指数函数及其性质(一)
- 格式:ppt
- 大小:553.50 KB
- 文档页数:7
课时导学案——指数函数及其性质(一)麒麟区第一中学 段翠一、学习目标:1.理解指数函数的定义。
2.掌握指数函数的图象、性质及简单应用。
3.通过指数函数图象及性质的学习,提高观察、分析、归纳等思维能力。
二、学习重点:指数函数的图象、性质及简单应用。
三、学习难点:指数函数图象和性质的发现过程。
四、学习方法:通过独立思考,自主探究,总结出指数函数图象的特征,进而 发现指数函数的性质。
培养学生观察、比较、归纳等逻辑思维能力。
五、学习过程:1.定义:一般地,函数y = )10(≠>a a 且叫做指数函数,其中x 是自变量, 函数的定义域是 .2.用描点法画出下列指数函数的图象.).(2)1(填写下表并作图x y =).(3)2(填写下表并作图x y =).()1()3(填写下表并作图x y =).()1()4(填写下表并作图x y =3.按照从特殊到一般的认识方法,请同学们总结: 的图象和性质如下且指数函数)10(≠>=a a a y x4.探究:(1)关于且与)10()1(≠>==a a ay a y x x 对称。
(2)指数函数的变化对函数中,底数且a a a a y x )10(≠>= 图象有什么影响?5.典例分析:例1 .已知),的图象经过点(且指数函数π,3)10()(≠>=a a a x f x 求 )3(),1(),0(-f f f 的值.例2.比较下列各题中两个值的大小:35.27.1,7.1)1( 2.0-1.0-8.0,8.0)2(1.33.09.0,7.1)3(总结:比较几个指数值大小的常用方法:6.课堂练习:(1)指数函数=-=)3(4,2)(f x f y ),则的图象经过点( .(2)比较下列各组数的大小:7.08.03,3)1( 1.01.075.0,75.0)2(-1.0-3.0-9.4,8.0)3(7.03.05.1,2.0)4(7.课堂小结:8.课后作业:课本:P58 .2P59 .7,8。
指数函数及其性质(一)【教学目标】1.使学生掌握指数函数的概念,图象和性质;(1)能根据定义判断形如什么样的函数是指数函数,了解对底数的限制条件的合理性,明确指数函数的定义域。
(2)能在基本性质的指导下,用列表描点法画出指数函数的图象,能从数形两方面认识指数函数的性质。
2.通过对指数函数的概念图象性质的学习,培养学生观察,分析归纳的能力,进一步体会数形结合的思想方法。
【教学重点】指数函数的概念和性质。
【教学难点】指数函数的图象、性质与底数a的关系。
【教学方法】启发式教学,探讨式教学等。
【教学工具】多媒体(几何画板)【教学设计】一、通过问题引入:问题(1):某种细胞分裂时,由1个分裂成2个,2个分裂成4个……1个这样的细胞分裂x次后,得到的细胞个数y与x的函数关系式是什么?问题(2):某台机器的价值每年折旧率为6%,写出经过x年后,这台机器的价值y与x的函数关系式。
用多媒体演示它们的变化过程并求出函数关系式:(1)表达式 y=2x(x为正整数)(2)表达式y=0.94x(x为正整数)设问:y=0.94x和y=2x这样的函数是什么函数?其一般形式是什么?提示学生从幂的形式、幂底数和幂指数三个方面概括出其形式为y=a x后,说明这就是我们今天要学习的指数函数,从而引出指数函数的概念。
二、新授1、指数函数的概念一般地,函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,函数定义域是R ,常数a(a>0且a ≠1)叫做指数函数的底数。
设问:函数y=a x 中当x 为全体实数时,底数为什么要规定a>0且a ≠1?学生讨论,老师总结如下: 当a>0时,a x 有意义;当a=1时,1xa ≡,无研究价值;当a=0时,若x>0时,0xa ≡,也没有研究价值;若x ≦0时,xa 无意义; 当a<0时,xa不一定有意义,如()122-,所以为了研究方便,规定a>0且a ≠1。
指数函数及其性质2.1.2指数函数及其性质(第一课时)一、 教学目标:知识与技能①通过实际问题了解指数函数的实际背景;②理解指数函数的概念和意义,根据图像数函数的性质. ③体会具体到一般数学讨论方式及数形结合的思想;过程与方法展示函数图像让学生通过观察,进而研究指数函数的性质.情感、态度、价值观①让学生了解数学来自生活,数学又服务于生活的哲理. ②培养学生观察问题,分析问题的能力.二.重点、难点重点:指数函数的概念和性质及其初步应用. 难点:指数函数性质的归纳,概括及其初步应用.三、学法与教具:①学法:分类讨论、观察法、讲授法及讨论法. ②教具:多媒体.四、教学设想1、 创设情境揭示课题①观察情境1、细胞的分裂过程:细胞分裂时,第一次由1个分裂成2个,第2次由2个分裂成4个,第3次由4个分裂成8个,如此下去,如果第x 次分裂得到y 个细胞,那么细胞个数y 与次数x 的函数关系式是什么? 观察情境1得: y = 2 x ( x∈N + ) (细胞分裂)观察事例2、一根1米长的绳子,第 1 次剪掉绳长的一半,第 2 次剪掉剩余绳长的一半……剪了x 次后剩余绳子的长度为y 米,试写出y 和x 的函数关系. 观察事例2得:y = ( 12 ) x ( x ∈N + ) (剪绳子)② 请问这两个函数有什么共同特征?这两个关系式中的底数是一个正数,自变量为指数,即都可以用x y a =(a >0且a ≠1来表示).这就是今天我和同学一起学习和交流的主要课题。
212、学法指导、启发探究③指数函数的定义一般地,函数x y a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .④设问:既然规定 a>0,且a ≠1,那么应如何对a 进行分类? 生:⑤如何判断一个函数是否是指数函数?关键有两点:①底数是一个大于0且不等于1的常数;②其形式为y = ax ,指数部分只有x 或kx (k ≠0)的形成作为指数,a x 前面的系数只能为1.3、问题分析、思想奠基提问:在下列的关系式中,哪些不是指数函数,为什么? (1)22x y += (2)(2)x y =- (3)2xy =-(4)xy π= (5)2y x = (6)24y x =(7)xy x = (8)(1)xy a =- (a >1,且2a ≠)4、师生合作、共同探究⑥指数函数的图像性质我们在学习函数的单调性的时候,主要是根据函数的图像即用数形结合的方法来研究. 下面我们通过画出函数2xy =、10xy = 的图像先来研究a >1的情况用计算机完成以下表格,并且用计算机画出函数2xy =的图像⑧让学生观察图,总结指数函数的性质再研究,0<a <1的情况,用计算机完成以下表格并绘出函数1()xy =的图象.x 1x ⎛⎫5、互问互检、巩固强化 例题1、例1:(P 66例7)比较下列各题中的数值的大小 (1) 1.72.5 与 1.73 ( 2 ) 0.10.8-与0.20.8- ( 3 ) 2 -0.8 与 4-0.8 (4)1.70 0. 3 与 0.9 3.1 解法:用数形结合的方法。
2.1.2 指数函数及其性质(一)(一)教学目标1.知识与技能了解指数函数模型的实际背景,理解指数函数的概念,掌握指数函数的图象.2.过程与方法能借助计算器或计算机画出具体指数函数的图象,探索指数函数图象特征.3.情感、态度与价值观在解决简单实际问题的过程中,体会指数函数是一类重要的函数模型,激发学生学习数学的兴趣,努力培养学生的创新意识.(二)教学重点、难点1.教学重点:指数函数的概念和图象.2.教学难点:指数函数的概念和图象.(三)教学方法采用观察、分析、归纳、抽象、概括,自主探究,合作交流的教学方法,通过各种教学媒体(如计算机或计算器),调动学生参与课堂教学的主动性和积极性.(四)教学过程教学环节教学内容师生互动设计意图复习引入1. 在本章的开头,问题(1)中时间x与GDP值中的 1.073(20)xy x x=∈≤与问题(2)中时间t和C-14含量P的对应关系]t51301P=[()2,请问这两个函数有什么共同特征.2. 这两个函数有什么共同特征157301][()]2tP=t57301把P=[()变成2,从而得出这学生思考回答函数的特征.由实际问题引入,不仅能激发学生的学习兴趣,而且可以培养学生解决实际问题的能力.两个关系式中的底数是一个正数,自变量为指数,即都可以用xy a =(a >0且a ≠1来表示).形成概念理解概念指数函数的定义一般地,函数xy a =(a >0且a ≠1)叫做指数函数,其中x 是自变量,函数的定义域为R .回答:在下列的关系式中,哪些不是指数函数,为什么?(1)22x y +=(2)(2)xy =- (3)2xy =-(4)xy π=(5)2y x = (6)24y x=(7)xy x =(8)(1)xy a =- (a >1,且2a ≠)小结:根据指数函数的定义来判断说明:因为a >0,x 是任意一个实数时,xa 是一个确定的实数,所以函数的定义域为实数集R .000,0xx a a x a ⎧>⎪=⎨≤⎪⎩x当时,等于若当时,无意义若a <0,如1(2),,8x y x x =-=1先时,对于=等等,6在实数范围内的函数值不存在.若a =1, 11,xy == 是一个常量,没有研究的意义,只有满足学生独立思考,交流讨论,教师巡视,并注意个别指导,学生探讨分析,教师点拨指导.由特殊到一般,培养学生的观察、归纳、概括的能力.使学生进一步理解指数函数的概念.(0,1)x y a a a =>≠且的形式才能称为指数函数,a 为常数,如:,,xy x =1xxy=2-3,y=253,31x x y y +==+等等,不符合(01)x y a a a =>≠且的形式,所以不是指数函数 .深化概念我们在学习函数的单调性的时候,主要是根据函数的图象,即用数形结合的方法来研究. 下面我们通过先来研究xy a =(a >1)的图象, 用计算机完成以下表格,并且用计算机画出函数2xy =的图象x3.00- 2.50- 2.00- 1.50-2x y =18-141.00- 0.00 0.50 1.00 1.502.00 121 2 4再研究先来研究xy a =(0<a <1)的图象,用计算机完成以下表格并绘出函数1()2xy =的图象.x2.50- 2.00- 1.50- 1.00- 0.001()2x y =141211.00 1.502.00 2.50学生列表计算,描点、作图.教师动画演示.学生观察、归纳、总结,教师诱导、点评. 通过列表、计算使学生体会、感受指数函数图象的化趋势,通过描点,作图培养学生的动手实践能力.不同情况进行对照,使学生再次经历从特殊到一般,由具体到抽象的思维过程.培养学生的归纳概括能力.从图中我们看出12()2x x y y ==与的图象有什么关系?通过图象看出12()2x x y y y ==与的图象关于轴对称,实质是2xy =上的x,y 点(-)x y x,y y 1与=()上点(-)关于轴对称.2讨论:12()2xx y y ==与的图象关于y 轴对称,所以这两个函数是偶函数,对吗?②利用电脑软件画出115,3,(),()35x x x x y y y y ====的函数图象.2 4所以0(0)1f π==,133(0)f ππ==,11(3)f ππ--==.归纳 总结1、理解指数函数(0),xy a a =>101a a ><<注意与两种情况2、解题利用指数函数的图象,可有利于清晰地分析题目,培养数型结合与分类讨论的数学思想 .学生先自回顾反思,教师点评完善. 通过师生的合作总结,使学生对本节课所学知识的结构有一个明晰的认识,形成知识体系.课后 作业作业:2.1 第四课时 习案 学生独立完成 巩固新知 提升能力备选例题例1 指出下列函数哪些是指数函数: (1)x y 4=; (2)4x y =; (3)x y 4-=; (4)xy )4(-=; (5)xy π=; (6)24x y =;(7)x x y =; (8),21()12(>-=a a y x且)1≠a . 【分析】 根据指数函数定义进行判断. 【解析】 (1)、(5)、(8)为指数函数; (2)是幂函数(后面2.3节中将会学习); (3)是1-与指数函数x 4的乘积;(4)底数04<-,∴不是指数函数; (6)指数不是自变量x ,而底数是x 的函数; (7)底数x 不是常数. 它们都不符合指数函数的定义.【小结】准确理解指数函数的定义是解好本问题的关键.例 2 用计算机作出的图像,并在同一坐标系下作出下列函数的图象,并指出它们与指数函数y =x 2的图象的关系,⑴y =12+x 与y =22+x . ⑵y =12-x 与y =22-x .解:⑴作出图像,显示出函数数据表比较函数y =12+x 、y =22+x 与y =x2的关系:将指数函数y =x2的图象向左平行移动1个单位长度,就得到函数y =12+x 的图象,将指数函数y =x2的图象向左平行移动2个单位长度,就得到函数y =22+x 的图象⑵作出图像,显示出函数数据表比较函数y =12-x 、y =22-x 与y =x 2的关系:将指数函数y =x 2的图象向右平行移动1个单位长度,就得到函数y =12-x 的图象,将指数函数y =x 2的图象向右平行移动2个单位长度,就得到函数y =22-x 的图象小结:⑴当m >0时,将指数函数y =x 2的图象向右平行移动m 个单位长度,就得到函数y =m x -2的图象;当m >0时,将指数函数y =x 2的图象向左平行移动m 个单位长度,就得到函数y =2x m +的图象。