课题指数函数
- 格式:doc
- 大小:261.00 KB
- 文档页数:10
课题 : § 2.1.2指数函数及其性质
一、教学设计思路:
1、函数及其图像在高中数学中占有重要的位置,如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图像语言有机的结合起来,应用多媒体课件辅助教学;通过具有一定思考价值的问题,激发学生的求知欲望和好奇心。
我们知道:函数的表示法有3种:列表、图像、解析法,以往函数的学习大多只关注图像的作用,这其实只借助了图像的直观性。
只是从一个角度看函数是片面的。
本节课,力图让学生从不同角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种的研究方法,以便迁移到其他函数的研究中去。
2、本节课我努力做到:
①在课堂活动中通过同伴合作,自主探究培养学生积极主动、勇于探索的学习方式;
②在教学过程中努力做到生生对话,师生对话,且在对话之后重视体会、总结、反思、力图在培养和发展学生数学素养的同时让学生掌握学习研究数学的方法;
③通过课堂教学活动向学生渗透数学思想方法。
二、教案
三教学反思与评价:
通过具有一定思考价值的问题,激发学生的求知欲望和好奇心,树立数形结合思想,学会“看图说话,并加强指数运算的计算能力。
通过练习使学生掌握指数函数的简单性质.。
指数函数教学设计及反思一、教学目标:1.理解指数函数的概念和性质;2.掌握指数函数的图像、基本性质和应用;3.能够解决与指数函数相关的实际问题;4.培养学生的逻辑思维和数学分析能力。
二、教学内容:1.指数函数的基本概念:正数指数、零指数、负数指数、分数指数;2.指数函数的图像与性质:递增/递减性、增/减区间、零点、极限行为;3.指数函数与对数函数的关系;4.指数函数的应用:人口增长模型、物质衰减模型等。
三、教学过程:1.导入:通过展示一组图表,引发学生对指数函数的兴趣和思考:“如果你发现一个疯狂 multiplying zombies 的现象,你会用什么模型来描述他们的增长呢?”引导学生思考指数函数的定义和特点。
2.探究:a.定义与性质:引导学生观察一组指数函数的图像,比较不同指数的影响,总结指数函数的性质。
b.图像与性质的证明:以指数函数y=2^x为例,让学生推导其等比数列形式,进而证明其递增性和增区间;再通过值的比较,推导其零点和极限行为。
c.应用举例:引导学生根据实际问题建立指数函数模型,如人口增长模型、物质衰减模型等。
3.实践:a.让学生在计算器上输入不同指数函数的参数,观察图像的变化,并总结规律。
b.给学生一组实际问题,让他们运用所学的知识建立相应的指数函数模型,并解决问题。
4.总结:让学生总结指数函数的定义、性质和应用,并引导他们思考指数函数与对数函数的关系。
四、教学反思:1.教学目标是否明确:教学目标必须明确具体,而不是笼统的“理解”和“掌握”,能够量化和具体化目标有助于教学的实施和评价。
2.导入环节是否引人入胜:指数函数的引入可以通过具体实例、有趣问题等多种方式实现,但要注意避免过多的单向授课,要鼓励学生积极思考和参与讨论。
3.探究与实践的平衡:在教学过程中,既要让学生自主探究和发现规律,又要提供一定数量的练习机会,巩固所学的知识和技能。
4.师生互动:教师应注重与学生的互动,鼓励学生提问和思考,及时给予反馈和指导,促进学生的学习动力和思维发展。
《指数函数》教案及说明教学目标:1.了解指数函数的概念及特点。
2.掌握指数函数的基本性质和运算法则。
3.能够应用指数函数解决实际问题。
教学准备:1.教材:《数学》教科书指数函数相关知识。
2.教具:黑板、彩色粉笔、教案、课件。
3.学具:纸、笔、计算器。
教学内容:一、指数函数的概念1.引入-贴近生活:指数函数在生活中的应用,如化学反应速率、人口增长、传染病传播等。
2.定义-初步认识:引导学生理解指数函数的定义,即$f(x)=a^x$,其中$a$为底数,$x$为指数。
3.图像-形象认识:通过绘制不同底数的指数函数图像,让学生感受指数函数的特点。
二、指数函数的性质1.增减性质-探索规律:让学生探究当底数大于1或小于1时指数函数的增减规律。
2.奇偶性质-分析对称:引导学生分析指数函数的奇偶性质及对称性。
3.单调性-推理结论:通过图像和实例讨论指数函数的单调性。
三、指数函数的运算1.指数运算-灵活应用:介绍指数运算的基本法则,如底数相同指数相加、乘法规则等。
2.对数运算-运用技巧:引导学生掌握对数运算与指数运算的关系,解决相关问题。
四、应用题训练1.实际问题-连接生活:设计一些实际问题让学生应用指数函数解答,如投资增长、疾病传播等。
2.综合题目-巩固训练:布置一些综合性的题目,检验学生对指数函数的理解和运用能力。
教学过程:一、引入1.通过引入生活中的例子,引起学生对指数函数的兴趣。
2.提出问题:你知道指数函数是什么吗?它有什么特点?二、概念讲解1.讲解指数函数的定义及表达形式。
2.通过示例让学生理解指数函数的意义。
三、性质探究1.讨论指数函数的增减性、奇偶性和单调性。
2.通过实例和图像展示不同性质的指数函数。
四、运算规律1.教授指数运算基本规则,让学生掌握指数函数的运算方法。
2.引导学生理解对数运算与指数运算之间的关系。
五、应用题训练1.分组讨论实际问题,并给出解法。
2.布置应用题训练,让学生巩固所学内容。
【课题】4.2指数函数【教学目标】知识目标:⑴理解指数函数的图像及性质;⑵了解指数模型,了解指数函数的应用.能力目标:⑴会画出指数函数的简图;⑵会判断指数函数的单调性;⑶了解指数函数在生活生产中的部分应用,从而培养学生分析与解决问题能力.【教学重点】⑴指数函数的概念、图像和性质;⑵指数函数的应用实例.【教学难点】指数函数的应用实例.【教学设计】⑴以实例引入知识,提升学生的求知欲;⑵“描点法”作图与软件的应用相结合,有助于观察得到指数函数的性质;⑶知识的巩固与练习,培养学生的思维能力;⑷实际问题的解决,培养学生分析与解决问题的能力;⑸以小组的形式进行讨论、探究、交流,培养团队精神.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】过 程行为 行为 意图 间别用光滑的曲线依次联结各点,得到函数y =2x 和y =1()2x 的图像,如上图所示.归纳观察函数图像发现:1.函数2x y =和y =1()2x 的图像都在x 轴的上方,向上无限伸展,向下无限接近于x 轴;2.函数图像都经过(0,1)点;3.函数y =x2的图像自左至右呈上升趋势;函数y =1()2x 的图像自左至右呈下降趋势. 推广利用软件可以作出a 取不同值时的指数函数的图像. 展示 引导 分析 说明观察 体会 理解计算 部分 可以 由学 生独 立完 成 引导学生仔细观察函数图象的特点数形结合25*动脑思考 明确新知 一般地,指数函数xy a =()01a a >≠且具有下列性质:(1) 函数的定义域是(),-∞+∞.值域为(0,)+∞;(2) 函数图像经过点(0,1),即当0x =时,函数值1y =; (3) 当>1a 时,函数在(),-∞+∞内是增函数;当0<<1a 时,函数在(),-∞+∞内是减函数.归纳强调体会 记忆结合 图形 由学 生自 我归 纳强 调关 键点30*巩固知识 典型例题通过x.10)年该市国内生产总值为(亿元).年该市国民生产总值为(亿元).。
指数函数教案(优秀5篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如合同协议、条据文书、策划方案、总结报告、党团资料、读书笔记、读后感、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as contract agreements, documentary evidence, planning plans, summary reports, party and youth organization materials, reading notes, post reading reflections, essay encyclopedias, lesson plan materials, other sample essays, etc. If you want to learn about different formats and writing methods of sample essays, please stay tuned!指数函数教案(优秀5篇)作为一名优秀的教育工作者,时常要开展教案准备工作,教案有助于顺利而有效地开展教学活动。
指数函数及其性质教学设计〔共8篇〕第1篇:《指数函数及其性质》教学设计《指数函数及其性质》教学设计尚义县第一中学乔珺一、指数函数及其性质教学设计说明新课标指出:学生是教学的主体,老师的教应本着从学生的认知规律出发,以学生活动为主线,在原有知识的根底上,建构新的知识体系。
我将以此为根底对教学设计加以说明。
数学本质:探究指数函数的性质从“数”的角度用解析式不易解决,转而由“形”——图象打破,体会数形结合的思想。
通过分类讨论,通过研究两个详细的指数函数引导学生通过观察图象发现指数函数的图象规律,从而归纳指数函数的一般性质,经历一个由特殊到一般的探究过程。
引导学生探究出指数函数的一般性质,从而对指数函数进展较为系统的研究。
二、教材的地位和作用:本节课是全日制普通高中标准实验教课书《数学必修1》第二章2.1.2节的内容,研究指数函数的定义,图像及性质。
是在学生已经较系统地学习了函数的概念,将指数扩大到实数范围之后学习的一个重要的根本初等函数。
它既是对函数的概念进一步深化,又是今后学习对数函数与幂函数的根底。
因此,在教材中占有极其重要的地位,起着承上启下的作用。
此外,《指数函数》的知识与我们的日常消费、生活和科学研究有着严密的联络,尤其表达在细胞分裂、贷款利率的计算和考古中的年代测算等方面,因此学习这局部知识还有着广泛的现实意义。
三、教学目的分析^p :根据本节课的内容特点以及学生对抽象的指数函数及其图象缺乏感性认识的实际情况,确定在理解指数函数定义的根底上掌握指数函数的图象和由图象得出的性质为本节教学重点。
本节课的难点是指数函数图像和性质的发现过程。
为此,特制定以下的教学目的: 1〕知识目的〔直接性目的〕:理解指数函数的定义,掌握指数函数的图像、性质及其简单应用、能根据单调性解决根本的比拟大小的问题.2〕才能目的〔开展性目的〕:通过教学培养学生观察、分析^p 、归纳等思维才能,体会数形结合和分类讨论思想,增强学生识图用图的才能。
指数函数教案(精选多篇)第一篇:指数函数教案.doc一.思考题1.来回答其变化的过程和答案2.过ppt来讲解思考题二、问题1.接说出指数函数2.学来思考问题23.出指数函数的概念三.例题1.下题目,叫学生思考几秒钟,请学生来回答。
2.学生的回答进行分析四.思考1.第一个思考,引导学生说出图像的做法,2.学生来画出4个图像3.图像进行补充4.函数的三要素来分析图像的性质5.图像上的到恒过的点及单调性6.行底数互为倒数的函数图像的比较、得到对称的性质(换算)7.行底数不同大小的比较,说明其大小的变化五.例题先思考,再请同学来回答,再进行点评六、总结七、布置作业第二篇:《指数函数概念》教案《指数函数概念》教案(一)情景设置,形成概念1、引例1:折纸问题:让学生动手折纸观察:①对折的次数x与所得的层数y之间的关系,得出结论y=2x②对折的次数x与折后面积y之间的关系(记折前纸张面积为1),得出结论y=(1/2)x引例2:《庄子。
天下篇》中写到:“一尺之棰,日取其半,万世不竭”。
请写出取x次后,木棰的剩留量与y与x的函数关系式。
2、形成概念:形如y=ax(a>0且a≠1)的函数称为指数函数,定义域为x∈r。
提出问题:为什么要限制a>0且a≠1?这一点让学生分析,互相补充。
分a﹤=0,a=1讨论。
1)a<0时,y=(-3)x对于x=1/2,1/4,??(-3)x无意义。
2)a=0时,x>0时,ax=0;x≤0时无意义。
3)a=1时,a= 1=1是常量,没有研究的必要。
(二)发现问题、深化概念问题:判断下列函数是否为指数函数。
1)y=-3x2)y=31/x3) y=31+x4) y=(-3)x5) y=3-x=(1/3) x1、1)ax的前面系数为1; 2)自变量x在指数位置; 3)a>0且a≠1。
2、问题中4)y=(-3)x的判定,引出上面讨论的问题:即指数函数的概念中为什么要规定a>0且a≠1。
学科德育案例x 次后绳子剩余的长度为y 米,试写出y 与x 之间的函数关系式。
生:x y )21(=(∈x *N ) (二)师生互动、探究新知 1.指数函数的定义⑴让学生思考讨论以下问题(问题逐个给出):①xy 2=(∈x *N )和xy )21(=(∈x *N )这两个解析式有什么共同特征?②它们能否构成函数?③是我们学过的哪个函数?如果不是,你能否根据该函数的特征给它起个恰当的名字? 引导学生观察,两个函数中,底数是常数,指数是自变量。
如果可以用字母a 代替其中的底数,那么上述两式就可以表示成xa y =的形式。
自变量在指数位置,所以我们把它称作指数函数。
⑵让学生讨论并给出指数函数的定义。
对于底数的分类,可将问题分解为:①若0 a 会有什么问题?(如2-=a ,21=x 则在实数范围内相应的函数值不存在) ②若 会有什么问题?(对于0≤x ,xa 都无意义) ③若又会怎么样?(无论 取何值,它总是1,对它没有研究的必要.)为了避免上述各种情况的发生,所以规定且.接下来教师可以问学生是否明确了指数函数的定义,能否写出一两个指数函数?教师也在黑板上写出一些解析式让学生判断,如xy 35⨯=,xy 23=,xy 3-=。
这样设计的目的是学生可能存在对指数函数形式上的一种误解,即只看指数位置是否为自变量。
通过以上的三个小例子,学生就完成对指数函数彻底的认识,解决的问题。
2.指数函数性质 ⑴提出两个问题①目前研究函数一般可以包括哪些方面;②研究函数(比如今天的指数函数)可以怎么研究?用什么方法、从什么角度研究? 可以从图象和解析式列表这三个不同的角度进行研究;可以从具体的函数入手(即底数取一些数值);当然也可以用列表法研究函数,⑵分组活动,合作学习让学生分为三大组,一组从解析式的角度入手(不画图)研究指数函数,一组借助电脑通过几何画板的操作从图象的角度入手研究指数函数;一组借助列表利用计算器和坐标网格研究指数函数;⑶交流、总结教师在巡视过程中应关注各组的研究情况,此时可选一些有代表性的小组上台展示研究成果,并对比从两个角度入手研究的结果。
指数函数优秀公开课教案(比赛课)指数函数优秀公开课教案(比赛课)一、教学目标1. 学会定义指数函数,并了解其特征和性质。
2. 掌握指数函数的图像、定义域、值域等基本概念。
3. 能够运用指数函数解决实际问题。
4. 发展学生的逻辑思维和问题解决能力。
二、教学内容1. 指数函数的定义和性质:指数函数的定义,特殊指数函数的性质等。
2. 指数函数的图像与性质:指数函数的基本图像,对称轴、单调性、零点等。
3. 指数函数的定义域与值域:通过图像讨论指数函数的定义域和值域。
4. 指数函数与实际问题:运用指数函数解决实际问题的例子。
三、教学过程1. 导入:通过一个有趣的问题引入指数函数的概念。
2. 理论讲解:逐步介绍指数函数的定义、性质和图像等内容,提醒学生注意重点。
3. 实例分析:通过一些简单实例分析,引导学生理解指数函数的定义域、值域等概念。
4. 练演练:组织学生进行课堂练,加深对指数函数的理解和运用能力。
5. 拓展活动:提供一些更高级的实际问题,激发学生思维,培养解决问题的能力。
6. 总结归纳:对本节课所学内容进行总结,强化学生对指数函数的理解。
四、教学评价1. 课堂表现:观察学生在课堂上的参与度、回答问题的准确性等。
2. 课后作业:布置适当数量的作业,以检验学生对指数函数的掌握情况。
3. 测验考核:进行小测验,测试学生对指数函数知识的掌握程度。
4. 互动讨论:鼓励学生参与讨论,促进学生之间的互相研究和思想碰撞。
五、教学资源1. PowerPoint课件:包含指数函数的定义、性质和图像等内容。
2. 实例分析练题:提供一些简单实例用于学生练。
3. 拓展问题手册:包含更高级的实际问题,用于激发学生的思维。
六、教学反思本节课注重在培养学生对指数函数的理解和应用能力上。
通过生动的实例和练,能够帮助学生掌握指数函数的相关知识,并应用于解决实际问题。
在教学过程中,适时鼓励学生的互动和讨论,促进学生之间的研究和思想碰撞。
课题指数函数教学目标理解指数函数的定义,初步掌握指数函数的图象,性质及其简单应用.通过指数函数的图象和性质的学习,培养学生观察,分析,归纳的能力,进一步体会数形结合的思想方法.通过对指数函数的研究,使学生能把握函数研究的基本方法,激发学生的学习兴趣.教学重点和难点重点是理解指数函数的定义,把握图象和性质.难点是认识底数对函数值影响的认识.教学用具投影仪教学方法启发讨论研究式教学过程一、引入新课我们前面学习了指数运算,在此基础上,今天我们要来研究一类新的常见函数-------指数函数.指数函数(板书)这类函数之所以重点介绍的原因就是它是实际生活中的一种需要.比如我们看下面的问题:问题1:某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……一个这样的细胞分裂次后,得到的细胞分裂的个数与之间,构成一个函数关系,能写出与之间的函数关系式吗?由学生回答:与之间的关系式,可以表示为 .问题2:有一根1米长的绳子,第一次剪去绳长一半,第二次再剪去剩余绳子的一半,……剪了次后绳子剩余的长度为米,试写出与之间的函数关系.由学生回答: .在以上两个实例中我们可以看到这两个函数与我们前面研究的函数有所区别,从形式上幂的形式,且自变量均在指数的位置上,那么就把形如这样的函数称为指数函数.二、指数函数的概念(板书)1、定义:形如的函数称为指数函数.(板书)教师在给出定义之后再对定义作几点说明.2、几点说明 (板书)关于对的规定:教师首先提出问题:为什么要规定底数大于0且不等于1呢?(若学生感到有困难,可将问题分解为若会有什么问题?如 ,此时 ,等在实数范围内相应的函数值不存在.若对于都无意义,若则无论取何值,它总是1,对它没有研究的必要.为了避免上述各种情况的发生,所以规定且 .关于指数函数的定义域 (板书)教师引导学生回顾指数范围,发现指数可以取有理数.此时教师可指出,其实当指数为无理数时,也是一个确定的实数,对于无理指数幂,学过的有理指数幂的性质和运算法则它都适用,所以将指数范围扩充为实数范围,所以指数函数的定义域为 .扩充的另一个原因是因为使她它更具代表更有应用价值.关于是否是指数函数的判断(板书)刚才分别认识了指数函数中底数,指数的要求,下面我们从整体的角度来认识一下,根据定义我们知道什么样的函数是指数函数,请看下面函数是否是指数函数.(1) , (2) , (3) (4) ,(5) .学生回答并说明理由,教师根据情况作点评,指出只有(1)和(3)是指数函数,其中(3) 可以写成 ,也是指数图象.最后提醒学生指数函数的定义是形式定义,就必须在形式上一摸一样才行,然后把问题引向深入,有了定义域和初步研究的函数的性质,此时研究的关键在于画出它的图象,再细致归纳性质.3、归纳性质作图的用什么方法.用列表描点发现,教师准备明确性质,再由学生回答.1.定义域 :2.值域:3.奇偶性 : 既不是奇函数也不是偶函数4.截距: 在轴上没有,在轴上为1.对于性质1和2可以两条合在一起说,并追问起什么作用.(确定图象存在的大致位置)对第3条还应会证明.对于单调性,我建议找一些特殊点.,先看一看,再下定论.对最后一条也是指导函数图象画图的依据.(图象位于轴上方,且与轴不相交.)在此基础上,教师可指导学生列表,描点了.取点时还要提醒学生由于不具备对称性,故的值应有正有负,且由于单调性不清,所取点的个数不能太少.此处教师可利用计算机列表描点,给出十组数据,而学生自己列表描点,至少六组数据.连点成线时,一定提醒学生图象的变化趋势(当越小,图象越靠近轴,越大,图象上升的越快),并连出光滑曲线.二.图象与性质(板书)1、图象的画法:性质指导下的列表描点法.2、草图:当画完第一个图象之后,可问学生是否需要再画第二个?它是否具有代表性?(教师可提示底数的条件是且 ,取值可分为两段)让学生明白需再画第二个,不妨取为例.此时画它的图象的方法应让学生来选择,应让学生意识到列表描点不是唯一的方法,而图象变换的方法更为简单.即 =与图象之间关于轴对称,而此时的图象已经有了,具备了变换的条件.让学生自己做对称,教师借助计算机画图,在同一坐标系下得到的图象.最后问学生是否需要再画.(可能有两种可能性,若学生认为无需再画,则追问其原因并要求其说出性质,若认为还需画,则教师可利用计算机再画出如的图象一起比较,再找共性)由于图象是形的特征,所以先从几何角度看它们有什么特征.教师可列一个表,如下:几何角度代数角度向轴正,负方向无限延伸定义域为图象均在轴的上方值域为不关于原点和轴对称既不是奇函数也不是偶函数图象在是上升的在上是增函数过点当时, .第一象限内的图象在的上方当 ,时第二象限内的图象在的下方当时,以上内容学生说不齐的,教师可适当提出观察角度让学生去描述,然后再让学生将几何的特征,翻译为函数的性质,即从代数角度的描述,将表中另一部分填满.填好后,让学生仿照此例再列一个的表,将相应的内容填好.为进一步整理性质,教师可提出从另一个角度来分类,整理函数的性质.性质.无论为何值,指数函数都有定义域为 ,值域为 ,都过点 .时, 在定义域内为增函数,时, 为减函数.时, , 时, .总结之后,特别提醒学生记住函数的图象,有了图,从图中就可以能读出性质.三.简单应用 (板书)利用指数函数单调性比大小. (板书)一类函数研究完它的概念,图象和性质后,最重要的是利用它解决一些简单的问题.首先我们来看下面的问题.比较下列各组数的大小(1) 与 ; (2)与 ; (3)与1 .(板书)首先让学生观察两个数的特点,有什么相同?由学生指出它们底数相同,指数不同.再追问根据这个特点,用什么方法来比较它们的大小呢?让学生联想指数函数,提出构造函数的方法,即把这两个数看作某个函数的函数值,利用它的单调性比较大小.然后以第(1)题为例,给出解答过程.解: 在上是增函数,且< .(板书)教师最后再强调过程必须写清三句话:构造函数并指明函数的单调区间及相应的单调性.自变量的大小比较.函数值的大小比较.后两个题的过程略.要求学生仿照第(1)题叙述过程.例2.比较下列各组数的大小(1)与 ; (2)与 ; (3)与 .(板书)先让学生观察例2中各组数与例1中的区别,再思考解决的方法.引导学生发现对(1)来说可以写成 ,这样就可以转化成同底的问题,再用例1的方法解决,对(2)来说可以写成 ,也可转化成同底的,而(3)前面的方法就不适用了,考虑新的转化方法,由学生思考解决.(教师可提示学生指数函数的函数值与1有关,可以用1来起桥梁作用)最后由学生说出 >1, <1,> .解决后由教师小结比较大小的方法构造函数的方法: 数的特征是同底不同指(包括可转化为同底的)搭桥比较法: 用特殊的数1或0.三.巩固练习练习:比较下列各组数的大小(板书)(1)与 (2)与 ; (3)与 ;(4)与 .解答过程略四.小结1、指数函数的概念2、指数函数的图象和性质3、简单应用五 .板书设计教案点评:教学设计中,教师特别注重组织学生开展活动,让学生的兴趣在了解深究任务中产生,让学生的思考在分析真实数据中形成,让学生的理解在集体讨论中加深,让学生的学习在合作探究活动中进行.当然在活动过程前后的独立思考以及在此基础上的集体讨论也属于探索活动的有机组成部分,经过独立思考,多种多样的方案、不同的推测结论、各具特色的陈述理由才会形成集体讨论,才会热烈而富有启发性.而在实施时,教师考虑到学时的限制,把有些活动的思考与讨论作为作业预先或者事后布置给学生(如本节作业).让学生有充分思考、组织和表达的机会,其合作及交流的形式可以是多样的.课 题:2.6.1 指数函数1教学目的: 理解指数函数的概念,并能正确作出其图象,掌握指数函数的性质. 教学重点:指数函数的图象、性质。
教学难点:指数函数的图象性质与底数a 的关系.教学过程:一、复习引入:引例(P57):某种细胞分裂时,由1个分裂成2个,2个分裂成4个,……. 1个这样的细胞分裂 x 次后,得到的细胞个数 y 与 x 的函数关系是什么?分裂次数:1,2,3,4,…,x细胞个数:2,4,8,16,…,y由上面的对应关系可知,函数关系是x y 2=.在x y 2=中,指数x 是自变量,底数2是一个大于0且不等于1的常量.二、新授内容:1.指数函数的定义:函数)10(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数定义域是R 。
探究1:为什么要规定a>0,且a ≠1呢?探究2:函数x y 32⋅=是指数函数吗?2.指数函数的图象和性质:在同一坐标系中分别作出函数y=x 2,y=x ⎪⎭⎫ ⎝⎛21,的图象.我们观察y=x 2,y=x⎪⎭⎫ ⎝⎛21的图象特征,就可以得到 )10(≠>=a a a y x 且的图象和性质。
例1某种放射性物质不断变化为其他物质,每经过1年剩留的这种物质是原来的84%,画出这种物质的剩留量随时间变化的图象,并从图象上求出经过多少年,剩量留是原来的一半(结果保留1个有效数字)。
分析:通过恰当假设,将剩留量y 表示成经过年数x 的函数,并可列表、描点、作图,进而求得所求。
解:设这种物质量初的质量是1,经过x 年,剩留量是y 。
经过1年,剩留量y=1×84%=0.841;经过2年,剩留量y=1×84%=0.842; …… 一般地,经过x 年,剩留量 y=0.84x 答:约经过4年,剩留量是原来的一半。
例2 (课本第81页)比较下列各题中两个值的大小:①5.27.1,37.1; ②1.08.0-,2.08.0-; ③3.07.1,1.39.0四、练习:⑴比较大小:32)5.2(- ,54)5.2(-⑵已知下列不等式,试比较m 、n 的大小:n m )32()32(>⇒m < n ;n m 1.11.1<⇒m < n. ⑶比较下列各数的大小:,10 ,4.05.2- 2.02- , 6.15.2五、课后作业:课本P73 习题2.6 1,2, 3, 4, 5.。