=4+x -2y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,z 2=8-3x -4y 在点B ⎝ ⎛⎭⎪⎫35,45取得最小值为3,所以|2x +y -2|+|6-x -3y |的最小值是3.][B 组 “8+7”模拟题提速练]一、选择题1.已知a <b <0,则下列不等式成立的是( ) 【导学号:68334155】 A .a 2<b 2B.a b<1 C .a <1-bD.1a <1bC [因为a <b <0,所以a 2>b 2,a b >1,1a >1b,a +b <1.因此A ,B ,D 不正确,C 正确.]2.已知P (x ,y )为区域⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 内的任意一点,当该区域的面积为4时,z =2x -y 的最大值是( ) A .6 B .0 C .2 D .2 2A [由⎩⎪⎨⎪⎧y 2-x 2≤0,0≤x ≤a 作出可行域如图,易求得A (a ,-a ),B (a ,a ),由题意知S △OAB =12·2a ·a =4,得a =2.∴A (2,-2),当y =2x -z 过A 点时,z 最大,z max =2×2-(-2)=6.故选A.]3.(2015·浙江高考)有三个房间需要粉刷,粉刷方案要求:每个房间只用一种颜色,且三个房间颜色各不相同.已知三个房间的粉刷面积(单位:m 2)分别为x ,y ,z ,且x <y <z ,三种颜色涂料的粉刷费用(单位:元/m 2)分别为a ,b ,c ,且a <b <c .在不同的方案中,最低的总费用(单位:元)是( ) A .ax +by +cz B .az +by +cx C .ay +bz +cx D .ay +bx +czB [令x =1,y =2,z =3,a =1,b =2,c =3. A 项:ax +by +cz =1+4+9=14; B 项:az +by +cx =3+4+3=10;C 项:ay +bz +cx =2+6+3=11;D 项:ay +bx +cz =2+2+9=13.故选B.]4.若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,y ≤1,x >-1,则(x -2)2+y 2的最小值为( )A.322B. 5C.92D .5D [作出不等式组对应的平面区域如图,设z =(x -2)2+y 2,则z 的几何意义为区域内的点到定点D (2,0)的距离的平方,由图知C ,D 间的距离最小,此时z 最小. 由⎩⎪⎨⎪⎧y =1,x -y +1=0,得⎩⎪⎨⎪⎧x =0,y =1,即C (0,1),此时z min =(x -2)2+y 2=4+1=5,故选D.]5.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,y ≥-1,4x +y ≤9,x +y ≤3,若目标函数z =y -mx (m >0)的最大值为1,则m 的值是( ) 【导学号:68334156】 A .-209B .1C .2D .5B [作出可行域,如图所示的阴影部分.∵m >0,∴当z =y -mx 经过点A 时,z 取最大值,由⎩⎪⎨⎪⎧x =1,x +y =3,解得⎩⎪⎨⎪⎧x =1,y =2,即A (1,2),∴2-m =1,解得m =1.故选B.]6.若关于x ,y 的不等式组⎩⎪⎨⎪⎧x ≤0,x +y ≥0,kx -y +1≥0表示的平面区域是等腰直角三角形,则其表示的区域面积为( ) A .1或14B.12或18 C .1或12D.12或14D [可行域由三条直线x =0,x +y =0,kx -y +1=0所围成,因为x =0与x +y =0的夹角为π4,所以x =0与kx -y +1=0的夹角为π4或x +y =0与kx -y +1=0的夹角为π4.当x =0与kx -y +1=0的夹角为π4时,可知k =1,此时等腰三角形的直角边长为22,面积为14;当x +y =0与kx -y +1=0的夹角为π4时,k =0,此时等腰三角形的直角边长为1,面积为12,所以选D.]7.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当z xy取得最小值时,x +2y -z 的最大值是( ) 【导学号:68334157】 A .0 B.98 C .2D.94C [z xy =x 2-3xy +4y 2xy =x y -3+4yx≥2x y ·4y x -3=1,当且仅当x y =4yx,即x =2y 时等号成立. 此时z =x 2-3xy +4y 2=(2y )2-3·2y ·y +4y 2=2y 2. ∴x +2y -z =2y +2y -2y 2=-2(y -1)2+2,∴当y =1,x =2,z =2时,x +2y -z 取最大值,最大值为2,故选C.]8.设m >1,x ,y 满足约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1,且目标函数z =x +my 的最大值为2,则m 的取值为( )A .2B .1+ 2C .3D .2+ 2B [因为m >1,由约束条件⎩⎪⎨⎪⎧y ≥x ,y ≤mx ,x +y ≤1作出可行域如图,直线y =mx 与直线x +y =1交于B ⎝ ⎛⎭⎪⎫1m +1,m m +1,目标函数z =x +my 对应的直线与直线y =mx 垂直,且在B ⎝⎛⎭⎪⎫1m +1,m m +1处取得最大值,由题意可知1+m2m +1=2,又因为m >1,解得m =1+ 2.] 二、填空题9.(2017·浙江省名校新高考联盟高三第三次联考)过P (-1,1)的光线经x 轴上点A 反射后,经过不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0所表示的平面区域内某点(记为B ),则|PA |+|AB |的取值范围是________.[22,5] [由题意得点P (-1,1)关于x 轴的对称点为P 1(-1,-1),则|PA |+|PB |的取值范围等价于点P 1(-1,-1)与不等式组⎩⎪⎨⎪⎧x -2y +4≥0,x +y -2≥0,3x +y -9≤0,y ≥0表示的平面区域内的点的连线的长度的范围,如图,在平面直角坐标系内画出不等式组表示的平面区域(阴影区域,含边界),由图易得点P 1(-1,-1)到直线x +y -2=0的距离最小,最小值为|-1-1-2|12+12=22;点P 1(-1,-1)与点C (2,3)的距离最大,最大值为+2++2=5,所以|PA |+|PB |的取值范围为[22,5].]10.(2017·萧山中学高三仿真模拟)已知实数x ,y 满足|2x +y -2|≥|6-x -3y |且|x |≤4,则|3x -4y |的最大值为________.32 [∵实数x ,y满足|2x +y -2|≥|6-x -3y |,且|x |≤4,∴⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≥0,x -2y +4≥0,-4≤x ≤4或⎩⎪⎨⎪⎧ 2x +y -2≤0,x +3y -6≤0,x -2y +4≤0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≥0,x +3y -6≤0,3x +4y -8≥0,-4≤x ≤4或⎩⎪⎨⎪⎧2x +y -2≤0,x +3y -6≥0,3x +4y -8≤0,-4≤x ≤4.∴可行域为如图中阴影部分(含边界)所示,其中A (-4,5),B (-4,0),C (0,2),D (4,4),E (4,-1).设目标函数z =3x -4y ,则当目标函数z =3x -4y 经过A (-4,5)时取得最小值z min =-32;当目标函数z =3x -4y 经过E (4,-1)时取得最大值z max =16,则|z |=|3x -4y |的最大值为32.]11.(2014·浙江高考)当实数x ,y 满足⎩⎪⎨⎪⎧x +2y -4≤0,x -y -1≤0,x ≥1时,1≤ax +y ≤4恒成立,则实数a 的取值范围是________.⎣⎢⎡⎦⎥⎤1,32 [画可行域如图所示,设目标函数z =ax +y ,即y =-ax +z ,要使1≤z ≤4恒成立,则a >0,数形结合知,满足⎩⎪⎨⎪⎧1≤2a +1≤4,1≤a ≤4即可,解得1≤a ≤32.所以a 的取值范围是1≤a ≤32.]12.已知正数a ,b ,c 满足b +c ≥a ,则b c +ca +b的最小值为________.2-12[因为正数a ,b ,c 满足b +c ≥a ,所以b c +c a +b ≥b c +c 2b +c =⎝ ⎛⎭⎪⎫b c +12+c 2b +c -12=2b +c 2c +c 2b +c -12≥2-12. 当且仅当2b +c 2c =c2b +c时取等号.]13.已知一元二次不等式f (x )<0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x <-1或x >13,则f (e x )>0的解集为________.{x |x <-ln 3} [f (x )>0的解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪-1<x <13, 则由f (e x )>0得-1<e x<13,解得x <-ln 3,即f (e x)>0的解集为{x |x <-ln 3}.]14.(2017·宁波十校高三适应性考试 17)已知a ,b 均为正数,且a +b =1,c >1,则⎝ ⎛⎭⎪⎫a 2+12ab -1·c +2c -1的最小值为________.3 2 [由题意知,∵a 2+12ab -1=a 2+a +b 22ab-1=2a 2+b22ab≥2(当且仅当a =2-1,b =2-2时,等号成立),∴原式≥2c +2c -1=2⎝ ⎛⎭⎪⎫c -1+1c -1+2≥22+2=32(当且仅当c =2时,等号成立).]15.(2016·舟山调研)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________. 7+43 [由log 4(3a +4b )=log 2ab ,得3a +4b =ab ,且a >0,b >0,∴a =4bb -3,由a >0,得b >3. ∴a +b =b +4bb -3=b +b -+12b -3=(b -3)+12b -3+7≥212+7=43+7,即a +b 的最小值为7+4 3.]专题限时集训(十九) 复数、数学归纳法(对应学生用书第155页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、复数1.设(1+i)x =1+y i ,其中x ,y 是实数,则|x +y i|=( ) A .1 B. 2 C. 3D .2B [∵(1+i)x =1+y i ,∴x +x i =1+y i. 又∵x ,y ∈R ,∴x =1,y =x =1. ∴|x +y i|=|1+i|=2,故选B.]2.已知z =(m +3)+(m -1)i 在复平面内对应的点在第四象限,则实数m 的取值范围是( ) A .(-3,1) B .(-1,3) C .(1,+∞) D .(-∞,-3)A [由题意知⎩⎪⎨⎪⎧m +3>0,m -1<0,即-3<m <1.故实数m 的取值范围为(-3,1).]3.若z =4+3i ,则z|z |=( ) A .1 B .-1 C.45+35iD.45-35i D [∵z =4+3i ,∴z =4-3i ,|z |=42+32=5,∴z|z |=4-3i 5=45-35i.] 4.设复数z 满足1+z 1-z =i ,则|z |=( )A .1 B. 2 C. 3D .2 A [由1+z 1-z =i ,得z =-1+i1+i=-1+-2=2i2=i ,所以|z |=|i|=1,故选A.] 5.若a 为实数,且(2+a i)(a -2i)=-4i ,则a =( ) A .-1 B .0 C .1D .2B [∵(2+a i)(a -2i)=-4i ,∴4a +(a 2-4)i =-4i.∴⎩⎪⎨⎪⎧4a =0,a 2-4=-4,解得a =0.故选B.]6.若复数z 满足2z +z =3-2i ,其中i 为虚数单位,则z =( ) A .1+2iB .1-2iC .-1+2iD .-1-2iB [法一:设z =a +b i(a ,b ∈R ),则2z +z =2a +2b i +a -b i =3a +b i =3-2i.由复数相等的定义,得3a =3,b =-2,解得a =1,b =-2,∴z =1-2i.法二:由已知条件2z +z =3-2i ①,得2z +z =3+2i ②,解①②组成的关于z ,z 的方程组,得z =1-2i.故选B.]7.(2017·浙江高考)已知a ,b ∈R ,(a +b i)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.【导学号:68334158】5 2 [(a +b i)2=a 2-b 2+2ab i.由(a +b i)2=3+4i ,得⎩⎪⎨⎪⎧a 2-b 2=3,ab =2.解得a 2=4,b 2=1.所以a 2+b 2=5,ab =2.]8.若复数z =m (m -1)+(m -1)i 是纯虚数,其中m 是实数,则1z=________.i [由题意,得m (m -1)=0且(m -1)≠0,得m =0,所以z =-i ,1z =1-i =i.二、数学归纳法9.用数学归纳法证明:(n +1)(n +2)…(n +n )=2n×1×3×…×(2n -1)(n ∈N *)时,从“n =k 到n =k +1”时,左边应增添的代数式为________.2(2k +1) [假设n =k 时,(k +1)(k +2)…(k +k )=2k×1×3…×(2k -1)成立;那么n =k +1时左边应为[(k +1)+1][(k +1)+2]…[(k +1)+k -1][(k +1)+k ][(k +1)+(k +1)]=(k +2)(k +3)…(k +k )(2k +1)(2k +2),即从“n =k 到n =k +1”时,左边应添乘的式子是[k +k +k ++k +k +1=k +k +k +1=2(2k +1).]10.观察下列各式:1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,可以得出的一般结论是________.n +(n +1)+(n +2)+…+(3n -2)=(2n -1)2 [1=12,2+3+4=32,3+4+5+6+7=52,4+5+6+7+8+9+10=72,…,由上述式子可以归纳:等式左边为连续自然数的和,有2n -1项,且第一项为n ,则最后一项为3n -2,等式右边均为2n -1的平方.]11.用数学归纳法证明122+132+…+1n +2>12-1n +2.假设n =k 时,不等式成立,则当n =k +1时,应推证的目标不等式是________.122+132+…+1k 2+1k +2+1k +2>12-1k +3 [观察不等式中各项的分母变化知,n =k +1时,122+132+ (1)2+1k +2+1k +2>12-1k +3.][B 组 “8+7”模拟题提速练]一、选择题1.已知复数z =11-i ,则z -|z |对应的点所在的象限为( )A .第一象限B .第二象限C .第三象限D .第四象限 B [∵复数z =11-i =1+i -+=12+12i , ∴z -|z |=12+12i -⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫122=1-22+12i ,其对应的点⎝ ⎛⎭⎪⎫1-22,12所在的象限为第二象限.故选B.]2.已知i 为虚数单位,若a 1-i =1+ii,则a 的值为( )A .iB .-iC .-2iD .2iC [∵a 1-i =1+ii,∴a =+-i=2i=-2i ,故选C.] 3.(2016·浙江镇海中学模拟)设z 1,z 2是复数,则下列命题中的假命题是( ) A .若|z 1-z 2|=0,则z -1=z -2 B .若z 1=z -2,则z -1=z 2C .若|z 1|=|z 2|,则z 1·z -1=z 2·z -2 D .若|z 1|=|z 2|,则z 21=z 22D [对于选项A ,若|z 1-z 2|=0,则z 1-z 2=0,z 1=z 2,所以z -1=z -2,命题为真;对于选项B ,若z 1=z -2,则z 1和z 2互为共轭复数,所以z -1=z 2,命题为真;对于选项C ,设z 1=a 1+b 1i ,z 2=a 2+b 2i(a 1,b 1,a 2,b 2∈R ),若|z 1|=|z 2|,则a 21+b 21=a 22+b 22,z 1·z -1=a 21+b 21,z 2·z -2=a 22+b 22,所以z 1·z-1=z 2·z -2,命题为真;对于选项D ,若z 1=1,z 2=i ,则|z 1|=|z 2|,而z 21=1,z 22=-1,所以z 21≠z 22,命题为假.]4.复数z =3+4i1-2i (其中i 是虚数单位),则复数z 的共轭复数z -=( )A .-1-2iB .-1+2iC .1+2iD .1-2iA [依题意得z =++-+=-5+10i5=-1+2i ,因此z -=-1-2i ,故选A.]5.设复数z 1和z 2在复平面内的对应点关于坐标原点对称,且z 1=3-2i ,则z 1·z 2=( ) A .-5-12i B .-5+12i C .-13+12iD .-13-12iB [复数z 1=3-2i 在复平面内对应的点为(3,-2),其关于原点对称的点的坐标为(-3,2),所以z 2=-3+2i ,z 1·z 2=(3-2i)(-3+2i)=-5+12i ,故选B.]6.设i 是虚数单位,则复数2i1-i在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限B [2i1-i=+-+=-2=-1+i ,由复数的几何意义知-1+i 在复平面内的对应点为(-1,1),该点位于第二象限,故选B.]7.若复数z 满足(2+i)z =3i(i 为虚数单位),则z 的共轭复数为( ) A.2+i B.2-i C .1+2i D .1-2iD [依题意得z =3i2+i=2-2+2-=1+2i ,则复数z 的共轭复数为1-2i ,选D.]8.用数学归纳法证明“n 3+(n +1)3+(n +2)3(n ∈N +)能被9整除”,要利用归纳假设证n =k +1时的情况,只需展开( ) A .(k +3)3B .(k +2)3C .(k +1)3D .(k +1)3+(k +2)3A [假设当n =k 时,原式能被9整除,即k 3+(k +1)3+(k +2)3能被9整除.当n =k +1时,(k +1)3+(k +2)3+(k +3)3为了能用上面的归纳假设,只需将(k +3)3展开,让其出现k 3即可.] 二、填空题9.设复数z 的共轭复数为z ,若z =1-i(i 为虚数单位),则zz+z 2的虚部为________.-1 [∵z =1-i(i 为虚数单位), ∴zz +z 2=1+i 1-i+(1-i)2=+2-+-2i =2i2-2i =-i ,故其虚部为-1.] 10.在复平面上,已知直线l 上的点所对应的复数z 满足|z +i|=|z -3-i|,则直线l 的斜率为________. -32 [设z =x +y i(x ,y ∈R ),∵|z +i|=|z -3-i|,∴|x +(y +1)i|=|(x -3)+(y -1)i|,∴x 2+(y +1)2=(x -3)2+(y -1)2, ∴6x +4y -9=0,则直线l 的斜率为-32.]11.已知f (n )=1+12+13+…+1n (n ∈N +),证明不等式f (2n )>n 2时,f (2k +1)比f (2k)多的项数是_____________项.2k [f (2k )=1+12+13+…+12k ,f (2k +1)=1+12+13+…+12k +12k +1+12k +2+…+12k +2k .因此,f (2k +1)比f (2k )多了2k项.]12.用数学归纳法证明不等式1n +1+1n +2+…+1n +n >1324(n ≥2,n ∈N *)的过程中,由n =k 推导n =k +1时,不等式的左边增加的式子是__________.1k +k +[当n =k +1时左边的代数式是1k +2+1k +3+…+12k +1+12k +2,增加了两项12k +1与12k +2,但是少了一项1k +1,故不等式的左边增加的式子是12k +1+12k +2-1k +1=1k +k +.]13.复数+23-4i 的值是________.-1 [+23-4i=1+4i +4i 23-4i =-3+4i 3-4i=-1.]14.已知x1+i=1-y i ,其中x ,y 是实数,i 是虚数单位,则x +y i 的共轭复数为________.2-i [x 1+i =12(x -x i)=1-y i ,所以x =2,y =1.]15.设复数z 1=3+2i ,z 2=1-i ,则⎪⎪⎪⎪⎪⎪z 1+2z 2=________. 【导学号:68334159】5 [⎪⎪⎪⎪⎪⎪z 1+2z 2=⎪⎪⎪⎪⎪⎪3+2i +21-i=|3+2i +(1+i)|=|4+3i|=5.]专题限时集训(二十) 排列组合、二项式定理 (对应学生用书第157页) [建议A 、B 组各用时:45分钟] [A 组 高考题、模拟题重组练]一、排列、组合1.如图201,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )图201A.24 B.18C.12 D.9B[从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E 到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.]2.用数字1,2,3,4,5组成没有重复数字的五位数,其中奇数的个数为( )A.24 B.48C.60 D.72D[第一步,先排个位,有C13种选择;第二步,排前4位,有A44种选择.由分步乘法计数原理,知有C13·A44=72(个).]3.定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有( )A.18个B.16个C.14个D.12个C[由题意知:当m=4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a1=0,a8=1.不考虑限制条件“对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数”,则中间6个数的情况共有C36=20(种),其中存在k≤2m,a1,a2,…,a k中0的个数少于1的个数的情况有:①若a2=a3=1,则有C14=4(种);②若a2=1,a3=0,则a4=1,a5=1,只有1种;③若a2=0,则a3=a4=a5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.]4.(2012·浙江高考)若从1,2,3,…,9这9个整数中同时取4个不同的数,其和为偶数,则不同的取法共有( )A.60种B.63种C.65种D.66种D[满足题设的取法可分为三类:一是四个奇数相加,其和为偶数,在5个奇数1,3,5,7,9中,任意取4个,有C45=5(种);二是两个奇数加两个偶数其和为偶数,在5个奇数中任取2个,再在4个偶数2,4,6,8中任取2个,有C25·C24=60(种);三是四个偶数相加,其和为偶数,4个偶数的取法有1种,所以满足条件的取法共有5+60+1=66(种).]5.某中学高三学习雷锋志愿小组共有16人,其中一班、二班、三班、四班各4人,现在从中任选3人,要求这三人不能是同一个班级的学生,且在三班至多选1人,不同的选取法的种数为( )【导学号:68334160】A.484 B.472C.252 D.232B[分两类,不选三班的同学,利用间接法,没有条件得选择3人,再排除3个同学来自同一班,有C312-3C34=208种;选三班的一位同学,剩下的两位同学从剩下的12人中任选2人,有C14·C212=264种.根据分类计数原理,得208+264=472,故选B.]6.下列各式的展开式中x8的系数恰能表示从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法总数的选项是( ) 【导学号:68334161】A.(1+x)(1+x2)(1+x3)…(1+x10)B.(1+x)(1+2x)(1+3x)…(1+10x)C.(1+x)(1+2x2)(1+3x3)…(1+10x10)D.(1+x)(1+x+x2)(1+x+x2+x3)...(1+x+x2+ (x10)A[从重量分别为1,2,3,4,…,10克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为8克的方法是选一个,8克,一种方法,选两个,1+7,2+6,3+5,共3种方法,选三个,1+2+5,只有一种方法,其他不含1的三个的和至少是2+3+4>8.四个以上的和都大于8,因此共有方法数为 5.A中,x8的系数是1+3+1=5(x8,x·x7,x2·x6,x3·x5,x·x2·x5),B中,x8的系数大于1×2×3×4×5×6×7×8,C中,x8的系数大于8(8x8的系数就是8),D中,x8的系数大于C49>8(有四个括号里取x2,其余取1时系数为C49).因此只有A是正确的,故选A.]7.(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)660 [法一:只有1名女生时,先选1名女生,有C12种方法;再选3名男生,有C36种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C12C36A24=480(种)选法.有2名女生时,再选2名男生,有C26种方法;然后排队长、副队长位置,有A24种方法.由分步乘法计数原理,知共有C26A24=180(种)选法.所以依据分类加法计数原理知共有480+180=660(种)不同的选法.法二:不考虑限制条件,共有A28C26种不同的选法,而没有女生的选法有A26C24种,故至少有1名女生的选法有A28C26-A26C24=840-180=660(种).]8.(2014·浙江高考)在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种(用数字作答).60[把8张奖券分4组有两种分法,一种是分(一等奖,无奖)、(二等奖,无奖)、(三等奖,无奖)、(无奖,无奖)四组,分给4人有A44种分法;另一种是一组两个奖,一组只有一个奖,另两组无奖,共有C23种分法,再分给4人有C23A24种分法,所以不同获奖情况种数为A44+C23A24=24+36=60.]二、二项式定理9.(x2+x+y)5的展开式中,x5y2的系数为( )A.10 B.20C.30 D.60C[法一:(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.故选C.法二:(x2+x+y)5为5个x2+x+y之积,其中有两个取y,两个取x2,一个取x即可,所以x5y2的系数为C25C23C11=30.故选C.]10.(2014·浙江高考)在(1+x)6(1+y)4的展开式中,记x m y n项的系数为f(m,n),则f(3,0)+f(2,1)+f(1,2)+f(0,3)=( )A.45 B.60C.120 D.210C[因为f(m,n)=C m6C n4,所以f(3,0)+f(2,1)+f(1,2)+f(0,3)=C36C04+C26C14+C16C24+C06C34=120.]11.已知(1+ax)(1+x)5的展开式中x2的系数为5,则a=( )A.-4 B.-3C.-2 D.-1D[(1+x)5中含有x与x2的项为T2=C15x=5x,T3=C25x2=10x2,∴x2的系数为10+5a=5,∴a=-1,故选D.]12.已知多项式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,则a4=________,a5=________.16 4 [由题意知a4为含x的项的系数,根据二项式定理得a4=C23×12×C22×22+C33×13×C12×2=16,a5是常数项,所以a5=C33×13×C22×22=4.]13.(2016·全国乙卷)(2x+x)5的展开式中,x3的系数是________.(用数字填写答案)10 [(2x +x )5展开式的通项为T r +1=C r 5(2x )5-r·(x )r =25-r·C r5·x 5-r2.令5-r2=3,得r =4.故x 3的系数为25-4·C 45=2C 45=10.]14.⎝⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________. -2 [T r +1=C r 5·(ax 2)5-r⎝ ⎛⎭⎪⎫1x r =C r 5·a 5-r x 10-52r .令10-52r =5,解得r =2.又展开式中x 5的系数为-80,则有C 25·a 3=-80,解得a =-2.]15.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________. 3 [设(a +x )(1+x )4=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5. 令x =1,得(a +1)×24=a 0+a 1+a 2+a 3+a 4+a 5.① 令x =-1,得0=a 0-a 1+a 2-a 3+a 4-a 5.②①-②,得16(a +1)=2(a 1+a 3+a 5)=2×32,∴a =3.]16.设二项式⎝⎛⎭⎪⎪⎫x -13x 5的展开式中常数项为A ,则A =________. -10 [T r +1=C r 5(x )5-r ⎝⎛⎭⎪⎪⎫-13x r =C r 5(-1)r x 52-5r 6,令52-5r 6=0,得r =3,所以A =-C 35=-10.]17.已知对任意实数x ,有(m +x )(1+x )6=a 0+a 1x +a 2x 2+…+a 7x 7,若a 1+a 3+a 5+a 7=32,则m =________. 【导学号:68334162】0 [设(1+x )6=b 0+b 1x +b 2x 2+…+b 6x 6,则a 1=b 0+mb 1,a 3=b 2+mb 3,a 5=b 4+mb 5,a 7=b 6, 所以a 1+a 3+a 5+a 7=(b 0+b 2+b 4+b 6)+m (b 1+b 3+b 5),又由二项式定理知b 0+b 2+b 4+b 6=b 1+b 3+b 5=12(1+1)6=32,所以32+32m =32,m =0.][B 组 “8+7”模拟题提速练]一、选择题1.某校开设10门课程供学生选修,其中A ,B ,C 三门由于上课时间相同,至多选一门,学校规定:每位同学选修三门,则每位同学不同的选修方案种数是( )A .70B .98C .108D .120B [可分为两类:选A ,B ,C 中的一门,其它7科中选两门,有C 13C 27=63;不选A ,B ,C 中的一门,其它7科中选三门,有C 37=35;所以共有98种,故选B.]2.在⎝⎛⎭⎪⎫ax 6+b x 4的二项展开式中,如果x 3的系数为20,那么ab 3=( ) A .20 B .15 C .10D .5D [T r +1=C r4·(ax 6)4-r·⎝ ⎛⎭⎪⎫b xr =C r 4a 4-r b r x 24-7r,令24-7r =3,得r =3,则4ab 3=20,∴ab 3=5.]3.(2018·杭州二模)某微信群中甲、乙、丙、丁、戊五名成员同时抢4个红包,每人最多抢一个,且红包被全部抢光,4个红包中两个2元,两个3元(红包金额相同视为相同的红包),则甲、乙两人都抢到红包的情况有( ) A .36种 B .24种 C .18种D .9种C [由题意可得丙、丁、戊中有1人没有抢到红包,且抢到红包的4人中有2人抢到2元红包,另2人抢到3元红包,则甲、乙两人都抢到红包的情况有C 13C 24=18种,故选C.]4.七名同学站成一排照毕业纪念照,其中甲必须站在正中间,并且乙,丙两位同学要站在一起,则不同的排法有( ) A .240种 B .192种 C .120种D .96种B [不妨令乙丙在甲左侧,先排乙丙两人,有A 22种站法,再取一人站左侧有C 14×A 22种站法,余下三人站右侧,有A 33种站法,考虑到乙丙在右侧的站法,故总的站法总数是2×A 22×C 14×A 22×A 33=192,故选B.]5.某学校开设“蓝天工程博览课程”,组织6个年级的学生外出参观包括甲博物馆在内的6个博物馆,每个年级任选一个博物馆参观,则有且只有两个年级选择甲博物馆的情况有( ) A .A 26×A 45种 B .A 26×54种 C .C 26×A 45种D .C 26×54种D [有两个年级选择甲博物馆共有C 26种情况,其余四个年级每个年级各有5种选择情况,故有且只有两个年级选择甲博物馆的情况有C 26×54种,故选D.] 6.在⎝⎛⎭⎪⎫1+x +1x2 01810的展开式中,含x 2项的系数为( ) A .10 B .30 C .45D .120C [因为⎝⎛⎭⎪⎫1+x +1x2 01810=⎣⎢⎡⎦⎥⎤+x +1x2 01810=(1+x )10+C 110(1+x )91x2 018+…+C 1010⎝⎛⎭⎪⎫1x 2 01810,所以x 2项只能在(1+x )10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45,故选C.]7.(x +2y )7的展开式中,系数最大的项是( )。
专题验收评估(六) 复数、计数原理、概率、随机变量及其分布(时间:120分钟 满分:150分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017·山东高考)已知a ∈R ,i 是虚数单位.若z =a + 3 i ,z ·z =4,则a =( ) A .1或-1 B.7或-7 C .- 3D. 3解析:选A 法一:由题意可知z =a -3i ,∴z ·z =(a +3i)(a -3i)=a 2+3=4,故a =1或-1. 法二:z ·z =|z |2=a 2+3=4,故a =1或-1.2.甲、乙等4人在微信群中每人抢到1个红包,金额为3个1元,1个5元,则甲、乙的红包金额不相等的概率为( )A.14B.12C.13D.34解析:选B 甲、乙等4人在微信群中每人抢到1个红包,金额为3个1元,1个5元,基本事件总数为4,甲、乙的红包金额不相等包含的基本事件有:甲、乙的红包金额分别为(1,5),(5,1), 所以甲、乙的红包金额不相等的概率为P =24=12.3.若z =12+32i ,且(x -z )4=a 0x 4+a 1x 3+a 2x 2+a 3x +a 4,则a 2=( )A .-12+32iB .-3+33iC .6+33iD .-3-33i解析:选B ∵T r +1=C r 4x4-r(-z )r ,由4-r =2得r =2,∴a 2=C 24×⎝ ⎛⎭⎪⎫-12-32i 2=-3+33i.4.(2017·成都模拟)若复数z 1=a +i(a ∈R),z 2=1-i ,且z 1z 2为纯虚数,则z 1在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选Az 1z 2=a +i 1-i = a +i 1+i 2= a -1 + 1+a i 2为纯虚数,则a =1,所以z 1=1+i ,z 1在复平面内对应的点为(1,1),在第一象限.故选A.5.(2017·山西临汾二中模拟)3名医生和6名护士被分配到3所学校为学生体检,每所学校分配1名医生和2名护士.不同的分配方法共有( )A .90种B .180种C .270种D .540种解析:选D 法一:先把6名护士平均分成3组,有C 26C 24C 22A 33种分法,再把每组护士配1名医生,有C 26C 24C 22A 33A 33种分法,然后分别分配到3所学校,有C 26C 24C 22A 33A 33A 33=540种分法,选D.法二:设3所学校分别为甲、乙、丙,先由学校甲挑选,有C 13C 26种选法,再由学校乙挑选,有C 12C 24种选法,余下的到学校丙,只有1种选法,于是不同的分配方法共有C 13C 26C 12C 24=540种.6.(2017·云南昆明模拟)(1+2x )3(2-x )4的展开式中x 的系数是( ) A .96 B .64 C .32D .16解析:选B (1+2x )3的展开式的通项公式为T r +1=C r3(2x )r=2r C r 3x r,(2-x )4的展开式的通项公式为T k +1=C k 424-k(-x )k =(-1)k 24-k C k 4x k,所以(1+2x )3(2-x )4的展开式中x 的系数为20C 03×(-1)×23C 14+2C 13×(-1)0×24C 04=64,故选B.7.(2018届高三·宁波九校期末联考)口袋中有5个形状和大小完全相同的小球,编号分别为0,1,2,3,4,从中任取3个球,以ξ表示取出球的最小号码,则E (ξ)=( )A .0.45B .0.5C .0.55D .0.6解析:选B 由题意可得ξ=0,1,2,则P (ξ=0)=C 11C 24C 35=35,P (ξ=1)=C 11C 23C 35=310,P (ξ=2)=1C 35=110.可得ξ的分布列如下:∴E (ξ)=0×35+1×310+2×10=2.故选B.8.(2017·广东汕头模拟)将二项式⎝⎛⎭⎪⎫x +2x 6展开式中各项重新排列,则其中无理项互不相邻的概率是( )A.27B.135C.835 D.724解析:选A 由二项展开式的通项T r +1=C r 6x 6-r⎝ ⎛⎭⎪⎫2x r =2r C r 6x r362-可知,当r =0,2,4,6时,T r +1为有理项,则二项式⎝⎛⎭⎪⎫x +2x 6展开式中有4项为有理项,3项为无理项.基本事件总数为A 77,无理项互不相邻的排列有A 44·A 35个.∴无理项互不相邻的概率是P =A 44·A 35A 77=27.故选A.9.(2017·河北张家口模拟)某同学先后投掷一枚骰子两次,第一次向上的点数记为x ,第二次向上的点数记为y ,在平面直角坐标系xOy 中,以(x ,y )为坐标的点落在直线2x -y =1上的概率为( )A.112B.19C.536D.16解析:选A ∵试验发生包含的事件是先后掷两次骰子,共有6×6=36(种)结果,满足条件的事件是以(x ,y )为坐标的点落在直线2x -y =1上,即x =1,y =1或x =2,y =3或x =3,y =5,共有3种结果,∴根据古典概型的概率公式得到以(x ,y )为坐标的点落在直线2x -y =1上的概率P =336=112.故选A.10.一个盒子里装有6张卡片,上面分别写着6个定义域为R 的函数:f 1(x )=x ,f 2(x )=x 2,f 3(x )=x 3,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=2.现从盒子中逐一抽取卡片,且每次取出后不放回,若取到一张记有偶函数的卡片,则停止抽取,否则继续进行,则抽取次数ξ的数学期望为( )A.74B.54C .2D.7740解析:选A ∵6个定义域为R 的函数f 1(x )=x ,f 2(x )=x 2,f 3(x )=x 3,f 4(x )=sin x ,f 5(x )=cos x ,f 6(x )=2中偶函数有f 2(x )=x 2,f 5(x )=cos x ,f 6(x )=2,共3个,∴ξ的可能取值为1,2,3,4,P (ξ=1)=36=12,P (ξ=2)=36×35=310,P (ξ=3)=36×25×34=320,P (ξ=4)=36×25×14×33=120,∴ξ的分布列为E (ξ)=1×12+2×310+3×320+4×120=74.故选A.二、填空题(本大题共7小题,多空题每小题6分,单空题每小题4分,共36分.把答案填在题中的横线上)11.(2017·杭州六校联考)复数z 在复平面内的对应点是(1,-1),则z -=________,z (2-i)+3+i z-=________.解析:∵z =1-i ,∴z -=1+i ,z (2-i)+3+i z-=(1-i)(2-i)+3+i 1+i=1-3i +2-i =3-4i.答案:1+i 3-4i12.(2017·浙东北三校联考)⎝⎛⎭⎪⎫ax 2+1x 6(a <0)展开式的常数项为15,则实数a =________,其中二项式系数最大的项为________.解析:T r +1=C r 6⎝ ⎛⎭⎪⎫1xr ·(ax 2)6-r =a 6-r C r 6x 12-3r ,令12-3r =0,解得r =4.∴a 2C 46=15,解得a =-1(a =1舍去).∴二项式系数最大的项为T 4=-C 36x 3=-20x 3.答案:-1 -20x 313.(2018届高三·温州九校联考)将四位同学等可能的分到甲、乙、丙三个班级,则甲班级至少有一位同学的概率是________,用随机变量ξ表示分到丙班级的人数,则E (ξ)=________.解析:由题意,四位学生中至少有一位选择甲班级的概率为1-2434=6581;随机变量ξ=0,1,2,3,4,则P (ξ=0)=2434=1681,P (ξ=1)=4×2334=3281,P (ξ=2)=C 24×2234=827,P (ξ=3)=C 34×234=881,P (ξ=4)=181,ξ的分布列为所以E (ξ)=0+1×81+2×27+3×81+4×81=3.答案:6581 4314.袋中有6个编号不同的黑球和3个编号不同的白球,这9个球的大小、质地都相同,现从该袋中随机摸取3个球,则这3个球中恰有2个黑球和1个白球的方法总数是________.设摸。
2018高考数学知识点总结1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
{}{}{}如:集合,,,、、A x y x B y y x C x y y x A B C ======|lg |lg (,)|lg 中元素各表示什么? 2. 2. 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况。
∅注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
{}{}如:集合,A x x x B x ax =--===||22301 若,则实数的值构成的集合为B A a ⊂ (答:,,)-⎧⎨⎩⎫⎬⎭10133. 注意下列性质:{}()集合,,……,的所有子集的个数是;1212a a a n n ,22,12,12---n n n 非空真子集个数是真子集个数是非空子集个数是4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
()),,·∴,∵·∴,∵(259351055550353322Y ⎪⎭⎫⎢⎣⎡∈⇒≥--∉<--∈a aa M aa M5. 可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和()()∨∧“非”().⌝ 若为真,当且仅当、均为真p q p q ∧ 至少有一个为真、为真,当且仅当若q p q p ∨ 若为真,当且仅当为假⌝p p6. 命题的四种形式及其相互关系是什么? (互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
7. 对映射的概念了解吗?映射f :A →B ,是否注意到A 中元素的任意性和B 中与之对应元素的唯一性,哪几种对应能构成映射? (一对一,多对一,A 中元素不可剩余,允许B 中有元素剩余。
) 8. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 9. 求函数的定义域有哪些常见类型?10. 如何求复合函数的定义域? []如:函数的定义域是,,,则函数的定f x a b b a F(x f x f x ())()()>->=+-0义域是_ [](答:,)a a -11. 求一个函数的解析式或一个函数的反函数时,注明函数的定义域了吗?12. 反函数存在的条件是什么? (一一对应函数) 求反函数的步骤掌握了吗? (①反解x ;②互换x 、y ;③注明定义域) ()()如:求函数的反函数f x xx xx ()=+≥-<⎧⎨⎪⎩⎪1002()()(答:)f x x x x x -=->--<⎧⎨⎪⎩⎪1110() 13. 反函数的性质有哪些? ①互为反函数的图象关于直线y =x 对称; ②保存了原来函数的单调性、奇函数性;14. 如何用定义证明函数的单调性? (取值、作差、判正负) 如何判断复合函数的单调性?[](内层)(外层),则,()()()(x f y x u u f y ϕϕ===∴……)15. 如何利用导数判断函数的单调性?()在区间,内,若总有则为增函数。
第十章 计数原理,概率,随机变量及其分布测试卷 第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.【2018届广西贺州市桂梧高中高三上学期第四次联考】()713x -的展开式的第4项的系数为( )A. 3727C -B. 4781C -C. 3727CD. 4781C【答案】A【解析】由题意可得()713x -的展开式的第4项为()33733331771327T C x C x -+=⨯⨯-=-,选A.2.同时抛掷三枚质地均匀的硬币,出现一枚正面、二枚反面的概率等于 ( ) A.14 B. 13 C. 23 D. 12【答案】C3.【2017广西玉林一模】有两张卡片,一张的正反面分别画着老鼠和小鸡,另一张的正反面分别画着老鹰和蛇,现在有两个小孩随机地将两张卡片排在一起放在桌面上,不考虑顺序,则向上的图案是老鹰和小鸡的概率是( ) A.12 B. 13 C. 14 D. 16【答案】C【解析】将两张卡片排在一起,向上的一面组成的图案共4种,分别为:(老鼠,老鹰),(老鼠,蛇),(小鸡,老鹰),(小鸡,蛇),所以由古典概型概率公式可得组成的图案是老鹰和小鸡的概率14P =。
选C 。
4.在1,3,4,5,8路公共汽车都要停靠的一个站(假定这个站一次只能停靠一辆汽车),有一位乘客等候4路或8路汽车.假定当时各路汽车首先到站的可能性相等,则首先到站正好是这位乘客所需乘的汽车的概率等于( ) A.12 B. 23 C. 35 D. 25【答案】D【解析】由题意知,在该问题中基本事件总数为5,这位乘客等候的汽车首先到站这个事件包含的基本事件个数为2,故所求概率为25。
选D 。
5.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( ) A. 0.95 B. 0.7 C. 0.35 D. 0.05 【答案】D【解析】“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05. 故答案为D.6.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( ) A.19 B. 29 C. 49 D. 89【答案】D7.【2018届浙江省嘉兴市第一中学上学期高三期中】某校的A 、B 、C 、D 四位同学准备从三门选修课中各选一门,若要求每门选修课至少有一人选修,且A,B 不选修同一门课,则不同的选法有( ) A. 36种 B. 72种 C. 30种 D. 66种 【答案】C【解析】先从4人中选出2人作为1个整体有246C =种选法,减去A B 、在同一组还有5种选法,再选3门课程有33A 种选法,利用分步计数原理有33530A =种不同选法.选C.8.从5名男生中挑选3人,4名女生中挑选2人,组成一个小组,不同的挑选方法共有( )A. 3254C C 种B. 3254C C 55A 种C. 3254A A 种D. 3254A A 55A 种 【答案】A【解析】男生组合数为35C 种,女生的组合数为24C ,故不同的选取方法共有3254C C 种,故选A.9.【2018届云南省昆明市高新技术开发区高考适应性月考】()522131x x ⎛⎫+- ⎪⎝⎭的展开式的常数项是( )A. -3B. -2C. 2D. 3 【答案】C10.已知随机变量X 的分布列为()13P X k ==, 1,2,3k =,则()35D X +等于( ) A. 6 B. 9 C. 3 D. 4 【答案】A【解析】由题意, ()()112323E X =++⨯=, ()()()()2221212223233D X ⎡⎤∴=-+-+-⨯=⎣⎦,()()2359963D X D X ∴+==⨯=,故选A. 11.生产过程中有4道工序,每道工序需要安排一人照看.现从甲、乙、丙等6名工人中安排4人分别照看一道工序,第一道工序只能从甲、乙两名工人中安排一人,第四道工序只能从甲、丙两名工人中安排一人,则不同的安排方案共有 ( ) A. 24种 B. 36种 C. 48种 D. 72种 【答案】B【解析】第一道工序安排甲则第四道工序安排丙,从剩下4选两人照看剩下两道工序有24A 方案 第一道工序安排乙则第四道工序有两种方案,再从剩下4选两人照看剩下两道工序有24A 方案,因此共有2244236A A +=,选B.12.若离散型随机变量ξ的取值分别为,m n ,且()P m n ξ==, ()P n m ξ==, 38E ξ=,则22m n +的值为( ) A.14 B. 516 C. 58 D. 1316【答案】C【解析】因为31,28m n E nm mn mn ξ+==+==,所以()222352188m n m n mn +=+-=-=, 应选答案C.第Ⅱ卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.【2018届浙江省嘉兴市第一中学上学期高三期中】二项式()512x +中,所有的二项式系数之和为___________;系数最大的项为_________. 【答案】 32 3480,80x x【解析】所有的二项式系数之和为0155555......232C C C +++==,展开式为234512*********x x x x x +++++,系数最大的项为380x 和480x .14.一个家庭中有两个小孩,若生男还是生女是等可能的,则此家庭中两小孩均为女孩的概率为_____. 【答案】14【解析】由题意得一个家庭中两个小孩的性别的所有的基本事件有:(男,男),(男,女),(女,男),(女,女),共4种,其中均为女孩的基本事件只有1个,故此家庭中两个均为女孩的概率为14. 15.【2017届浙江省ZDB 联盟高三一模】教育装备中心新到7台同型号的电脑,共有5所学校提出申请,鉴于甲、乙两校原来电脑较少,决定给这两校每家至少2台,其余学校协商确定,允许有的学校1台都没有,则不同的分配方案有__________种(用数字作答). 【答案】3516.【2018届浙江省“七彩阳光”联盟高三上学期期初】某人喜欢玩有三个关卡的通关游戏,根据他的游戏经验,每次开启一个新的游戏,这三个关卡他能够通关的概率分别为111,,234(这个游戏的游戏规则是:如果玩者没有通过上一个关卡,他照样可以玩下一个关卡,但玩该游戏的得分会有影响),则此人在开启一个这种新的游戏时,他能够通过两个关卡的概率为__________,设X 表示他能够通过此游戏的关卡的个数,则随机变量X 的数学期望为__________. 【答案】14 1312.所以,随机变量X的分布列为随机变量X的数学期望()1111113 012342442412E X=⨯+⨯+⨯+⨯=.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.【2017届重庆市第一中学高三上学期一诊】已知的展开式中各项的二项式系数和为,第二项的系数为.(1)求,(2)求数列的前项和.【答案】(1);(2).【解析】试题分析:(1)利用二项式系数的定义可得根据二项式定理可得第二项为,从而可得系数为;(2)由(1)可知知根据错位相减法可得结果.试题解析:(1);(2)由(1)知所以 ①,②②-①可得,可得.18.【2018届河南省郑州市第一中学高三上学期期中】某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为23.现有10件产品,其中6件是一等品,4件是二等品.(1)随机选取1件产品,求能够通过检测的概率;(2)随机选取3件产品,其中一等品的件数记为X ,求X 的分布列及数学期望.. 【答案】(1)1315;(2)见解析.试题解析:(1)设随机选取一件产品,能够通过检测的事件为A 事件A 等于事件“选取一等品都通过检测或者是选取二等品通过检测”()642131010315p A =+⨯= (2)由题可知X 可能取值为0,1,2,3.()30463101030C C P X C ===, ()21463103110C C P X C ===, ()1246310122C C P X C ===, ()0346310136C C P X C ===.分布列:∴311912310265EX =⨯+⨯+⨯= 19.【2018届江苏省南京市高三上期初】袋中有形状和大小完全相同的四种不同颜色的小球,每种颜色的小球各有4个,分别编号为1,2,3,4.现从袋中随机取两个球.(Ⅰ)若两个球颜色不同,求不同取法的种数;(Ⅱ)在(1)的条件下,记两球编号的差的绝对值为随机变量X,求随机变量X的概率分布与数学期望.【答案】(1)96(2)E(X)=5 4试题解析:解:(1)两个球颜色不同的情况共有24C 42=96(种). (2)随机变量X所有可能的值为0,1,2,3.P(X=0)=2441964C==,P(X=1)=114333 968 C C=,P(X=2)=114321 964C C=,P(X=3)=11431 968 C C=所以随机变量X的概率分布列为:所以E(X)=014⨯+1⨯38+2⨯14+3⨯18=54.20.【2017届广西柳州市、钦州市高三一模】某市公租房的房源位于四个片区,设每位申请人只申请其中一个片区的房源,且申请其中任一个片区的房源是等可能的,在该市的甲、乙、丙三位申请人中:(1)求恰有1人申请片区房源的概率;(2)用表示选择片区的人数,求的分布列和数学期望.【答案】(1);(2)详见解析.【解析】试题分析:(1)基本事件总数为种,区有人,方法数有种,剩余人从剩下个中任选,方法数有,根据分步计数原理,符合题意的方法数有种,故概率为.(2)选的人数可能有个,个人,每个人选到的概率为,故为二项分布,利用二项分布的公式可求得期望和方差. 试题解析:(1)本题是一个等可能事件的概率,实验发生包含的事件是3位申请人中,每一个有四种选择,共有种结果.满足条件的事件恰有1人申请片区房源有,根据等可能事件的概率.(2)的所有可能结果为0,1,2,3,依题意,,,,,∴的分布列为:∴的数学期望:.法2:每个片区被申请的概率均为,没被选中的概率均为,的所有可能结果为0,1,2,3,且,,,,,∴的分布列为:∴的数学期望:.21.【2017届江西师范大学附属中学高三3月月考】已知由甲、乙两位男生和丙、丁两位女生组成的四人冲关小组,参加由安徽卫视推出的大型户外竞技类活动《男生女生向前冲》.活动共有四关,若四关都闯过,则闯关成功,否则落水失败.设男生闯过一至四关的概率依次是5432,,,6543,女生闯过一至四关的概率依次是4321,,,5432. (Ⅰ)求男生甲闯关失败的概率;(Ⅱ)设X 表示四人冲关小组闯关成功的人数,求随机变量X 的分布列和期望. 【答案】(Ⅰ)23;(Ⅱ)见解析.∴()()543212111654333P A P A =-=-⨯⨯⨯=-=. (Ⅱ)记“一位女生闯关成功”为事件B ,则()4321154325P B =⨯⨯⨯=, 随机变量X 的所有可能取值为0,1,2,3,4.()222464035225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()221122124142961335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅= ⎪ ⎪⎝⎭⎝⎭, ()221122121141123335553225P C C ⎛⎫⎛⎫X ==⋅⋅⋅+⋅⋅⋅=⎪ ⎪⎝⎭⎝⎭,()22111435225P ⎛⎫⎛⎫X ==⨯=⎪ ⎪⎝⎭⎝⎭, ()64961215221225225P +++X ==-=. ∴X 的分布列为:∴()6496521211601234.22522522522522515E X =⨯+⨯+⨯+⨯+⨯= 22.【2017届河南省洛阳市高三3月统考】某厂有4台大型机器,在一个月中,一台机器至多出现1次故障,且每台机器是否出现故障是相互独立的,出现故障时需1名工人进行维修,每台机器出现故障需要维修的概率为13. (1)若出现故障的机器台数为X ,求X 的分布列;(2) 该厂至少有多少名工人才能保证每台机器在任何时刻同时出现故障时能及时进行维修的概率不少于90%?(3)已知一名工人每月只有维修1台机器的能力,每月需支付给每位工人1万元的工资,每台机器不出现故障或出现故障能及时维修,就使该厂产生5万元的利润,否则将不产生利润,若该厂现有2名工人,求该厂每月获利的均值. 【答案】(1) 3;(2)140881.件A 的概率为13,该厂有4台机器就相当于4次独立重复试验,因出现故障的机器台数为X ,故1~4,3X B ⎛⎫ ⎪⎝⎭,()4042160381P X C ⎛⎫=== ⎪⎝⎭, ()30412*******P X C ⎛⎫==⋅⋅= ⎪⎝⎭,11 ()2204122423381P X C ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭, ()30412833381P X C ⎛⎫==⋅⋅= ⎪⎝⎭ 即X 的分布列为:(2)设该厂有n 名工人,则“每台机器在任何时刻同时出现故障及时进行维修”为x n ≤,即0x =, 1x =, ⋅⋅⋅, x n =,这1n +个互斥事件的和事件,则729081≤ %8081≤, ∴至少要3名工人,才能保证每台机器在任何时刻同时出现故障能及时进行维修的概率不少于90%.(3)设该厂获利为Y 万元,则Y 的所有可能取值为: 18,13,8()()()()721801281P Y P X P X P X ===+=+==, ()()813381P Y P X ====, ()()18481P Y P X ====, 即Y 的分布列为:则()728114081813881818181E Y =⨯+⨯+⨯=, 故该厂获利的均值为140881.。
类型8| 社会生活(2017·浙江温州4月模拟)On Friday,March 13,28yearold Genovese was returning home from work.Approaching her apartment,she was attacked by a man.Though she repeatedly called for help,none of the people in the neighborhood helped.The attack began at 3:20 am,but it was not until 3:50 am that someone first called the police.This is a most typical example of the bystander effect in psychology.The term bystander effect refers to the phenomenon in which the greater the number of people present is,the less likely people are to help a person in need.Two major factors contribute to the bystander effect.First,the presence of other people creates diffusion (分散) of responsibility.With other observers around,individuals (个体) do not feel much pressure to take action,since the responsibility to take action is thought to be shared among those present.The second reason is the need to behave in correct and socially acceptable ways.When other observers fail to react,individuals often take this as a signal that a response is not needed.Researchers have found that onlookers are less likely to act if the situation is ambiguous,where things are often confusing and not so clear.So what can you do to avoid falling into this trap? Psychologists suggest that simply being aware of this tendency is the greatest way to break the cycle.When you face a situation that requires action,you should understand the bystander effect andconsciously(有意识地) take action.But what if you are the person in need of assistance? One often-recommended approach is to single out one person from the crowd.Make eye contact and ask that individual specifically for help.By individualizing your request,it becomes much harder for people to turn you down. 24.The story of Genovese is to show .A.the bystander effectB.the murderer's crueltyC.the neighbors' selfishnessD.the poor public security25.Onlookers fail to take action because the situation is .A.urgent B.dangerousC.tense D.vague26.What should you do when you need help from bystanders in an accident?A.Make a polite request.B.Turn to a specific person.C.Become aware of the tendency.D.Stay away from possible danger.语篇解读:本文是一篇说明文,主要介绍了旁观者效应。
专题三概率及期望与方差建知识网络明内在联系[高考点拨]本专题涉及面广,往往以生活中的热点问题为依托,在浙江新高考中的考查方式十分灵活,背景容易创新.基于上述分析,本专题按照“古典概型”“随机变量及其分布”两个方面分类进行引导,强化突破.突破点6 古典概型(对应学生用书第24页)[核心知识提炼]提炼1古典概型问题的求解技巧(1)直接列举:涉及一些常见的古典概型问题时,往往把事件发生的所有结果逐一列举出来,然后进行求解.(2)画树状图:涉及一些特殊古典概型问题时,直接列举容易出错,通过画树状图,列举过程更具有直观性、条理性,使列举结果不重、不漏.(3)逆向思维:对于较复杂的古典概型问题,若直接求解比较困难,可利用逆向思维,先求其对立事件的概率,进而可得所求事件的概率.(4)活用对称:对于一些具有一定对称性的古典概型问题,通过列举基本事件个数结合古典概型的概率公式来处理反而比较复杂,利用对称思维,可以快速解决. 提炼2求概率的两种常用方法(1)将所求事件转化成几个彼此互斥的事件的和事件,利用概率加法公式求解概率. (2)若一个较复杂的事件的对立面的分类较少,可考虑利用对立事件的概率公式,即“正难则反”.它常用来求“至少”或“至多”型事件的概率.[高考真题回访]回访 古典概型1.(2011·浙江高考)从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ) A.110B.310 C.35D.910D [“所取的3个球中至少有1个白球”的对立事件是“所取的3个球都不是白球”,因而所求的概率P =1-C 33C 35=1-110=910.]2.(2014·浙江高考)在3张奖券中有一、二等奖各1张,另1张无奖.甲、乙两人各抽取1张,两人都中奖的概率是________.13[记“两人都中奖”为事件A , 设中一、二等奖及不中奖分别记为1,2,0,那么甲、乙抽奖结果有(1,2),(1,0),(2,1),(2,0),(0,1),(0,2),共6种.其中甲、乙都中奖有(1,2),(2,1),2种,所以P (A )=26=13.]3.(2013·浙江高考)从3男3女共6名同学中任选2名(每名同学被选中的机会均等),这2名都是女同学的概率等于__________.15[用A ,B ,C 表示三名男同学,用a ,b ,c 表示三名女同学,则从6名同学中选出2人的所有选法为:AB ,AC ,Aa ,Ab ,Ac ,BC ,Ba ,Bb ,Bc ,Ca ,Cb ,Cc ,ab ,ac ,bc ,共15种选法,其中都是女同学的选法有3种,即ab ,ac ,bc ,故所求概率为315=15.](对应学生用书第25页) 热点题型1 古典概型题型分析:古典概型是高考考查概率的核心,问题背景大多是取球、选人、组数等,求解的关键是准确列举基本事件,难度较小.【例1】 (1)(2017·浙东北教学联盟高三一模考试7)袋子里有大小、形状相同的红球m 个,黑球n 个(m >n >2).从中任取1个球是红球的概率记为p 1.若将红球、黑球个数各增加1个,此时从中任取1个球是红球的概率记为p 2;若将红球、黑球个数各减少1个,此时从中任取1个球是红球的概率记为p 3,则( ) A .p 1>p 2>p 3 B .p 1>p 3>p 2 C .p 3>p 2>p 1D .p 3>p 1>p 2(2)已知M ={1,2,3,4},若a ∈M ,b ∈M ,则函数f (x )=ax 3+bx 2+x -3在R 上为增函数的概率是( )【导学号:68334080】A.916B.716 C.416D.316(1)B (2)A [(1)由题意得p 1=mm +n,p 2=m +1m +n +2,p 3=m -1m +n -2,则1p 1=m +n m =1+n m ,1p 2=m +n +2m +1=1+n +1m +1,1p 3=m +n -2m -1=1+n -1m -1,则1p 1-1p 2=n m -n +1m +1=n -mm m +<0,1p 1-1p 3=nm-n -1m -1=m -n m m ->0,所以1p 2>1p 1>1p 3,所以p 3>p 1>p 2,故选D.(2)记事件A 为“函数f (x )=ax 3+bx 2+x -3在R 上为增函数”.因为f (x )=ax 3+bx 2+x -3,所以f ′(x )=3ax 2+2bx +1. 因为函数f (x )在R 上为增函数,所以f ′(x )≥0在R 上恒成立.又a >0,所以Δ=(2b )2-4×3a =4b 2-12a ≤0在R 上恒成立,即a ≥b 23.所以当b =1时,有a ≥13,故a 可取1,2,3,4,共4个数;当b =2时,有a ≥43,故a 可取2,3,4,共3个数;当b =3时,有a ≥3,故a 可取3,4,共2个数; 当b =4时,有a ≥163,故a 无可取值.综上,事件A 包含的基本事件有4+3+2=9(种). 又a ,b ∈{1,2,3,4},所以(a ,b )共有4×4=16(种). 故所求事件A 的概率为P (A )=916.故选A.][方法指津]利用古典概型求事件概率的关键及注意点1.关键:正确列举出基本事件的总数和待求事件包括的基本事件数.2.注意点:(1)对于较复杂的题目,列出事件数时要正确分类,分类时应不重不漏. (2)当直接求解有困难时,可考虑求其对立事件的概率.[变式训练1] (2016·温州调研)若将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则在1,2号盒子中各有一个球的概率是________.29[将甲、乙两个球随机放入编号为1,2,3的三个盒子中,每个盒子的放球数量不限,则有3×3=9种不同放法,其中在1,2号盒子中各有一个球的结果有2种,故所求概率是29.]热点题型2 互斥事件与对立事件的概率题型分析:互斥事件与对立事件的概率常与古典概型等交汇命题,主要考查学生的分析转化能力,难度中等.【例2】现有甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的活动,每人参加且只能参加一个社团的活动,且参加每个社团是等可能的.(1)求文学社和街舞社都至少有1人参加的概率;(2)求甲、乙同在一个社团,且丙、丁不同在一个社团的概率.[解]甲、乙、丙、丁4个学生课余参加学校社团文学社与街舞社的情况如下:共有 (1)文学社或街舞社没有人参加的基本事件有2个, 故所求概率为1416=78.9分(2)甲、乙同在一个社团,且丙、丁不同在一个社团的基本事件有4个,故所求概率为416=14.12分[方法指津]1.直接求法:将所求事件分解为一些彼此互斥事件的和,运用互斥事件概率的加法公式计算. 2.间接求法:先求此事件的对立事件,再用公式P (A )=1-P (A )求解,即运用逆向思维(正难则反),特别是“至多”“至少”型题目,用间接求法会较简便. 提醒:应用互斥事件概率的加法公式的前提是确定各个事件是否彼此互斥.[变式训练2] (名师押题)根据以往统计资料,某地车主购买甲种保险的概率为0.5,购买乙种保险但不购买甲种保险的概率为0.3.(1)求该地1位车主至少购买甲、乙两种保险中的1种的概率; (2)求该地1位车主甲、乙两种保险都不购买的概率.【导学号:68334081】[解] 记事件A 为“该车主购买甲种保险”,事件B 为“该车主购买乙种保险但不购买甲种保险”,事件C 为“该车主至少购买甲、乙两种保险中的1种”,事件D 为“该车主甲、乙两种保险都不购买”.4分(1)由题意得P (A )=0.5,P (B )=0.3,6分 又C =A ∪B ,所以P (C )=P (A ∪B )=P (A )+P (B )=0.5+0.3=0.8. 12分 (2)因为D 与C 是对立事件,所以P (D )=1-P (C )=1-0.8=0.2. 15分。
绝密★启用前2018年普通高等学校招生全国统一考试(浙江卷)数 学本试题卷分选择题和非选择题两部分。
全卷共4页,选择题部分1至2页;非选择题部分3至4页。
满分150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“注意事项”的要求,在答题纸相应的位置上规范作答,在本试题卷上的作答一律无效。
参考公式:若事件A ,B 互斥,则 若事件A ,B 相互独立,则 若事件A 在一次试验中发生的概率是p ,则n 次独立重复试验中事件A 恰好发生k 次的概率台体的体积公式其中分别表示台体的上、下底面积,表示台体的高柱体的体积公式其中表示柱体的底面积,表示柱体的高 锥体的体积公式其中表示锥体的底面积,表示锥体的高 球的表面积公式球的体积公式其中表示球的半径选择题部分(共40分)一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知全集U ={1,2,3,4,5},A ={1,3},则A .B .{1,3}C .{2,4,5}D .{1,2,3,4,5}()()()P A B P A P B +=+()()()P AB P A P B =()C (1)(0,1,2,,)k k n k n n P k p p k n -=-=121()3V S S h =12,S S h V Sh =S h 13V Sh =S h 24S R =π343V R =πR =UA ∅2.双曲线的焦点坐标是A .(,0),,0)B .(−2,0),(2,0)C .(0,),(0)D .(0,−2),(0,2)3.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:cm3)是A .2B .4C .6D .84.复数(i 为虚数单位)的共轭复数是 A .1+iB .1−iC .−1+iD .−1−i5.函数y =sin2x 的图象可能是A .B .C .D .6.已知平面α,直线m ,n 满足m α,n α,则“m ∥n ”是“m ∥α”的 A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件221 3=x y -俯视图正视图21i-||2x ⊄⊂7.设0<p <1,随机变量ξ的分布列是则当p 在(0,1)内增大时, A .D (ξ)减小B .D (ξ)增大C .D (ξ)先减小后增大D .D (ξ)先增大后减小8.已知四棱锥S −ABCD 的底面是正方形,侧棱长均相等,E 是线段AB 上的点(不含端点),设SE 与BC 所成的角为θ1,SE 与平面ABCD 所成的角为θ2,二面角S −AB −C 的平面角为θ3,则 A .θ1≤θ2≤θ3B .θ3≤θ2≤θ1C .θ1≤θ3≤θ2D .θ2≤θ3≤θ19.已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e ·b +3=0,则|a −b |的最小值是 A −1B +1C .2D .210.已知成等比数列,且.若,则 A .B .C .D .非选择题部分(共110分)二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
专题一善用数学思想高考试题一是着眼于知识点新颖巧妙的组合;二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学内容,可用文字和符号来记录和描述,那么数学思想方法则是数学意识,重在领会、运用,属于思维的范畴,用以对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等.数学思想与数学基本方法常常在学习、掌握数学知识的同时获得,与此同时,它们又直接对知识的形成起到指导作用.因此,在平时的学习中,我们应对数学思想方法进行认真的梳理与总结,逐个认识它们的本质特征,逐步做到自觉地、灵活地将其运用于所需要解决的问题之中.第一讲函数与方程思想__数形结合思想一、函数与方程思想函数与方程思想的含义函数与方程思想在解题中的应用函数的思想,就是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决的数学思想.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决的数学思想. 1函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.2数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.3解析几何中的许多问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.4立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决.———————[典例示范]—————应用一解决数列、不等式问题[例1] 已知数列{a n}是各项均为正数的等差数列.(1)若a1=2,且a2,a3,a4+1成等比数列,求数列{a n}的通项公式a n;(2)在(1)的条件下,数列{a n}的前n项和为S n,设b n=1S n+1+1S n+2+…+1S2n,若对任意的n∈N *,不等式b n ≤k 恒成立,求实数k 的最小值.[解] (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ),(列出方程) 解得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), 所以b n =1S n +1+1S n +2+…+1S 2n=1n +1n +2+1n +2n +3+…+12n 2n +1=1n +1-1n +2+1n +2-1n +3+…+12n -12n +1 =1n +1-12n +1=n 2n 2+3n +1=12n +1n+3, 令f (x )=2x +1x(x ≥1),(构造函数)则f ′(x )=2-1x2,当x ≥1时,f ′(x )>0恒成立,所以f (x )在[1,+∞)上是增函数, 故当x =1时,f (x )min =f (1)=3, 即当n =1时,(b n )max =16,要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =16,所以实数k 的最小值为16.———[即时应用]—————————— 1.(1)设a >0,b >0.( ) A .若2a +2a =2b+3b ,则a >b B .若2a +2a =2b+3b ,则a <b C .若2a -2a =2b-3b ,则a >b D .若2a -2a =2b-3b ,则a <b(2)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. 解析:(1)由2a+2a =2b+3b , 整理得,(2a+2a )-(2b+2b )=b >0, 令f (x )=2x +2x ,显然f (x )是单调递增函数, 由f (a )-f (b )>0可得a >b ,选A.(2)若x =0,则不论a 取何值,f (x )≥0显然成立;当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1x3.设g (x )=3x 2-1x 3,则g ′(x )=31-2xx4,所以g (x )在区间⎝ ⎛⎦⎥⎤0,12上单调递增,在区间⎝ ⎛⎦⎥⎤12,1上单调递减,因此g (x )max =g ⎝ ⎛⎭⎪⎫12=4,从而a ≥4;当x <0即x ∈[-1,0)时,f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x3,设g (x )=3x 2-1x3,且g (x )在区间[-1,0)上单调递增,因为g (x )min =g (-1)=4,从而a ≤4,综上a =4.答案:(1)A (2)4——————————[典例示范]————————— 应用二 解决解析几何、立体几何问题[例2] 已知椭圆C :x 2a 2+y 2b2=1(a >b >0)的右焦点为F (1,0),如图所示,设左顶点为A ,上顶点为B ,且OF ―→·FB ―→=AB ―→·BF ―→.(1)求椭圆C 的方程;(2)若过F 的直线l 交椭圆于M ,N 两点,试确定FM ―→·FN ―→的取值范围. [解] (1)由已知,A (-a,0),B (0,b ),F (1,0), 则由OF ―→·FB ―→=AB ―→·BF ―→,得b 2-a -1=0. ∵b 2=a 2-1,∴a 2-a -2=0,(列出方程) 解得a =2. ∴a 2=4,b 2=3,∴椭圆C 的方程为x 24+y 23=1.(2)①若直线l 斜率不存在,则l :x =1, 此时M ⎝ ⎛⎭⎪⎫1,32,N ⎝⎛⎭⎪⎫1,-32,FM ―→·FN ―→=-94.②若直线l 斜率存在,设l :y =k (x -1),M (x 1,y 1),N (x 2,y 2),则由 ⎩⎪⎨⎪⎧y =k x -1,x 24+y23=1消去y 得(4k 2+3)x 2-8k 2x +4k 2-12=0,(列出方程) ∴x 1+x 2=8k 24k 2+3,x 1x 2=4k 2-124k 2+3.∴FM ―→·FN ―→=(x 1-1,y 1)·(x 2-1,y 2) =(1+k 2)[x 1x 2-(x 1+x 2)+1] =-94-11+k2.(转化为函数) ∵k 2≥0,∴0<11+k 2≤1,∴3≤4-11+k 2<4,∴-3≤FM ―→·FN ―→<-94.综上所述,FM ―→·FN ―→的取值范围为⎣⎢⎡⎦⎥⎤-3,-94. ——————————[即时应用]——————————2.(1)已知正四棱锥S ABCD 中,SA =23,那么当该棱锥的体积最大时,它的高为( ) A .1B. 3 C .2 D .3(2)(2016·浙江高考)如图,在△ABC 中,AB =BC =2,∠ABC =120°.若平面ABC 外的点P 和线段AC 上的点D ,满足PD =DA ,PB =BA ,则四面体PBCD 的体积的最大值是________.解析:(1)设正四棱锥S ABCD 的底面边长为a (a >0),则高h = SA 2-⎝ ⎛⎭⎪⎫2a 22=12-a 22,所以体积V =13a 2h =1312a 4-12a 6.设y =12a 4-12a 6(a >0),则y ′=48a 3-3a 5.令y ′>0,得0<a <4;令y ′<0,得a >4.故函数y 在(0,4]上单调递增,在[4,+∞)上单调递减.可知当a =4时,y 取得最大值,即体积V 取得最大值,此时h =12-a 22=2,故选C.(2)在△ABC 中,AB =BC =2,∠ABC =120°, ∴AC =22+22-2×2×2×⎝ ⎛⎭⎪⎫-12=2 3.设CD =x ,则AD =23-x , ∴PD =23-x , ∴V P BCD =13S △BCD ·h≤13×12BC ·CD ·sin 30°·PD =16x (23-x )≤16⎝ ⎛⎭⎪⎫x +23-x 22 =16×⎝ ⎛⎭⎪⎫2322=12, 当且仅当x =23-x ,即x =3时取“=”, 此时PD =3,BD =1,PB =2,满足题意. 故四面体PBCD 的体积的最大值为12.答案:(1)C (2)12二、数形结合思想数形结合思想的含义数形结合思想在解题中的应用 数形结合思想,就是根据数与形之间的对应关系,通过数与形的相互转化来解决数学问题的思想.数形结合思想的应用包括以下两个方面:(1)“以形助数”,把某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,揭示数学问题的本质;(2)“以数定形”,把直观图形数量化,使形更加精确.1构建函数模型并结合其图象求参数的取值范围或解不等式.2 构建函数模型并结合其图象研究方程根或函数的零点的范围.3构建解析几何模型求最值或范围.4构建函数模型并结合其图象研究量与量之间的大小关系.应用一 处理方程根、函数零点问题[例3] (1)(2017·杭州模拟)已知函数f (x )=⎩⎪⎨⎪⎧-x12,x ≤0,log 5x ,x >0,函数g (x )是周期为2的偶函数且当x ∈[0,1]时,g (x )=2x-1,则函数y =f (x )-g (x )的零点个数是( )A .5B .6C .7D .8(2)已知定义在R 上的奇函数y =f (x )的图象关于直线x =1对称,当0<x ≤1时,f (x )=log12x ,则方程f (x )-1=0在(0,6)内的所有根之和为( )A .8B .10C .12D .16[解析] (1)在同一坐标系中作出y =f (x )和y =g (x )的图象如图所示,由图象可知当x >0时,有4个零点,当x ≤0时,有2个零点,所以一共有6个零点,故选B.(2)∵奇函数f (x )的图象关于直线x =1对称,∴f (x )=f (2-x )=-f (-x ),即f (x )=-f (x +2)=f (x +4),∴f (x )是周期函数,其周期T =4.当0<x ≤1时,f (x )=log 12x ,故f (x )在(0,6)上的函数图象如图所示.由图可知方程f (x )-1=0在(0,6)内的根共有4个,其和为x 1+x 2+x 3+x 4=2+10=12,故选C.[答案] (1)B (2)C———————————[即时应用]——————————3.(1)已知函数f (x )=2mx 2-2(4-m )x +1,g (x )=mx ,若对于任一实数x ,f (x )与g (x )至少有一个为正数,则实数m 的取值范围是( )A .(0,2)B .(0,8)C .(2,8)D .(-∞,0)(2)(2018届高三·温州五校联考)已知直线(1-m )x +(3m +1)y -4=0所过定点恰好落在函数f (x )=⎩⎪⎨⎪⎧log a x ,0<x ≤3,|x -4|,x >3的图象上,若函数h (x )=f (x )-mx +2有三个不同的零点,则实数m 的取值范围是( )A.⎝⎛⎭⎪⎫-∞,12B.⎝ ⎛⎭⎪⎫12,1C.⎝ ⎛⎦⎥⎤12,1 D .(1,+∞)解析:(1)m =0时结论显然不成立;当m <0时,二次函数的对称轴-b 2a =4-m2m <0,如图①,x >0时显然不成立;当0<m ≤4时,-b 2a =4-m2m >0,如图②,此时结论显然成立;当m >4时,如图③,-b 2a =4-m 2m<0时,只要Δ=4(4-m )2-8m =4(m -8)(m -2)<0即可,即4<m <8,故有0<m <8,选B.(2)由(1-m )x +(3m +1)y -4=0,得x +y -4-m (x -3y )=0,∴由⎩⎪⎨⎪⎧x +y -4=0,x -3y =0,可得直线过定点(3,1),∴log a 3=1,∴a =3.令f (x )-mx +2=0,得f (x )=mx -2,在同一坐标系上作出y 1=f (x )与y 2=mx -2的图象,易得12<m <1.答案:(1)B (2)B——————————[典例示范]———————— 应用二 求解参数的范围及最值问题[例4] (1)若存在实数a ,对任意的x ∈[0,m ],都有(sin x -a )(cos x -a )≤0恒成立,则实数m 的最大值为( )A.π4 B.π2C.3π4D.5π4(2)若不等式|x -2a |≥12x +a -1对x ∈R 恒成立,则a 的取值范围是________.[解析] (1)在同一坐标系中,作出y =sin x 和y =cos x 的图象, 当m =π4时,要使不等式恒成立,只有a =22,当m >π4时,在x ∈[0,m ]上,必须要求y =sin x 和y =cos x 的图象不在y =a =22的同一侧.所以m 的最大值是3π4,选C.(2)作出y =|x -2a |和y =12x +a -1的简图,依题意及图象知应有2a ≤2-2a ,故a ≤12.[答案] (1)C (2)⎝⎛⎦⎥⎤-∞,12 ———————————[即时应用]—————————— 4.(1)对实数a和b ,定义运算“⊗”:a ⊗b =⎩⎪⎨⎪⎧a ,a -b ≤1,b ,a -b >1.设函数f (x )=(x 2-2)⊗(x-x 2),x ∈R.若函数y =f (x )-c 的图象与x 轴恰有两个公共点,则实数c 的取值范围是( )A .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,32B .(-∞,-2]∪⎝ ⎛⎭⎪⎫-1,-34C.⎝ ⎛⎭⎪⎫-1,14∪⎝ ⎛⎭⎪⎫14,+∞D.⎝ ⎛⎭⎪⎫-1,-34∪⎣⎢⎡⎭⎪⎫14,+∞(2)已知圆C :(x -3)2+(y -4)2=1和两点A (-m ,0),B (m ,0) (m >0).若圆C 上存在点P ,使得 ∠APB =90°,则 m 的最大值为( )A .7B .6C .5D .4解析:(1)∵f (x )=(x 2-2)⊗(x -x 2) =⎩⎪⎨⎪⎧x 2-2,-1≤x ≤32,x -x 2,x <-1或x >32.作出其图象,从图象可以看出;c ≤-2时,y =f (x )与y =c有两个公共点,即函数y =f (x )-c 的图象与x 轴恰有两个公共点;同样的,-1<c <-34也满足要求,故选B.(2)根据题意,画出示意图,如图所示,则圆心C 的坐标为(3,4),半径r =1,且|AB |=2m ,因为∠APB =90°,连接OP ,易知|OP |=12|AB |=m .要求m 的最大值,即求圆C 上的点P 到原点O的最大距离.因为|OC |= 32+42=5,所以|OP |max =|OC |+r =6,即m 的最大值为6.答案:(1)B (2)B[数学思想专练(一)]一、选择题1.(2018届高三·浙江五校联考)已知等差数列{a n }的前n 项和为S n ,a 2=4,S 10=110,则S n +64a n的最小值为( )A .7B .8 C.152D.172解析:选D 设等差数列{a n }的公差为d ,则⎩⎪⎨⎪⎧a 2=a 1+d =4,S 10=10a 1+10×92d =110,解得⎩⎪⎨⎪⎧a 1=2,d =2,所以a n =2+2(n -1)=2n ,S n =2n +n n -12×2=n 2+n ,所以S n +64a n =n 2+n +642n =n 2+32n +12≥2n 2·32n +12=172,当且仅当n 2=32n,即n =8时取等号,故选D. 2.若关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,则k 的取值范围是( )A.⎝ ⎛⎭⎪⎫-34,0B.⎝ ⎛⎦⎥⎤-34,0C.⎝ ⎛⎭⎪⎫0,34 D.⎣⎢⎡⎭⎪⎫0,34 解析:选B 构造函数f (x )=x 2+2kx -1,∵关于x 的方程x 2+2kx -1=0的两根x 1,x 2满足-1≤x 1<0<x 2<2,∴⎩⎪⎨⎪⎧f -1≥0,f 0<0,f 2>0,即⎩⎪⎨⎪⎧-2k ≥0,-1<0,4k +3>0,∴-34<k ≤0.3.设函数g (x )=x 2-2(x ∈R),又函数f (x )=⎩⎪⎨⎪⎧gx +x +4,x <g x ,g x -x ,x ≥g x .则f (x )的值域是( )A.⎣⎢⎡⎦⎥⎤-94,0∪(1,+∞)B .[0,+∞)C .[-94,+∞)D.⎣⎢⎡⎦⎥⎤-94,0∪(2,+∞) 解析:选D 依题意知f (x )=⎩⎪⎨⎪⎧x 2-2+x +4,x <x 2-2,x 2-2-x ,x ≥x 2-2,f (x )=⎩⎪⎨⎪⎧x 2+x +2,x <-1或x >2,x 2-x -2,-1≤x ≤2.画出f (x )的图象,如图所示,从图中可以看出f (x )的值域为(2,+∞)∪⎣⎢⎡⎦⎥⎤-94,0.4.已知f (x )=e x -e -x+1,若f (a )+f (a -2)<2,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,2) C .(1,+∞)D .(2,+∞)解析:选A 设g (x )=e x-e -x,显然有f (x )=g (x )+1,且g (x )为奇函数,在R 上是增函数, 因为f (a )+f (a -2)<2,所以g (a )+g (a -2)<0,所以g (a )<-g (a -2)=g (2-a ),所以a <2-a ,所以a <1,选A.5.设函数f (x )=ax 2+bx +c (a <0)的定义域为D ,若所有点(s ,f (t ))(s ,t ∈D )构成一个正方形区域,则a 的值为( )A .-2B .-4C .-8D .不能确定解析:选B 根据二次函数性质及复合函数的性质,如示意图,设g (x )=ax 2+bx +c (a <0)的两个零点为x 1,x 2,则一定有|x 1-x 2|=f max (x ),故 b 2-4aca 2= 4ac -b24a,a 2=-4a ,a =-4,选B.6.定义域为R 的偶函数f (x )满足对任意x ∈R ,有f (x +2)=f (x )-f (1),且当x ∈[2,3]时,f (x )=-2x 2+12x -18,若函数y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,则a 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,33B.⎝ ⎛⎭⎪⎫0,22C.⎝⎛⎭⎪⎫0,55 D.⎝⎛⎭⎪⎫0,66 解析:选A ∵f (x +2)=f (x )-f (1),令x =-1,则f (1)=f (-1)-f (1), ∵f (x )是定义在R 上的偶函数,∴f (1)=f (-1),∴f (1)=0. ∴f (x )=f (x +2),即函数f (x )是定义在R 上的周期为2的偶函数, 又∵当x ∈[2,3]时,f (x )=-2x 2+12x -18,令g (x )=log a (x +1) ,则f (x )与g (x )在[0,+∞)的部分图象如图所示.y =f (x )-log a (x +1)在(0,+∞)上至少有三个零点,可化为f (x )与g (x )的图象在(0,+∞)上至少有三个交点,g (x )在(0,+∞)上单调递减,则⎩⎪⎨⎪⎧0<a <1,log a 3>-2,解得0<a <33,故选A. 二、填空题7.已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1,y ≤3,x -y ≤1,若z =kx +y 的最大值为5,且k 为负整数,则k =________.解析:利用线性规划的知识画出不等式组表示的可行域如图所示: 其中点A (-2,3),B (4,3),C (1,0),根据线性规划知识可得,目标函数的最优解必在交点处取得,则-2k +3=5或4k +3=5或k +0=5,又k 为负整数,所以k =-1.答案:-18.(2017·泰州模拟)在直角△ABC 中,AB =2,AC =23,斜边BC 上有异于端点的两点E ,F ,且EF =1,则AE ―→·AF ―→的取值范围是________.解析:建立如图所示的平面直角坐标系,不妨设E (x,23-3x ),Fx +12,332-3x ,其中0<x <32,所以AE ―→·AF ―→=x ⎝ ⎛⎭⎪⎫x +12+()23-3x ⎝⎛⎭⎪⎫332-3x =4x 2-10x +9.设f (x )=4x 2-10x +9⎝ ⎛⎭⎪⎫0<x <32,则其图象的对称轴为x =54,其值域为⎣⎢⎡⎭⎪⎫114,9,所以AE ―→·AF ―→的取值范围是⎣⎢⎡⎭⎪⎫114,9.答案:⎣⎢⎡⎭⎪⎫114,99.如图,设直线m ,n 相交于点O ,且夹角为30°,点P 是直线m 上的动点,点A ,B 是直线n 上的定点.若|OA ―→|=|AB ―→|=2,则PA ―→·PB ―→的最小值是________.解析:以OB 所在直线为x 轴,过O 且垂直于AB 的直线为y 轴,建立如图的坐标系,则A (2,0),B (4,0),设P ⎝ ⎛⎭⎪⎫a ,33a ,则PA ―→=⎝⎛⎭⎪⎫2-a ,-33a ,PB ―→=4-a ,-33a ,所以PA ―→·PB ―→=(2-a )(4-a )+13a 2=43a 2-6a +8=43⎝ ⎛⎭⎪⎫a -942+54≥54,所以PA ―→·PB ―→的最小值为54.答案:54三、解答题10.已知函数f (x )=|4x -x 2|-a ,当函数有4个零点时,求a 的取值范围. 解:∵函数f (x )=|4x -x 2|-a 有4个零点, ∴方程|4x -x 2|=a 有4个不同的解. 令g (x )=|4x -x 2|=⎩⎪⎨⎪⎧4-x -22, 0≤x ≤4,x -22-4,x <0或x >4.作出g (x )的图象,如图所示,由图象可以看出, 当h (x )=a 与g (x )有4个交点时,0<a <4, ∴a 的取值范围为(0,4).11.已知等差数列{a n }满足:a 1=2,且a 1,a 2,a 5成等比数列. (1)求数列{a n }的通项公式;(2)记S n 为数列{a n }的前n 项和,是否存在正整数n ,使得S n >60n +800?若存在,求n 的最小值;若不存在,说明理由.解:(1)设数列{a n }的公差为d ,依题意得,2,2+d,2+4d 成等比数列,故有(2+d )2=2(2+4d ),化简得d 2-4d =0, 解得d =0或d =4. 当d =0时,a n =2;当d =4时,a n =2+(n -1)·4=4n -2.从而得数列{a n }的通项公式为a n =2或a n =4n -2. (2)当a n =2时,S n =2n , 显然2n <60n +800,此时不存在正整数n ,使得S n >60n +800成立. 当a n =4n -2时,S n =n [2+4n -2]2=2n 2.令2n 2>60n +800,即n 2-30n -400>0, 解得n >40或n <-10(舍去),此时存在正整数n ,使得S n >60n +800成立,n 的最小值为41. 综上,当a n =2时,不存在满足题意的正整数n ;当a n =4n -2时,存在满足题意的正整数n ,其最小值为41. 12.已知椭圆C 的离心率为32,点A ,B ,F 分别为椭圆的右顶点、上顶点和右焦点,且S △ABF =1-32. (1)求椭圆C 的方程;(2)已知直线l :y =kx +m 被圆O :x 2+y 2=4所截得的弦长为23,若直线l 与椭圆C 交于M ,N 两点,求△OMN 面积的最大值.解:(1)由题意,知椭圆C 的焦点在x 轴上,设其方程为x 2a 2+y 2b 2=1(a >b >0),由已知得e 2=c 2a 2=a 2-b 2a 2=34,所以a 2=4b 2,即a =2b ,① 可得c =3b .②S △ABF =12|AF ||OB |=12(a -c )b =1-32.③ 联立①②③,解得b =1,a =2, 所以椭圆C 的方程为x 24+y 2=1.(2)由题意,知圆心O 到直线l 的距离d =22-32=1,即|m |1+k2=1,故有m 2=1+k 2,④ 由⎩⎪⎨⎪⎧x 24+y 2=1,y =kx +m消去y 并整理,得⎝ ⎛⎭⎪⎫14+k 2x 2+2kmx +m 2-1=0. 因为Δ=4k 2-m 2+1=3k 2>0,所以k ≠0. 设M (x 1,y 1),N (x 2,y 2), 则x 1+x 2=-8km4k 2+1,x 1x 2=4m 2-44k 2+1,所以|x 1-x 2|2=(x 1+x 2)2-4x 1x 2=⎝ ⎛⎭⎪⎫-8km 4k 2+12-4×4m 2-44k 2+1=164k 2-m 2+14k 2+12,⑤ 将④代入⑤,得|x 1-x 2|2=48k 24k 2+12,故|x 1-x 2|=43|k |4k 2+1,|MN |=1+k 2|x 1-x 2|=43k 2k 2+14k 2+1, 故△OMN 的面积S =12|MN |×d =23k 2k 2+14k 2+1. 令t =4k 2+1>1,则S =23×t -14×⎝⎛⎭⎪⎫t -14+1t2=32-⎝ ⎛⎭⎪⎫1t -132+49. 所以当t =3,即k =±22时,S max =32×49=1. 第二讲分类讨论、转化与化归思想 一、分类讨论思想分类讨论思想的含义 分类讨论思想在解题中的类型分类讨论的思想是将一个较复杂的数学问题分解(或分割)成若干个基础1 由数学概念而引起的分类讨论:如绝对值的定义、不等式的定义、二次函数的定义、直线的倾斜角等.类型一 由参数引起的分类讨论 [例1] 已知函数f (x )=x +a x(x >0).(1)若a <0,试用定义证明:f (x )在(0,+∞)上单调递增;(2)若a >0,当x ∈[1,3]时,不等式f (x )≥2恒成立,求a 的取值范围. [解] (1)证明:若a <0,设0<x 1<x 2,则f (x 1)-f (x 2)=(x 1-x 2)⎝⎛⎭⎪⎫1-a x 1x 2. 因为x 1-x 2<0,1-ax 1x 2>0,所以f (x 1)-f (x 2)<0,即f (x 1)<f (x 2), 故f (x )在(0,+∞)上单调递增.(2)若a >0,则f (x )在(0,a )上单调递减,在(a ,+∞)上单调递增. ①若0<a ≤1,则f (x )在[1,3]上单调递增,f (x )min =f (1)=1+a . 所以1+a ≥2,即a ≥1,所以a =1.②若1<a <9,则f (x )在[1,a ]上单调递减,在[a ,3]上单调递增,f (x )min =f (a )=2a .所以2a ≥2,即a ≥1,所以1<a <9.③若a ≥9,则f (x )在[1,3]上单调递减,f (x )min =f (3)=3+a3.所以3+a3≥2,即a ≥-3,所以a ≥9.综合①②③得a 的取值范围为[1,+∞).——————————[即时应用]—————————1.已知函数f (x )=sin x ,g (x )=mx -x 36(m ∈R).(1)求曲线y =f (x )在点P ⎝⎛⎭⎪⎫π4,f ⎝ ⎛⎭⎪⎫π4处的切线方程;(2)求函数g (x )的单调递减区间.解:(1)由题意得所求切线的斜率k =f ′⎝ ⎛⎭⎪⎫π4=cos π4=22,切点P ⎝ ⎛⎭⎪⎫π4,22,则切线方程为y -22=22⎝⎛⎭⎪⎫x -π4,即x -2y +1-π4=0.(2)g ′(x )=m -12x 2.①当m ≤0时,g ′(x )≤0,则g (x )的单调递减区间是(-∞,+∞); ②当m >0时,令g ′(x )<0, 解得x <-2m 或x >2m ,则g (x )的单调递减区间是(-∞,-2m ) ,(2m ,+∞). 综上所述,m ≤0时,g (x )的单调递减区间是(-∞,+∞);m >0时,g (x )的单调递减区间是(-∞,-2m ),(2m ,+∞).——————————[典例示范]———————— 类型二 由概念、法则、公式引起的分类讨论[例2] 已知数列{a n }的首项a 1=1,前n 项和为S n ,且数列⎩⎨⎧⎭⎬⎫S n n 是公差为2的等差数列.(1)求数列{a n }的通项公式;(2)若b n =(-1)na n ,求数列{b n }的前n 项和T n . [解] (1)由已知条件可得S n n=1+(n -1)×2=2n -1, ∴S n =2n 2-n .当n ≥2时,a n =S n -S n -1=2n 2-n -[2(n -1)2-(n -1)]=4n -3, 当n =1时,a 1=1,而4×1-3=1,∴a n =4n -3. (2)由(1)可得b n =(-1)na n =(-1)n(4n -3), 当n 为偶数时,T n =-1+5-9+13-17+…+(4n -3)=4×n2=2n ,当n 为奇数时,n +1为偶数,T n =T n +1-b n +1=2(n +1)-(4n +1)=-2n +1.综上,T n =⎩⎪⎨⎪⎧2n ,n =2k ,k ∈N *,-2n +1,n =2k -1,k ∈N *.————————————[即时应用]—————————2.(1)若函数f (x )=a x(a >0,a ≠1)在[-1,2]上的最大值为4,最小值为m ,且函数g (x )=(1-4m )x 在[0,+∞)上是增函数,则a =________.(2)设等比数列{a n }的公比为q ,前n 项和S n >0(n =1,2,3,…),则q 的取值范围为________. 解析:(1)若a >1,有a 2=4,a -1=m ,故a =2,m =12,此时g (x )=-x 为减函数,不合题意,若0<a <1,有a -1=4,a 2=m ,故a =14,m =116,检验知符合题意.(2)因为{a n }是等比数列,S n >0,可得a 1=S 1>0,q ≠0. 当q =1时,S n =na 1>0;当q ≠1时,S n =a 11-q n1-q>0,即1-q n1-q >0(n ∈N *),则有⎩⎪⎨⎪⎧1-q >0,1-q n>0,或⎩⎪⎨⎪⎧1-q <0,1-q n<0,即-1<q <1或q >1,故q 的取值范围是(-1,0)∪(0,+∞). 答案:(1)14(2)(-1,0)∪(0,+∞)二、转化与化归思想转化与化归思想的含义 转化与化归思想在解题中的类型转化与化归思想方法,就是在研究和解决有关数学问题时采用某种手段将问题通过变换使之转化,进而解决问题的一种方法.化归与转化的原则有:熟悉化、简单化、直观化以及正难则反等;化归与转化的方法常见的有:直接转化法、换元法、1在三角函数中,涉及三角式的变形,一般通过转化与化归将复杂的三角问题转化为已知或易解的三角问题,以起到化暗为明的作用,主要的方法有公式的“三用”(顺用、逆用、变形用)、角度的转化、函数的转化等.2 在函数、不等式等问题中常将一个复杂的或陌生的函数、方程、不等式转化为简单的或熟悉的函数、方程、不等式等.3 在解决平面向量与三角函数、平面几何、解析几数形结合法、构造法、坐标法、类比法、特殊化方法、等价问题法、加强命题法等等.何等知识的交汇题目时,常将平面向量语言与三角函数、平面几何、解析几何语言进行转化.4在解决数列问题时,常将一般数列转化为等差数列或等比数列求解.5在解决解析几何、立体几何问题时常常在数与形之间进行转化.—————————[典例示范]————————类型一形与数的转化[例3] (2016·全国卷Ⅰ)在直角坐标系xOy中,直线l:y=t(t≠0)交y轴于点M,交抛物线C:y2=2px(p>0)于点P,M关于点P的对称点为N,连接ON并延长交C于点H.(1)求|OH||ON|;(2)除H以外,直线MH与C是否有其他公共点?说明理由.[解] (1)如图,由已知得M(0,t),P⎝⎛⎭⎪⎫t22p,t.又N为M关于点P的对称点,故N⎝⎛⎭⎪⎫t2p,t,故直线ON的方程为y=ptx,将其代入y2=2px整理得px2-2t2x=0,解得x1=0,x2=2t2p.因此H⎝⎛⎭⎪⎫2t2p,2t.所以N为OH的中点,即|OH||ON|=2.(2)直线MH与C除H以外没有其他公共点.理由如下:直线MH的方程为y-t=p2tx,即x=2tp(y-t).代入y2=2px得y2-4ty+4t2=0,解得y1=y2=2t,即直线MH 与C 只有一个公共点,所以除H 以外,直线MH 与C 没有其他公共点.———————————[即时应用]———————————3.(1)(2016·全国卷Ⅲ)已知O 为坐标原点,F 是椭圆C:x 2a 2+y 2b2=1(a >b >0)的左焦点,A ,B分别为C 的左、右顶点.P 为C 上一点,且PF ⊥x 轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( )A.13B.12C.23D.34(2)如图,在矩形ABCD 中,AB =2,AD =3,点E 为AD 的中点,现分别沿BE ,CE 将△ABE ,△DCE 翻折,使得点A ,D 重合于F ,此时二面角E BC F 的余弦值为________.解析:(1)如图所示,由题意得A (-a,0),B (a,0),F (-c,0). 设E (0,m ),由PF ∥OE ,得|MF ||OE |=|AF ||AO |,则|MF |=ma -ca.①又由OE ∥MF ,得12|OE ||MF |=|BO ||BF |,则|MF |=ma +c2a.② 由①②得a -c =12(a +c ),即a =3c ,∴e =c a =13.故选A.(2)如图所示,取BC 的中点P ,连接EP ,FP ,由题意得BF =CF =2,∴PF ⊥BC ,又EB =EC ,∴EP ⊥BC ,∴∠EPF 为二面角E BC F 的平面角,而FP =FB 2-⎝ ⎛⎭⎪⎫12BC 2=72,在△EPF 中,cos ∠EPF =EP 2+FP 2-EF 22EP ·FP =4+74-942×2×72=74. 答案:(1)A (2)74—————————[典例示范]————————— 类型二 常量与变量的转化[例4] 设y =(log 2x )2+(t -2)log 2x -t +1,若t 在[-2,2]上变化时,y 恒取正值,求x的取值范围.[解] 设y =f (t )=(log 2x -1)t +(log 2x )2-2log 2x +1, 当x =2时,f (t )=0,所以x ≠2, 故f (t )是一次函数,当t ∈[-2,2]时,f (t )>0恒成立,则有⎩⎪⎨⎪⎧f-2>0,f 2>0,即⎩⎪⎨⎪⎧log 2x 2-4log 2x +3>0,log 2x2-1>0,解得log 2x <-1或log 2x >3. ∴0<x <12或x >8,∴x 的取值范围是⎝ ⎛⎭⎪⎫0,12∪(8,+∞). ———————————[即时应用]——————————4.(1)对于满足0≤p ≤4的所有实数p ,使不等式x 2+px >4x +p -3成立的x 的取值范围是________.(2)设f (x )是定义在R 上的单调递增函数,若f (1-ax -x 2)≤f (2-a )对任意a ∈[-1,1]恒成立,则x 的取值范围为________.解析:(1)设f (p )=(x -1)p +x 2-4x +3, 当x =1时,f (p )=0,所以x ≠1. 要使f (p )在0≤p ≤4上恒正,等价于⎩⎪⎨⎪⎧f 0>0,f 4>0,即⎩⎪⎨⎪⎧x -3x -1>0,x 2-1>0,解得x >3或x <-1.(2)∵f (x )是R 上的增函数. ∴1-ax -x 2≤2-a ,a ∈[-1,1].即(x -1)a +x 2+1≥0,对a ∈[-1,1]恒成立. 令g (a )=(x -1)a +x 2+1.则⎩⎪⎨⎪⎧g-1=x 2-x +2≥0,g 1=x 2+x ≥0,解得x ≥0或x ≤-1.即实数x 的取值范围是(-∞,-1]∪[0,+∞).答案:(1)(-∞,-1)∪(3,+∞) (2)(-∞,-1]∪[0,+∞)[数学思想专练(二)]一、选择题1.设常数a ∈R ,集合A ={x |(x -1)(x -a )≥0},B ={x |x ≥a -1},若A ∪B =R ,则a 的取值范围为( )A .(-∞,2)B .(-∞,2]C .(2,+∞)D .[2,+∞)解析:选B 当a >1时,则集合A ={x |x ≤1或x ≥a },则A ∪B =R ,可知a -1≤1,即a ≤2,故1<a ≤2;当a =1时,则集合A =R ,显然A ∪B =R ,故a =1; 当a <1时,则集合A ={x |x ≥1或x ≤a }, 由A ∪B =R ,可知a -1≤a ,显然成立,故a <1; 综上可知,a 的取值范围是a ≤2.故选B 项.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B ∵b cos C +c cos B =b ·b 2+a 2-c 22ab +c ·c 2+a 2-b 22ac =b 2+a 2-c 2+c 2+a 2-b 22a=2a22a =a =a sin A ,∴sin A =1. ∵A ∈(0,π),∴A =π2,即△ABC 是直角三角形.3.设函数f (x )=⎩⎪⎨⎪⎧21-x,x ≤1,1-log 2x ,x >1,则f (x )≤2时x 的取值范围是( )A .[0,+∞) B.⎣⎢⎡⎦⎥⎤0,12C.⎝⎛⎦⎥⎤-∞,12D.⎣⎢⎡⎭⎪⎫12,+∞ 解析:选A 当x ≤1时,21-x≤2⇒x ≥0;当x >1时,1-log 2x ≤2⇒log 2x ≥-1=log 2 2-1⇒x ≥2-1=12. 综上得,x 的取值范围为[0,+∞).4.设圆锥曲线C 的两个焦点分别为F 1,F 2,若曲线C 上存在点P 满足|PF 1|∶|F 1F 2|∶|PF 2|=4∶3∶2,则曲线C 的离心率等于( )A.12或32B.23或2C.12或2 D.23或32解析:选A 不妨设|PF 1|=4t ,|F 1F 2|=3t ,|PF 2|=2t ,其中t ≠0,若该曲线为椭圆,则有|PF 1|+|PF 2|=6t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 6t =12;若该曲线为双曲线,则有|PF 1|-|PF 2|=2t =2a ,|F 1F 2|=3t =2c ,e =c a =2c 2a =3t 2t =32.5.如果正整数a 的各位数字之和等于6,那么称a 为“好数”(如:6,24,2 013等均为“好数”),将所有“好数”从小到大排成一列a 1,a 2,a 3,…,若a n =2 013,则n =( )A .50B .51C .52D .53解析:选B 本题可以把数归为“四位数”(含0 006等),因此比2 013小的“好数”为0×××,1×××,2 004,共三类数,其中第一类可分为:00××,01××,…,0 600,共7类,共有7+6+…+2+1=28个数;第二类可分为:10××,11××,…,1 500,共6类,共有6+5+4+3+2+1=21个数,第三类:2 004,2 013,…,故2 013为第51个数,故n =51,选B.6.(2017·南昌模拟)点P 是底边长为23,高为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则PM ―→·PN ―→的取值范围是( )A .[0,2]B .[0,3]C .[0,4]D .[-2,2]解析:选C 由题意知内切球的半径为1,设球心为O ,则PM ―→·PN ―→=(PO ―→+OM ―→)·(PO ―→+ON ―→)=PO ―→2+PO ―→·(OM ―→+ON ―→)+OM ―→·ON ―→=|PO ―→|2-1,且1≤|OP |≤5,∴PM ―→·PN ―→∈[0,4].二、填空题7.若二次函数f (x )=4x 2-2(p -2)x -2p 2-p +1在区间[-1,1]内至少存在一个值c ,使得f (c )>0,则实数p 的取值范围为________.解析:如果在[-1,1]内没有值满足f (c )>0,则⎩⎪⎨⎪⎧f-1≤0,f 1≤0,即⎩⎪⎨⎪⎧p ≤-12或p ≥1,p ≤-3或p ≥32,解得p ≤-3或p ≥32,取补集为-3<p <32,即为满足条件的p 的取值范围.答案:⎝⎛⎭⎪⎫-3,32 8.(2017·丽水模拟)在平面直角坐标系xOy 中,M 为不等式组⎩⎪⎨⎪⎧2x +3y -6≤0,x +y -2≥0,y ≥0所表示的区域上一动点,则|OM |的最小值是________.解析:作出不等式组表示的可行域如图中阴影部分所示,因此|OM |的最小值为点O 到直线x +y -2=0的距离,所以|OM |min =|-2|2= 2.答案: 29.(2017·郑州质检)过点M (2,-2p )作抛物线x 2=2py (p >0)的两条切线,切点分别为A ,B ,若线段AB 的中点的纵坐标为6,则p 的值是________.解析:设点A (x 1,y 1),B (x 2,y 2),依题意得,y ′=x p ,切线MA 的方程是y -y 1=x 1p(x -x 1),即y =x 1p x -x 212p.又点M (2,-2p )位于直线MA 上,于是有-2p =x 1p ×2-x 212p,即x 21-4x 1-4p 2=0; 同理有x 22-4x 2-4p 2=0,因此x 1,x 2是方程x 2-4x -4p 2=0的两根,则x 1+x 2=4,x 1x 2=-4p 2. 由线段AB 的中点的纵坐标是6,得y 1+y 2=12,即x 21+x 222p =x 1+x 22-2x 1x 22p =12,16+8p 22p=12,解得p =1或p =2. 答案:1或2 三、解答题10.已知a ∈R ,函数f (x )=23x +12,h (x )=x ,解关于x 的方程log 4⎣⎢⎡⎦⎥⎤32fx -1-34=log 2h (a-x )-log 2h (4-x ).解:原方程可化为log 4⎣⎢⎡⎦⎥⎤32⎝ ⎛⎭⎪⎫23x -16-34 =log 2a -x -log 24-x ,即log 4(x -1)=log 2a -x -log 24-x =log 2a -x4-x, ①当1<a ≤4时,1<x <a ,则x -1=a -x4-x,即x 2-6x +a +4=0,Δ=36-4(a +4)=20-4a >0, 此时x =6±20-4a2=3±5-a ,∵1<x <a ,此时方程仅有一解x =3-5-a . ②当a >4时,1<x <4,由x -1=a -x 4-x,得x 2-6x +a +4=0,Δ=36-4(a +4)=20-4a ,若4<a <5,则Δ>0,方程有两解x =3±5-a ; 若a =5时,则Δ=0,方程有一解x =3;③由函数有意义及②知,若a ≤1或a >5,原方程无解. 综合以上讨论,当1<a ≤4时,方程仅有一解x =3-5-a ; 当4<a <5,方程有两解x =3±5-a ; 当a =5时,方程有一解x =3; 当a ≤1或a >5时,原方程无解.11.(2017·嘉兴模拟)在正项数列{a n }中,a 1=3,a 2n =a n -1+2(n ≥2,n ∈N *). (1)求a 2,a 3的值,判断a n 与2的大小关系并证明; (2)求证:|a n -2|<14|a n -1-2|(n ≥2);(3)求证:|a 1-2|+|a 2-2|+…+|a n -2|<43.解:(1)a 2=a 1+2=5,a 3=a 2+2=5+2.由题设,a 2n -4=a n -1-2,(a n -2)(a n +2)=a n -1-2. 因为a n +2>0,所以a n -2与a n -1-2同号. 又a 1-2=1>0,所以a n -2>0(n ≥2),即a n >2. (2)证明:由题设,⎪⎪⎪⎪⎪⎪a n -2a n -1-2=1a n +2,由(1)知,a n >2,所以1a n +2<14,因此⎪⎪⎪⎪⎪⎪a n -2a n -1-2<14,即|a n -2|<14|a n -1-2|(n ≥2).(3)证明:由(2)知,|a n -2|<14|a n -1-2|,因此|a n -2|<14n -1|a 1-2|=14n -1(n ≥2).因此|a 1-2|+|a 2-2|+…+|a n -2|<1+14+142+…+14n -1=1-14n1-14=43⎝ ⎛⎭⎪⎫1-14n <43.12.已知椭圆G :x 24+y 2=1,过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点.(1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.解:(1)设A (x 1,y 1),B (x 2,y 2),则有⎩⎪⎨⎪⎧3x 21+y 21=λ,3x 22+y 22=λ,两式相减得3(x 1-x 2)(x 1+x 2)+(y 1-y 2)(y 1+y 2)=0.由题意,知x 1≠x 2, 所以k AB =y 1-y 2x 1-x 2=-3x 1+x 2y 1+y 2. 因为N (1,3)是弦AB 的中点, 所以x 1+x 2=2,y 1+y 2=6, 所以k AB =-1.所以弦AB 所在直线的方程为y -3=-(x -1),即x +y -4=0. 又N (1,3)在椭圆内, 所以λ>3×12+32=12.所以λ的取值范围是(12,+∞).(2)因为弦CD 垂直平分弦AB ,所以弦CD 所在直线的方程为y -3=x -1,即x -y +2=0, 将其代入椭圆的方程, 整理得4x 2+4x +4-λ=0.①设C (x 3,y 3),D (x 4,y 4),弦CD 的中点为M (x 0,y 0), 则x 3,x 4是方程①的两个根.所以x 3+x 4=-1,x 0=12(x 3+x 4)=-12,y 0=x 0+2=32,即M ⎝ ⎛⎭⎪⎫-12,32.所以点M 到直线AB 的距离d =-12+32-412+12=322.所以以弦CD 的中点M 为圆心且与直线AB 相切的圆的方程为⎝ ⎛⎭⎪⎫x +122+⎝ ⎛⎭⎪⎫y -322=92.。
第3讲 二项式定理最新考纲 1.能用计数原理证明二项式定理;2.会用二项式定理解决与二项展开式有关的简单问题.知 识 梳 理1.二项式定理(1)二项式定理:(a +b )n=C 0n a n+C 1n a n -1b +…+C r n a n -r b r +…+C n n b n (n ∈N *);(2)通项公式:T r +1=C r n an -r b r,它表示第r +1项;(3)二项式系数:二项展开式中各项的系数C 0n ,C 1n ,…,C nn . 2.二项式系数的性质(1)(a +b )n 展开式的各二项式系数和:C 0n +C 1n +C 2n +…+C n n =2n.(2)偶数项的二项式系数的和等于奇数项的二项式系数的和,即C 0n +C 2n +C 4n +…=C 1n +C 3n +C 5n +…=2n -1.诊 断 自 测1.判断正误(在括号内打“√”或“×”) (1)C k n an -k b k是二项展开式的第k 项.( )(2)二项展开式中,系数最大的项为中间一项或中间两项.( ) (3)(a +b )n的展开式中某一项的二项式系数与a ,b 无关.( )(4)(a +b )n 某项的系数是该项中非字母因数部分,包括符号等,与该项的二项式系数不同.( )解析 二项式展开式中C k n a n -k b k是第k +1项,二项式系数最大的项为中间一项或中间两项,故(1)(2)均不正确.答案 (1)× (2)× (3)√ (4)√2.(x -y )n的二项展开式中,第m 项的系数是( ) A.C mn B.C m +1n C.C m -1nD.(-1)m -1C m -1n解析 (x -y )n展开式中第m 项的系数为C m -1n (-1)m -1.答案 D3.(选修2-3P35练习T1(3)改编) C 02 017+C 12 017+C 22 017+…+C 2 0172 017C 02 016+C 22 016+C 42 016+…+C 2 0162 016的值为( ) A.2 B.4C.2 017D.2 016×2 017 解析 原式=22 01722 016-1=22=4.答案 B4.(2017·瑞安市质检)⎝⎛⎭⎪⎫x 2-12x 9的展开式中,第4项的二项式系数是________,第4项的系数是________.解析 展开式通项为T r +1=C r 9x 2(9-r )⎝ ⎛⎭⎪⎫-12x r=(-1)r12r C r 9x 18-3r(其中r =0,1,…,9) ∴T 4=(-1)3123C 39x 9, 故第4项的二项式系数为C 39=84,第4项的系数为 (-1)3123C 39=-212. 答案 84 -2125.(2017·石家庄调研)(1+x )n的二项式展开式中,仅第6项的系数最大,则n =________. 解析 (1+x )n的二项式展开式中,项的系数就是项的二项式系数,所以n2+1=6,n =10.答案 106.⎝⎛⎭⎪⎫x 2-2x 35展开式中的常数项为________.解析 T k +1=C k5(x 2)5-k⎝ ⎛⎭⎪⎫-2x 3k=C k 5(-2)k x 10-5k .令10-5k =0,则k =2.∴常数项为T 3=C 25(-2)2=40.答案40考点一 求展开式中的特定项或特定项的系数【例1】 已知在⎝⎛⎭⎪⎪⎫3x -123x n的展开式中,第6项为常数项. (1)求n ;(2)求含x 2的项的系数; (3)求展开式中所有的有理项. 解 (1)通项公式为T k +1=C knx n -k3⎝ ⎛⎭⎪⎫-12k x -k 3=C k n ⎝ ⎛⎭⎪⎫-12kx n -2k 3.因为第6项为常数项,所以k =5时,n -2×53=0,即n =10.(2)令10-2k 3=2,得k =2,故含x 2的项的系数是C 210⎝ ⎛⎭⎪⎫-122=454.(3)根据通项公式,由题意⎩⎪⎨⎪⎧10-2k3∈Z ,0≤k ≤10,k ∈N ,令10-2k 3=r (r ∈Z ),则10-2k =3r ,k =5-32r , ∵k ∈N ,∴r 应为偶数.∴r 可取2,0,-2,即k 可取2,5,8, ∴第3项,第6项与第9项为有理项, 它们分别为454x 2,-638,45256x -2.规律方法 (1)二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求的项.(2)求两个多项式的积的特定项,可先化简或利用分类加法计数原理讨论求解. 【训练1】 (1)(2015·全国Ⅰ卷)(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A.10B.20C.30D.60(2)(2016·全国Ⅰ卷)(2x+x)5的展开式中,x3的系数是________(用数字作答).(3)(2014·全国Ⅰ卷)(x-y)(x+y)8的展开式中x2y7的系数为________(用数字作答).解析(1)法一(x2+x+y)5=[(x2+x)+y]5,含y2的项为T3=C25(x2+x)3·y2.其中(x2+x)3中含x5的项为C13x4·x=C13x5.所以x5y2的系数为C25C13=30.法二(x2+x+y)5表示5个x2+x+y之积.∴x5y2可从其中5个因式中选两个因式取y,两个取x2,一个取x.因此x5y2的系数为C25C23C11=30.(2)由(2x+x)5得T r+1=C r5(2x)5-r(x)r=25-r C r5x5-r2,令5-r2=3得r=4,此时系数为10.(3)(x-y)(x+y)8=x(x+y)8-y(x+y)8,∵x(x+y)8中含x2y7的项为x·C78xy7,y(x+y)8中含x2y7的项为y·C68x2y6.故(x-y)(x+y)8的展开式中x2y7的系数为C78-C68=C18-C28=-20.答案(1)C (2)10 (3)-20考点二二项式系数的和与各项的系数和问题【例2】在(2x-3y)10的展开式中,求:(1)二项式系数的和;(2)各项系数的和;(3)奇数项的二项式系数和与偶数项的二项式系数和;(4)奇数项系数和与偶数项系数和;(5)x的奇次项系数和与x的偶次项系数和.解设(2x-3y)10=a0x10+a1x9y+a2x8y2+…+a10y10,(*)各项系数和为a0+a1+…+a10,奇数项系数和为a0+a2+…+a10,偶数项系数和为a1+a3+a5+…+a9,x的奇次项系数和为a1+a3+a5+…+a9,x的偶次项系数和为a0+a2+a4+…+a10. 由于(*)是恒等式,故可用“赋值法”求出相关的系数和.(1)二项式系数的和为C010+C110+…+C1010=210.(2)令x=y=1,各项系数和为(2-3)10=(-1)10=1.(3)奇数项的二项式系数和为C010+C210+…+C1010=29,偶数项的二项式系数和为C110+C310+…+C910=29.(4)令x=y=1,得到a0+a1+a2+…+a10=1,①令x=1,y=-1(或x=-1,y=1),得a0-a1+a2-a3+…+a10=510,②①+②得2(a 0+a 2+…+a 10)=1+510, ∴奇数项系数和为1+5102;①-②得2(a 1+a 3+…+a 9)=1-510, ∴偶数项系数和为1-5102.(5)x 的奇次项系数和为a 1+a 3+a 5+…+a 9=1-5102;x 的偶次项系数和为a 0+a 2+a 4+…+a 10=1+5102.规律方法 (1)“赋值法”普遍适用于恒等式,是一种重要的方法,对形如(ax +b )n、(ax 2+bx +c )m (a ,b ∈R )的式子求其展开式的各项系数之和,常用赋值法,只需令x =1即可;对形如(ax +by )n(a ,b ∈R )的式子求其展开式各项系数之和,只需令x =y =1即可.(2)若f (x )=a 0+a 1x +a 2x 2+…+a n x n,则f (x )展开式中各项系数之和为f (1),奇数项系数之和为a 0+a 2+a 4+…=f (1)+f (-1)2,偶数项系数之和为a 1+a 3+a 5+…=f (1)-f (-1)2.【训练2】 (1)(2017·岳阳模拟)若二项式⎝⎛⎭⎪⎫3x 2-1x n的展开式中各项系数的和是512,则展开式中的常数项为( ) A.-27C 39 B.27C 39 C.-9C 49D.9C 49(2)(2017·义乌调研)(1-3x )5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5,求|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=( ) A.1 024B.243C.32D.24解析 (1)令x =1得2n=512,所以n =9,故⎝ ⎛⎭⎪⎫3x 2-1x 9的展开式的通项为T r +1=C r 9(3x 2)9-r ⎝ ⎛⎭⎪⎫-1x r=(-1)r C r 9·39-r x 18-3r,令18-3r =0得r =6,所以常数项为T 7=(-1)6C 69·33=27C 39.(2)令x =-1得a 0-a 1+a 2-a 3+a 4-a 5=|a 0|+|a 1|+|a 2|+|a 3|+|a 4|+|a 5|=[1-(-3)]5=45=1 024. 答案 (1)B (2)A 考点三 二项式定理的应用 【例3】 (1)求证:1+2+22+…+25n -1(n ∈N *)能被31整除;(2)用二项式定理证明2n>2n +1(n ≥3,n ∈N *).证明 (1)∵1+2+22+…+25n -1=25n-12-1=25n-1=32n -1=(31+1)n-1 =C 0n ×31n +C 1n ×31n -1+…+C n -1n ×31+C nn -1=31(C 0n ×31n -1+C 1n ×31n -2+…+C n -1n ),显然C 0n ×31n -1+C 1n ×31n -2+…+C n -1n 为整数,∴原式能被31整除. (2)当n ≥3,n ∈N *.2n =(1+1)n =C 0n +C 1n +…+C n -1n +C n n ≥C 0n +C 1n +C n -1n +C nn =2n +2>2n +1,∴不等式成立. 规律方法 (1)整除问题和求近似值是二项式定理中两类常见的应用问题,整除问题中要关注展开式的最后几项.而求近似值则应关注展开式的前几项.(2)二项式定理的应用基本思路是正用或逆用二项式定理,注意选择合适的形式.(3)由于(a +b )n的展开式共有n +1项,故可通过对某些项的取舍来放缩,从而达到证明不等式的目的.【训练3】 求S =C 127+C 227+…+C 2727除以9的余数. 解 S =C 127+C 227+…+C 2727=227-1=89-1 =(9-1)9-1=C 09×99-C 19×98+…+C 89×9-C 99-1 =9(C 09×98-C 19×97+…+C 89)-2. ∵C 09×98-C 19×97+…+C 89是整数, ∴S 被9除的余数为7.[思想方法]1.二项式系数与项的系数是完全不同的两个概念.二项式系数是指C 0n ,C 1n ,…,C nn ,它只与各项的项数有关,而与a ,b 的值无关;而项的系数是指该项中除变量外的常数部分,它不仅与各项的项数有关,而且也与a ,b 的值有关.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意给字母赋值是求解二项展开式各项系数和的一种重要方法.赋值法求展开式中的系数和或部分系数和,常赋的值为0,±1. [易错防范] 1.通项T k +1=C k n an -k b k是(a +b )n 的展开式的第k +1项,而不是第k 项,这里k =0,1,…,n .2.区别“项的系数”与“二项式系数”,审题时要仔细.项的系数与a ,b 有关,可正可负,二项式系数只与n 有关,恒为正.3.切实理解“常数项”“有理项”(字母指数为整数)“系数最大的项”等概念.。
专题六 复数、计数原理、概率、随机变量及其分布第一讲复数、计数原理、二项式定理考点一 复数 一、基础知识要记牢 (1)复数的模:复数z =a +bi 的模|z|=a 2+b 2. (2)复数相等的充要条件:a +bi =c +di ⇔a =c 且b =d(a ,b ,c ,d ∈R). 特别地,a +bi =0⇔a =0且b =0(a ,b ∈R).(3)复数的除法一般是将分母实数化,即分子、分母同乘以分母的共轭复数再进一步化简. 二、经典例题领悟好[例1] (1)(2017·全国卷Ⅲ)设复数z 满足(1+i)z =2i ,则|z|=( ) A.12B.22C. 2 D .2 (2)(2017·浙江高考)已知a ,b ∈R ,(a +bi)2=3+4i(i 是虚数单位),则a 2+b 2=________,ab =________.[解析] (1)因为z =2i1+i=-+-=i(1-i)=1+i ,所以|z|= 2.(2)∵(a +bi)2=a 2-b 2+2abi =3+4i ,∴⎩⎪⎨⎪⎧a 2-b 2=3,2ab =4,∴⎩⎪⎨⎪⎧a =2,b =1或⎩⎪⎨⎪⎧a =-2,b =-1,∴a 2+b 2=5,ab =2. [答案] (1)C (2)5 21.复数的相关概念及运算的技巧解决与复数的基本概念和性质有关的问题时,应注意复数和实数的区别与联系,把复数问题实数化是解决复数问题的关键.(2)复数相等的问题一般通过实部与虚部对应相等列出方程或方程组求解.(3)复数代数运算的基本方法是运用运算法则,但可以通过对代数式结构特征的分析,灵活运用i 的幂的性质、运算法则来优化运算过程.2.与复数几何意义、模有关问题的解题技巧(1)只要把复数z =a +bi(a ,b ∈R)与向量OZ ―→对应起来,就可以根据平面向量的知识理解复数的模、加法、减法的几何意义,并根据这些几何意义解决问题.(2)有关模的运算要注意灵活运用模的运算性质. 三、预测押题不能少1.(1)若复数(1-i)(a +i)在复平面内对应的点在第二象限,则实数a 的取值范围是( ) A .(-∞,1) B .(-∞,-1) C .(1,+∞)D .(-1,+∞)解析:选B 因为z =(1-i)(a +i)=a +1+(1-a)i , 所以它在复平面内对应的点为(a +1,1-a), 又此点在第二象限,所以⎩⎪⎨⎪⎧a +1<0,1-a >0,解得a <-1.(2)已知a ∈R ,i 为虚数单位,若a -i 2+i 为实数,则a 的值为________.解析:由a -i2+i =--+-=2a -15-2+a 5i 是实数,得-2+a 5=0,所以a =-2.答案:-2 考点二 计数原理 一、基础知识要记牢1.(1)分类计数原理:完成一件事情有n 类方法,只需用其中一类就能完成这件事. (2)分步计数原理:完成一件事情共分n 个步骤,必须经过这n 个步骤才能完成.缺少任何一步不能完成这件事.2.区分某一问题是排列还是组合问题,关键看选出的元素与顺序是否有关.排列问题与选取元素的顺序有关,组合问题与选取元素的顺序无关.3.排列数、组合数公式:(1)A mn =n(n -1)(n -2)…(n-m +1)=n !-!;(2)C m n =---m +m !=n !m !-!.二、经典例题领悟好[例2] (1)(2017·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答)(2)(2017·天津高考)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)[解析] (1)法一:分两步,第一步,选出4人,由于至少1名女生,故有C 48-C 46=55种不同的选法;第二步,从4人中选出队长、副队长各1人,有A 24=12种不同的选法.根据分步乘法计数原理知共有55×12=660种不同的选法.法二:不考虑限制条件,共有A 28C 26种不同的选法,而没有女生的选法有A 26C 24种,故至少有1名女生的选法有A 28C 26-A 26C 24=840-180=660(种).(2)一个数字是偶数、三个数字是奇数的四位数有C 14C 35A 44=960(个),四个数字都是奇数的四位数有A 45=120(个),则至多有一个数字是偶数的四位数一共有960+120=1 080(个).[答案] (1)660 (2)1 080解排列组合综合应用题的解题流程三、预测押题不能少2.(1)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解析:选D 因为安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,所以必有1人完成2项工作.先把4项工作分成3组,即2,1,1,有C 24C 12C 11A 22=6种,再分配给3个人,有A 33=6种,所以不同的安排方式共有6×6=36(种).(2)某班主任准备请2018届毕业生做报告,要从甲、乙等8人中选4人发言,要求甲、乙两人至少有一人参加,若甲、乙同时参加,则他们发言中间需恰好间隔一人,那么不同的发言顺序共有________种.(用数字作答)解析:若甲、乙同时参加,不同的发言顺序有2C 26A 22A 22=120种;若甲、乙有一人参加,不同的发言顺序有C 12C 36A 44=960种.由分类加法计数原理知,共有120+960=1 080种不同的发言顺序.答案:1 080 考点三 二项式定理 一、基础知识要记牢 (1)通项与二项式系数: T r +1=C r n an -r b r(r =0,1,2,…,n),其中C rn 叫做二项式系数.(2)各二项式系数之和: ①C 0n +C 1n +C 2n +…+C nn =2n. ②C 1n +C 3n +…=C 0n +C 2n +…=2n -1.二、经典例题领悟好[例3] (1)(2017·温州模拟)在⎝⎛⎭⎪⎫x +3x n的展开式中,各项系数和与二项式系数和之比为64,则x 3的系数为( )A .15B .45C .135D .405(2)(2017·浙江高考)已知多项式(x +1)3(x +2)2=x 5+a 1x 4+a 2x 3+a 3x 2+a 4x +a 5,则a 4=________,a 5=________.[解析] (1)令⎝⎛⎭⎪⎫x +3x n 中x 为1,得各项系数和为4n ,展开式的各项二项式系数和为2n.∵各项系数的和与各项二项式系数的和之比为64, ∴4n2n =64,解得n =6, ∴二项式的展开式的通项公式为T r +1=C r 6·3r·xr 362-,令6-32r =3,解得r =2,故展开式中含x 3项的系数为C 26·32=135.(2)由题意知a 4为含x 的项的系数,根据二项式定理得a 4=C 23×12×C 22×22+C 33×13×C 12×2=16,a 5是常数项,所以a 5=C 33×13×C 22×22=4.[答案] (1)C (2)16 4解决此类问题的5个关键(1)T r +1表示二项展开式中的任意项,只要n 与r 确定,该项就随之确定; (2)T r +1是展开式中的第r +1项,而不是第r 项; (3)公式中a ,b 的指数和为n ,且a ,b 不能颠倒位置; (4)要将通项中的系数和字母分离开,以便于解决问题; (5)对二项式(a -b)n展开式的通项公式要特别注意符号问题. 三、预测押题不能少3.(1)二项式(3x +32)n (n ∈N *)的展开式中只有一项的系数为有理数,则n 的可能取值为( )A .6B .7C .8D .9解析:选B 由题意,展开式中项的系数为C r n·3n r 2-·2r 3,由系数为有理数,知n -r 是2的倍数,r 是3的倍数,易知n =7,r =3时满足题意.故选B.(2)若⎝⎛⎭⎪⎫x 2+1x n的二项展开式中,所有二项式系数之和为64,则n =________;该展开式中的常数项为________(用数字作答).解析:由题意,得2n=64⇒n =6,由二项展开通项公式可知T r +1=C r 6x 2(6-r)-r=C r 6x12-3r,令12-3r =0,解得r =4,故常数项为C 46=15.答案:6 15[知能专练(十九)]一、选择题1.(2017·全国卷Ⅱ)(1+i)(2+i)=( ) A .1-i B .1+3i C .3+iD .3+3i解析:选B (1+i)(2+i)=2+i 2+3i =1+3i.2.(2017·全国卷Ⅰ)下列各式的运算结果为纯虚数的是( ) A .i(1+i)2B .i 2(1-i) C .(1+i)2D .i(1+i)解析:选C A 项,i(1+i)2=i·2i=-2,不是纯虚数; B 项,i 2(1-i)=-(1-i)=-1+i ,不是纯虚数; C 项,(1+i)2=2i,2i 是纯虚数;D 项,i(1+i)=i +i 2=-1+i ,不是纯虚数.故选C.3.(2017·云南模拟)在⎝ ⎛⎭⎪⎫x -1x 10的二项展开式中,x 4的系数为( )A .-120B .-60C .60D .120解析:选A ⎝⎛⎭⎪⎫x -1x 10的展开式的通项T r +1=C r 10x 10-r ·⎝⎛⎭⎪⎫-1xr =(-1)r C r 10x 10-2r,令10-2r =4,得r =3,所以该二项展开式中x 4的系数为-C 310=-120.4.旅游体验师小李受某旅游网站的邀约,决定对甲、乙、丙、丁这四个景区进行体验式旅游,若甲景区不能最先旅游,乙景区和丁景区不能最后旅游,则小李旅游的方案有( )A .24种B .18种C .16种D .10种解析:选D 若甲景区在最后一个体验,则有A 33种方案;若甲景区不在最后一个体验,则有A 12A 22种方案.所以小李旅游的方案共有A 33+A 12A 22=10(种).5.(2017·全国卷Ⅰ)⎝ ⎛⎭⎪⎫1+1x 2(1+x)6展开式中x 2的系数为( )A .15B .20C .30D .35解析:选C (1+x)6展开式的通项T r +1=C r 6x r ,所以⎝ ⎛⎭⎪⎫1+1x 2(1+x)6的展开式中x 2的系数为1×C 26+1×C 46=30.6.现有4名教师参加说课比赛,共有4道备选题目,若每位教师从中有放回地随机选出一道题目进行说课,其中恰有一道题目没有被这4位教师选中的情况有( )A .288种B .144种C .72种D .36种解析:选B 首先选择题目,从4道题目中选出3道,选法有C 34种;其次将获得同一道题目的2位教师选出,选法有C 24种;最后将选出的3道题目分配给3组教师,分配方式有A 33种.由分步乘法计数原理,知满足题意的情况共有C 34C 24A 33=144(种).7.(2017·长沙调研)⎝ ⎛⎭⎪⎫12x -2y 5的展开式中x 2y 3的系数是( )A .-20B .-5C .5D .20解析:选A ⎝ ⎛⎭⎪⎫12x -2y 5展开式的通项T r +1=C r 5⎝ ⎛⎭⎪⎫12x 5-r ·(-2y)r =C r 5·⎝ ⎛⎭⎪⎫125-r ·(-2)r ·x 5-r ·y r,令r =3,得x 2y 3的系数为C 35·⎝ ⎛⎭⎪⎫122·(-2)3=-20.8.学校组织学生参加社会调查,某小组共有5名男同学,4名女同学.现从该小组中选出3名同学分别到A ,B ,C 三地进行社会调查,若选出的同学中男女均有,则不同的安排方法有( )A .70种B .140种C .840种D .420种解析:选D 从9名同学中任选3名分别到A ,B ,C 三地进行社会调查有C 39A 33种安排方法,3名同学全是男生或全是女生有(C 35+C 34)A 33种安排方法,故选出的同学中男女均有的不同安排方法有C 39A 33-(C 34+C 35)A 33=420(种).9.(2017·合肥质检)已知(ax +b)6的展开式中x 4项的系数与x 5项的系数分别为135与-18,则(ax +b)6的展开式中所有项系数之和为( )A .-1B .1C .32D .64解析:选D 由二项展开式的通项公式可知x 4项的系数为C 26a 4b 2,x 5项的系数为C 16a 5b ,则由题意可得⎩⎪⎨⎪⎧C 26a 4b 2=135,C 16a 5b =-18,解得a +b =±2,令x =1,得(ax +b)6的展开式中所有项的系数之和为(a +b)6=64,故选D.10.(2017·全国卷Ⅲ)(x +y)(2x -y)5的展开式中x 3y 3的系数为( ) A .-80 B .-40 C .40D .80解析:选C 当第一个括号内取x 时,第二个括号内要取含x 2y 3的项,即C 35(2x)2(-y)3,当第一个括号内取y 时,第二个括号内要取含x 3y 2的项,即C 25(2x)3(-y)2,所以x 3y 3的系数为C 25×23-C 35×22=10×(8-4)=40.二、填空题11.(2018届高三·金丽衢十二校联考)设a ∈R ,若复数z =a +i1+i (i 为虚数单位)的实部和虚部相等,则a =________,|z -|=________.解析:依题意,得a +i1+i =+-2=a +12+1-a 2i.则a +12=1-a 2,解得a =0.∴z =12+12i ,z -=12-12i. ∴|z -|=14+14=22. 答案:02212.(2017·四川泸州模拟)在⎝ ⎛⎭⎪⎫x +a x 6(a>0)的展开式中常数项是60,则a 的值为________,各项的系数之和为________.解析:T r +1=C r6(x)6-r⎝ ⎛⎭⎪⎫a x r =a r C r 6x r 332-,令3-3r 2=0,解得r =2,∴a 2C 26=60,a>0,解得a=2.在⎝ ⎛⎭⎪⎫x +2x 6中,令x =1,得⎝⎛⎭⎪⎫x +2x 6=729.所以展开式中各项的系数之和为729. 答案:2 72913.(2017·河北唐山调研)在⎝⎛⎭⎪⎫2x 3-1x n的展开式中,各二项式系数的和为128,则常数项是________,第五项是________.解析:依题意有2n=128=27,解得n =7.因为2x 3-1x7展开式的通项为T r +1=C r 7(2x 3)7-r⎝⎛⎭⎫-x 12-r=(-1)r 27-r C r 7x 21-3.5r ,令21-3.5r =0,解得r =6,故常数项为(-1)627-6C 67=14,第五项是T 5=(-1)427-4C 47x21-3.5×4=280x 7.答案:14 280x 714.(2017·河北张家口模拟)⎝ ⎛⎭⎪⎫x -2x 6(x -2)的展开式中,常数项为________,x 2的系数为________.解析:⎝ ⎛⎭⎪⎫x -2x 6展开式的通项公式为T r +1=C r 6x 6-r ⎝ ⎛⎭⎪⎫-2x r =C r 6(-2)r x 6-2r .令6-2r =2,解得r =2;令6-2r =1,解得r =52,舍去;令6-2r =0,解得r =3;令6-2r =-1,解得r =72,舍去.∴⎝ ⎛⎭⎪⎫x -2x 6(x -2)的展开式中,常数项为(-2)C 36(-2)3=320,x 2的系数为(-2)C 26×(-2)2=-120.答案:320 -12015.“污染治理”“延迟退休”“楼市新政”“共享单车”“中印对峙”成为现在社会关注的5个热点.小王想利用暑假时间调查一下社会公众对这些热点的关注度.若小王准备按照顺序分别调查其中的4个热点,则“共享单车”作为其中的一个调查热点,但不作为第一个调查热点的调查顺序有________种.解析:先从“污染治理”“延迟退休”“楼市新政”“中印对峙”这4个热点中选出3个,有C 34种不同的选法,在调查时“共享单车”安排的顺序有A 13种可能情况,其余3个热点安排的顺序有A 33种可能情况,故有C 34A 13A 33=72种不同的调查顺序.答案:7216.若⎝ ⎛⎭⎪⎫ax +1x ⎝ ⎛⎭⎪⎫2x +1x 5展开式中的常数项为-40,则a =________. 解析:⎝ ⎛⎭⎪⎫2x +1x 5展开式的通项T r +1=C r 5(2x)5-r·⎝ ⎛⎭⎪⎫1x r =C r 525-r x 5-2r ,因为⎝ ⎛⎭⎪⎫ax +1x 2x +1x 5的展开式中的常数项为-40,所以axC 3522x -1+1xC 2523x =-40,即40a +80=-40,解得a =-3.答案:-317.编号为A ,B ,C ,D ,E 的五个小球放在如图所示的五个盒子里,要求每个盒子只能放一个小球,且A 球不能放在4号,5号,B 球必须放在与A 球相邻的盒子中,则不同的放法的种数为________.解析:根据A 球所在的位置可分三类情况:①若A 球放在1号盒子内,则B 球只能放在2号盒子内,余下的三个盒子放C ,D ,E 球,有A 33=6种不同的放法;②若A 球放在3号盒子内,则B 球只能放在2号盒子内,余下的三个盒子放C ,D ,E 球,有A 33=6种不同的放法;③若A 球放在2号盒子内,则B 球可以放在1号,3号,4号中的任何一个盒子内,余下的三个盒子放C ,D ,E 球,有C 13·A 33=18种不同的放法.综上可得不同的放法共有6+6+18=30(种).答案:30 [选做题]1.(2017·武昌调研)若⎝⎛⎭⎪⎫3x -3x n的展开式中所有项系数的绝对值之和为1024,则该展开式中的常数项为( )A .-270B .270C .-90D .90解析:选C ⎝ ⎛⎭⎪⎫3x -3x n 的展开式中所有项系数的绝对值之和等于⎝ ⎛⎭⎪⎫3x +3x n的展开式中所有项系数之和.令x =1,得4n=1 024,∴n =5.则⎝⎛⎭⎪⎫3x -3x n =⎝ ⎛⎭⎪⎫3x -3x 5,其通项T r +1=C r 53x 5-r·(-3x)r=C r5·35-r·(-1)r·x-+r 5r23,令r -52+r 3=0,解得r =3,∴该展开式中的常数项为T 4=C 35·32·(-1)3=-90,故选C.2.(2016·全国卷Ⅲ)定义“规范01数列”{a n }如下:{a n }共有2m 项,其中m 项为0,m 项为1,且对任意k≤2m,a 1,a 2,…,a k 中0的个数不少于1的个数.若m =4,则不同的“规范01数列”共有( )A .18个B .16个C .14个D .12个解析:选C 由题意知:当m =4时,“规范01数列”共含有8项,其中4项为0,4项为1,且必有a 1=0,a 8=1.不考虑限制条件“对任意k≤2m,a 1,a 2,…,a k 中0的个数不少于1的个数”,则中间6个数的情况共有C 36=20(种),其中存在k≤2m,a 1,a 2,…,a k 中0的个数少于1的个数的情况有:①若a 2=a 3=1,则有C 14=4(种);②若 a 2=1,a 3=0,则a 4=1,a 5=1,只有1种;③若a 2=0,则a 3=a 4=a 5=1,只有1种.综上,不同的“规范01数列”共有20-6=14(种).故共有14个.故选C.3.福州大学的8名学生准备拼车去湘西凤凰古城旅游,其中大一、大二、大三、大四每个年级各2名,分乘甲、乙两辆汽车.每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学中恰有2名同学是来自同一年级的乘坐方式共有________种.解析:可分两类:第一类,大一的孪生姐妹乘坐甲车,则可再分三步:第一步,从大二、大三、大四三个年级中任选两个年级,有C 23种不同的选法;第二步,从所选出的两个年级中各抽取一名同学,有C 12C 12种不同的选法;第三步,余下的4名同学乘乙车有C 44种不同的选法,根据分步乘法计数原理,可知有C 23C 12C 12C 44种不同的乘坐方式.第二类,大一的孪生姐妹乘坐乙车,则可再分三步:第一步,从大二、大三、大四三个年级中任选一个年级(此年级的2名同学乘甲车),有C 13种不同的选法;第二步,余下的两个年级中各抽取一名同学,有C 12C 12种不同的选法;第三步,余下的2名同学乘乙车有C 22种不同的选法,根据分步乘法计数原理,可知有C 13C 12C 12C 22种不同的乘坐方式.根据分类加法计数原理,满足要求的乘坐方式种数为C 23C 12C 12C 44+C 13C 12C 12C 22=24.答案:24第二讲概率、随机变量及其分布考点一随机事件及其概率一、基础知识要记牢1.概率的几个基本性质(1)概率的取值范围:0≤P(A)≤1.(2)必然事件的概率:P(A)=1.(3)不可能事件的概率:P(A)=0.(4)概率的加法公式如果事件A与事件B互斥,则P(A∪B)=P(A)+P(B).(5)对立事件的概率若事件A与事件B互为对立事件,则A∪B为必然事件.即P(A∪B)=1,P(A)=1-P(B).2.互斥事件和对立事件二、经典例题领悟好[例1] (1)甲、乙两人进行象棋比赛,甲获胜的概率是0.4,两人下成和棋的概率是0.2,则甲不输的概率是( )A.0.6 B.0.8C.0.2 D.0.4(2)从3个红球、2个白球中随机取出2个球,则取出的2个球不全是红球的概率是( )A.110B.310C.710 D.35[解析] (1)甲获胜的概率是0.4,两人下成和棋的概率是0.2,所以甲不输的概率为0.4+0.2=0.6,故选A.(2)“取出的2个球全是红球”记为事件A ,则P(A)=C 23C 25=310.因为“取出的2个球不全是红球”为事件A 的对立事件,所以其概率为P(A )=1-P(A)=1-310=710.[答案] (1)A (2)C1.(1)甲、乙独立地解决同一数学问题,甲解决这个问题的概率是0.8,乙解决这个问题的概率是0.6,那么其中至少有1人解决这个问题的概率是( )A .0.48B .0.52C .0.8D .0.92解析:选D 由题意可得,甲、乙二人都不能解决这个问题的概率是0.2×0.4=0.08,那么其中至少有1人解决这个问题的概率是1-0.08=0.92,故选D.(2)袋中有红球、黑球、黄球、绿球若干,从中任取一球,得到红球的概率为13,得到黑球或黄球的概率为512,得到黄球或绿球的概率为512,求得到黑球、得到黄球、得到绿球的概率分别是________.解析:记“得到红球”为事件A ,“得到黑球”为事件B ,“得到黄球”为事件C ,“得到绿球”为事件D ,事件A ,B ,C ,D 显然彼此互斥,则由题意可知,P(A)=13,P(B ∪C)=P(B)+P(C)=512,①P(C ∪D)=P(C)+P(D)=512,②由事件A 和事件B ∪C ∪D 是对立事件可得P(A)=1-P(B ∪C ∪D) =1-[P(B)+P(C)+P(D)],即P(B)+P(C)+P(D)=1-P(A)=1-13=23,③①②③联立可得P(B)=14,P(C)=16,P(D)=14.即得到黑球、得到黄球、得到绿球的概率分别是14,16,14.答案:14,16,14考点二 古典概型 一、基础知识要记牢 1.古典概率模型(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等.我们将具有这两个特点的概率模型称为古典概率模型,简称古典概型.2.古典概型的概率公式 P(A)=m n =A 中所含的基本事件数基本事件总数.[提醒] 求事件包含的基本事件数,常用计数原理与排列、组合的相关知识. 二、经典例题领悟好[例2] (1)(2017·天津高考)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为( )A.45 B.35C.25D.15(2)(2017·山东高考)从分别标有1,2,…,9的9张卡片中不放回地随机抽取2次,每次抽取1张,则抽到的2张卡片上的数奇偶性不同的概率是( )A.518B.49C.59D.79[解析] (1)从5支彩笔中任取2支不同颜色的彩笔,有10种不同取法:(红,黄),(红,蓝),(红,绿),(红,紫),(黄,蓝),(黄,绿),(黄,紫),(蓝,绿),(蓝,紫),(绿,紫).而取出的2支彩笔中含有红色彩笔的取法有(红,黄),(红,蓝),(红,绿),(红,紫),共4种,故所求概率P =410=25.(2)所求概率为P =C 15C 14+C 14C 15C 19C 18=59. [答案] (1)C (2)C计算古典概型事件的概率3个步骤步骤一:算出基本事件的总个数n ;步骤二:求出事件A 所包含的基本事件个数m ; 步骤三:代入公式求出概率P. 三、预测押题不能少2.(1)先后两次抛掷同一个骰子,将得到的点数分别记为a ,b ,则a ,b,5能够构成等腰三角形的概率是( )A.16B.12C.718D.23解析:选C 基本事件的总数是36, 当a =1时,b =5符合要求,有1种情况; 当a =2时,b =5符合要求,有1种情况; 当a =3时,b =3,5符合要求,有2种情况; 当a =4时,b =4,5符合要求,有2种情况;当a =5时,b =1,2,3,4,5,6均符合要求,有6种情况; 当a =6时,b =5,6符合要求,有2种情况.所以能够构成等腰三角形的共有14种情况,所求概率为1436=718.(2)从两名男生和两名女生中任意选取两人在星期六、星期日参加某公益活动,每天一人,则星期六安排一名女生,星期日安排一名男生的概率为________.解析:法一:两名男生分别记为A 1,A 2,两名女生分别记为B 1,B 2,任意选取两人在星期六、星期日参加某公益活动,有A 1A 2,A 1B 1,A 1B 2,A 2B 1,A 2B 2,B 1B 2,A 2A 1,B 1A 1,B 2A 1,B 1A 2,B 2A 2,B 2B 1,共12种情况,而星期六安排一名女生,星期日安排一名男生,有B 1A 1,B 2A 1,B 1A 2,B 2A 2,共4种情况,故所求概率为P =412=13.法二:两名男生分别记为A 1,A 2,两名女生分别记为B 1,B 2,任意选取两人在星期六、星期日参加某公益活动,共有C 24A 22=12种情况,而星期六安排一名女生,星期日安排一名男生,有B 1A 1,B 2A 1,B 1A 2,B 2A 2,共4种情况,故所求概率为P =412=13.答案:13考点三 随机变量及其分布 一、基础知识要记牢 1.独立重复试验、二项分布(1)如果事件A 在一次试验中发生的概率是p ,那么它在n 次独立重复试验中恰好发生k 次的概率为P n (k)=C k n p k(1-p)n -k,k =0,1,2,…,n.(2)一般地,在n 次独立重复试验中,用X 表示事件A 发生的次数,设每次试验中事件A 发生的概率为p ,则P(X =k)=C k n p k qn -k,其中0<p<1,p +q =1,k =0,1,2,…,n ,称X 服从参数为n ,p 的二项分布,记作X ~B(n ,p),且E(X)=np ,D(X)=np(1-p).2.离散型随机变量的分布列、均值与方差(1)设离散型随机变量X 可能取的值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i 的概率为P(X =x i )=p i ,则称下表:(2)E(X)=x 1p 1+x 2p 2+…+x i p i +…+x n p n 为X 的均值或数学期望(简称期望).D(X)=(x 1-E(X))2·p 1+(x 2-E(X))2·p 2+…+(x i -E(X))2·p i +…+(x n -E(X))2·p n 叫做随机变量X 的方差.二、经典例题领悟好[例3] (1)(2017·浙江高考)已知随机变量ξi满足P(ξi =1)=p i ,P(ξi =0)=1-p i ,i=1,2.若0<p 1<p 2<12,则( )A .E(ξ1)<E(ξ2),D(ξ1)<D(ξ2)B .E(ξ1)<E(ξ2),D(ξ1)>D(ξ2)C .E(ξ1)>E(ξ2),D(ξ1)<D(ξ2)D .E(ξ1)>E(ξ2),D(ξ1)>D(ξ2)(2)若X ~B(n ,p),且E(X)=6,D(X)=3,则P(X =1)的值为( ) A .3×2-2B .2-4C .3×2-10D .2-8[解析] (1)根据题意得,E(ξi )=p i ,D(ξi )=p i (1-p i ),i =1,2,∵0<p 1<p 2<12,∴E(ξ1)<E(ξ2).令f(x)=x(1-x),则f(x)在⎝ ⎛⎭⎪⎫0,12上单调递增,所以f(p 1)<f(p 2),即D(ξ1)<D(ξ2). (2)∵E(X)=np =6,D(X)=np(1-p)=3, ∴p =12,n =12,则P(X =1)=C 112×12×⎝ ⎛⎭⎪⎫1211=3×2-10.[答案] (1)A (2)C1.二项分布满足的3个条件每次试验中,事件发生的概率是相同的. 各次试验中的事件是相互独立的.每次试验中只有两种结果:事件要么发生,要么不发生. 2.求离散型随机变量的分布列与数学期望的基本步骤 第一步:明确变量,确定随机变量的所有可能的取值; 第二步:求概率,求每一个可能值所对应的概率; 第三步:得分布列,列出离散型随机变量的分布列; 第四步:公式求值,利用公式求均值和方差. 三、预测押题不能少3.(1)同时抛掷两枚质地均匀的硬币,当至少有一枚硬币正面向上时,就说这次试验成功,则在2次试验中成功次数X 的均值是( )A.12B.32C.34D.14解析:选B 法一:由题意知,每次试验成功的概率为34,失败的概率为14,在2次试验中成功次数X 的可能取值为0,1,2,则P(X =0)=⎝ ⎛⎭⎪⎫142=116,P(X =1)=C 12×14×34=616=38,P(X =2)=⎝ ⎛⎭⎪⎫342=916,E(X)=0×116+1×38+2×916=32. 法二:由题意知,试验成功的概率p =34,故X ~B2,34,所以E(X)=2×34=32.(2)已知0<a<12,随机变量ξ的分布列如下:当a 增大时( )A .E(ξ)增大,D(ξ)增大B .E(ξ)减小,D(ξ)增大C .E(ξ)增大,D(ξ)减小D .E(ξ)减小,D(ξ)减小解析:选B 由题意知,E(ξ)=-2×a+0×⎝ ⎛⎭⎪⎫12-a +2×12=1-2a ,D(ξ)=(2a -3)2×a+(2a -1)2×⎝ ⎛⎭⎪⎫12-a +(1+2a)2×12=-4a 2+8a +1=-4(a -1)2+5,又0<a<12,所以当a 增大时,E(ξ)减小,D(ξ)增大.故选B.[知能专练(二十)]一、选择题1.(2017·宁波模拟)从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P(A)=0.7,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为( )A .0.7B .0.2C .0.1D .0.3解析:选D ∵“抽到的不是一等品”的对立事件是“抽到一等品”,事件A ={抽到一等品},P(A)=0.7,∴“抽到的不是一等品”的概率是1-0.7=0.3.选D.2.投篮测试中,每人投3次,至少投中2次才能通过测试.已知某同学每次投篮投中的概率为0.6,且各次投篮是否投中相互独立,则该同学通过测试的概率为( )A .0.648B .0.432C .0.36D .0.312解析:选A 3次投篮投中2次的概率为P(k =2)=C 23×0.62×(1-0.6),投中3次的概率为P(k =3)=0.63,所以通过测试的概率为P(k =2)+P(k =3)=C 23×0.62×(1-0.6)+0.63=0.648.故选A.3.已知离散型随机变量X 的概率分布列为则其方差D(X)=( ) A .1 B .0.6 C .2.44D .2.4 解析:选C 因为0.5+m +0.2=1,所以m =0.3,所以E(X)=1×0.5+3×0.3+5×0.2=2.4,D(X)=(1-2.4)2×0.5+(3-2.4)2×0.3+(5-2.4)2×0.2=2.44.4.(2018届高三·江西八校联考)从集合{1,2,3,…,10}中任取5个数组成集合A ,则A 中任意两个元素之和不等于11的概率为( )A.1945 B.463C.863 D.1663解析:选C 分组考虑:(1,10),(2,9),(3,8),(4,7),(5,6).若A 中任意两个元素之和不等于11,则5个元素必须只有每组中的其中一个,故所求概率P =25C 510=863.故选C.5.(2017·邯郸模拟)口袋里装有红球、白球、黑球各1个,这3个球除颜色外完全相同,有放回地连续抽取2次,每次从中任意地取出1个球,则2次取出的球的颜色不相同的概率是( )A.29B.13C.23D.89解析:选C 法一:由题意知,基本事件总数n =3×3=9,记事件M 为“2次取出的球的颜色不相同”,则事件M 所包含的基本事件个数m =3×2=6,所以2次取出的球的颜色不相同的概率P(M)=m n =69=23,故选C.法二:由题意知,所有的基本事件为:红红、红白、红黑、白红、白白、白黑、黑红、黑白、黑黑,共9个,其中2次取出的球的颜色相同的基本事件有3个,所以2次取出的球的颜色不相同的概率为1-39=23.6.(2017·合肥模拟)已知袋中有3个白球,2个红球,现从中随机取出3个球,其中每个白球计1分,每个红球计2分,记X 为取出3个球的总分值,则E(X)=( )A.185B.215C .4D.245解析:选B 由题意知,X 的所有可能取值为3,4,5,且P(X =3)=C 33C 35=110,P(X =4)=C 23·C 12C 35=35,P(X =5)=C 13·C 22C 35=310,所以E(X)=3×110+4×35+5×310=215. 7.设随机变量ξ~B(2,p),η~B(3,p),若P(ξ≥1)=59,则P(η≥2)的值为( )A.2027B.827C.727D.127解析:选C ∵变量ξ~B(2,p),且P(ξ≥1)=59,∴P(ξ≥1)=1-P(ξ<1)=1-C 02p 0(1-p)2=59,∴p =13,∴P(η≥2)=1-P(η=0)-P(η=1)=1-C 03×⎝ ⎛⎭⎪⎫130×⎝ ⎛⎭⎪⎫233-C 13×⎝ ⎛⎭⎪⎫131×⎝ ⎛⎭⎪⎫232=1-827-1227=727,故选C. 8.体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球,否则一直发到3次为止.设某学生每次发球成功的概率为p(0<p<1),发球次数为X ,若X 的数学期望E(X)>1.75,则p 的取值范围是( )A.⎝ ⎛⎭⎪⎫0,712 B.⎝ ⎛⎭⎪⎫712,1 C.⎝ ⎛⎭⎪⎫0,12 D.⎝ ⎛⎭⎪⎫12,1 解析:选C 由已知条件可得P(X =1)=p ,P(X =2)=(1-p)p ,P(X =3)=(1-p)2p +(1-p)3=(1-p)2,则E(X)=P(X =1)+2P(X =2)+3P(X =3)=p +2(1-p)p +3(1-p)2=p 2-3p +3>1.75,解得p>52或p<12,又由p ∈(0,1),可得p ∈⎝ ⎛⎭⎪⎫0,12.9.甲、乙两人轮流投篮,每人每次投一球.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束,设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响,则乙获胜的概率为( )A.12 B.13C.1327D.427解析:选C 设A k ,B k (k =1,2,3)分别表示甲、乙在第k 次投篮投中,则P(A k )=13,P(B k )=12(k =1,2,3).记“乙获胜”为事件C ,由互斥事件与概率计算公式知 P(C)=P(A 1B 1)+P(A1B1A 2B 2)+P(A1B1A2B2A 3B 3)=P(A 1)P(B 1)+P(A 1)P(B 1)P(A 2)P(B 2)+P(A 1)P(B 1)P(A 2)P(B 2)P(A 3)P(B 3) =23×12+⎝ ⎛⎭⎪⎫232×⎝ ⎛⎭⎪⎫122+⎝ ⎛⎭⎪⎫233×⎝ ⎛⎭⎪⎫123=1327. 10.(2018届高三·湖北七市(州)联考)从数字1,2,3,4,5中,随机抽取3个数字(允许重复)组成一个三位数,其各位数字之和等于12的概率为( )A.225B.13125C.18125D.9125解析:选A 从5个数字中任意抽取3个数字组成一个三位数,并且允许有重复的数字,这样构成的数字有53=125个.则各位数字之和等于12且没有重复数字,则该数只能含有3,4,5三个数字,可构成A 33=6个三位数;若三位数的各位数字均重复,则该数为444;若三位数中有2个数字重复,则该数为552,525,255,有3个.因此,所求概率为P =6+1+3125=225,故选A.二、填空题11.已知随机变量ξ的分布列为P(ξ=k)=ak ,其中k =1,2,3,4,5,6,则a =________,E(ξ)=________.解析:根据题意可知P(ξ=1)=a 1,P(ξ=2)=a 2,P(ξ=3)=a 3,P(ξ=4)=a4,P(ξ=5)=a 5,P(ξ=6)=a 6,∴a 1+a 2+a 3+a 4+a 5+a 6=1,∴a =2049,E(ξ)=6a =12049. 答案:2049 1204912.(2017·四川绵阳模拟)已知甲、乙二人能译出某种密码的概率分别为12和13,现让他们独立地破译这种密码,则两人都能译出密码的概率为________,两人中至少有1人能译出密码的概率为________.解析:两人都能译出密码的概率为12×13=16.至少有1人能译出密码的对立事件是两人都不能译出密码, ∴至少有1人能译出密码的概率p =1-1-121-13=23.答案:16 2313.(2018届高三·温州十校联合体期末联考)袋中有3个大小、质量相同的小球,每个小球上分别写有数字0,1,2,随机摸出一个将其上的数字记为a 1,然后放回袋中,再次随机摸出一个,将其上的数字记为a 2,依次下去,第n 次随机摸出一个,将其上的数字记为a n ,记ξn =a 1a 2…a n ,则:(1)随机变量ξ2的数学期望是________; (2)ξn =2n -1时的概率是________.解析:可以求得随机变量ξ2的分布列如表所示:所以随机变量ξ2n (n -1)次取到了2,有1次取到了1,故所求概率是n3n .答案:1n 3n 14.(2018届高三·浙江名校联考)袋中有大小相同的3个红球,2个白球,1个黑球.若不放回摸球,每次取1球,摸取3次,则恰有两次是红球的概率为________;若有放回摸球,每次取1球,摸取3次,则摸到红球次数的期望为________.解析:①每次取1球,摸取3次,则恰有两次是红球的概率P =C 23C 13C 36=920.②设摸到红球的次数为X ,则X 的可能取值为0,1,2,3,则每次摸到红球的概率为36=12.P(X=k)=C k 3⎝ ⎛⎭⎪⎫12k1-123-k ,(k =0,1,2,3).∴P(X =0)=18,P(X =1)=38,P(X =2)=38,P(X =3)=18,∴E(X)=0+1×38+2×38+3×18=32.答案:920 3215.某班班会,准备从包括甲、乙两人的7名学生中选取4名学生发言,要求甲、乙两人至少有1人参加,则甲、乙都被选中且发言时不相邻的概率为________.解析:若无限制条件则有A 47种情况;若甲、乙两人都不被选中则有A 45种情况,因此甲、乙两人至少有1人被选中有A 47-A 45种情况.甲、乙两人都被选中且发言时不相邻共有A 25·A 23种情况,故所求概率为P =A 25·A 23A 47-A 45=16.答案:1616.(2017·成都模拟)已知函数f(x)=13mx 3+12nx 2+x +2 017,其中m ∈{2,4,6,8},n ∈{1,3,5,7},从这些函数中任取两个不同的函数,则它们的图象在(1,f(1))处的切线相互平行的概率是________.解析:函数f(x)=13mx 3+12nx 2+x +2 017,导函数为f′(x)=mx 2+nx +1,可得在(1,f(1))处的切线斜率为m +n +1.切线相互平行,即斜率相等,则(m ,n)可为(2,7),(8,1),(4,5),(6,3);(2,5),(4,3),(6,1);(2,3),(4,1);(4,7),(6,5),(8,3);(8,5),(6,7),共C 24+C 23+1+C 23+1=14组,又总共有C 216=120组,则它们的图象在(1,f(1))处的切线相互平行的概率是14120=760.。