江苏省南通高中高三数学小题校本作业(39)不等式单元练习 苏教版
- 格式:doc
- 大小:97.50 KB
- 文档页数:3
2021年高中数学 不等式的综合练习苏教版必修5一、填空题1.不等式的解集为 。
2.不等式的解集为 。
3. 线性目标函数在约束条件下,取得最小值时x= y=4. 在等差数列与等比数列中,若,则与的大小关系为 。
5.已知,则的最小值为 。
6.若关于的不等式的解集是,则实数的取值范围是 。
7. 设,若不等式的解集是则按由小到大用“﹤”连接的式子为 。
8. 设全集}043{},9{,22<--=>==x x x B x x A R U ,则 。
9.已知满足约束条件,则目标函数的最大值是 ,最小值是 。
二、解答题10.若函数在区间[-1,0]上的值恒大于0,求实数的取值范围。
11.如果关于的方程的一根比-1小,另一根比-1大,求实数的取值范围。
12.一艘轮船行驶时,单位时间的燃料费与其速度的平方成正比。
若轮船的速度为每小时30km时,燃料费为每小时9元,其余费用不随速度而变化,每小时为16元,则轮船速度为多大时,轮船行驶每千米的费用最少?13*.已知两个定点A(0,8),B(0,2),动点M在轴正半轴上,试确定点M的位置,使得∠AMB取得最大值。
14*、经过长期观测得到;在交通繁忙的时间段内,某公路汽车的车流量(千辆∕小时)与汽车的平均速度(千米∕小时)之间的关系为。
⑴在该时间内,当汽车的平均速度为多少时,车流量最大?最大车流量为多少?(精确到0.1)⑵若要求在该时段内车流量超过10千辆∕小时,则汽车的平均速度应在什么范围内?34518 86D6 蛖•29522 7352 獒33178 819A 膚25588 63F4 援z 38536 9688 隈37559 92B7 銷33009 80F1 胱32563 7F33 缳 28629 6FD5 濕q31308 7A4C 穌。
第3章 不等式(A)(时间:120分钟 满分:160分)一、填空题(本大题共14小题,每小题5分,共70分)1.若A =(x +3)(x +7),B =(x +4)(x +6),则A 、B 的大小关系为________.2.原点和点(1,1)在直线x +y =a 两侧,则a 的取值范围是________.3.不等式1x <12的解集是____________. 4.若不等式ax 2+bx -2>0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <-14,则a +b 等于________. 5.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≤3,x -y ≥-1,y ≥1,则目标函数z =4x +2y 的最大值为________. 6.若不等式x 2+px +q <0的解集是{x |1<x <2},则不等式x 2+px +q x 2-x +6≥0的解集是________. 7.函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在直线mx +ny +1=0上,其中mn >0,则1m +2n的最小值为________. 8.周长为2+1的直角三角形面积的最大值为_______________________________.9.若不等式组⎩⎪⎨⎪⎧x 2-x -2>02x 2+(5+2k )x +5k <0的整数解只有-2,则k 的取值范围是________. 10.若x ,y 满足约束条件⎩⎪⎨⎪⎧ x +y ≥1x -y ≥-12x -y ≤2,目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是________.11.如果a >b ,给出下列不等式:①1a <1b ;②a 3>b 3;③a 2>b 2;④2ac 2>2bc 2;⑤a b>1;⑥a 2+b 2+1>ab +a +b . 其中一定成立的不等式的序号是________.12.若x ,y ∈R +,且2x +8y -xy =0,则x +y 的最小值为________.13.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≤0,x >0,则y x -1的取值范围是________. 14.一批货物随17列货车从A 市以v 千米/小时匀速直达B 市,已知两地铁路线长400千米,为了安全,两列货车的间距不得小于⎝⎛⎭⎫v 202千米,那么这批货物全部运到B 市,最快需要________小时.二、解答题(本大题共6小题,共90分)15.(14分)若不等式(1-a )x 2-4x +6>0的解集是{x |-3<x <1}.(1)解不等式2x 2+(2-a )x -a >0;(2)b 为何值时,ax 2+bx +3≥0的解集为R .16.(14分)解关于x 的不等式56x 2+ax -a 2<0.17.(14分)证明不等式:a,b,c∈R,a4+b4+c4≥abc(a+b+c).18.(16分)某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?19.(16分)设a∈R,关于x的一元二次方程7x2-(a+13)x+a2-a-2=0有两实根x1,x2,且0<x1<1<x2<2,求a的取值范围.20.(16分)某商店预备在一个月内分批购买每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.(1)求该月需用去的运费和保管费的总费用f (x );(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.第3章 不等式(A)答案1.A <B2.0<a <23.(-∞,0)∪(2,+∞)解析 1x <12⇔1x -12<0⇔2-x 2x <0⇔x -22x>0⇔x <0或x >2. 4.-13解析 ∵-2和-14是ax 2+bx -2=0的两根. ∴⎩⎨⎧ -2+⎝⎛⎭⎫-14=-b a (-2)×⎝⎛⎭⎫-14=-2a ,∴⎩⎪⎨⎪⎧a =-4b =-9. ∴a +b =-13.5.10解析 画出可行域如图中阴影部分所示,目标函数z =4x +2y 可转化为y =-2x +z 2, 作出直线y =-2x 并平移,显然当其过点A 时纵截距z 2最大. 解方程组⎩⎪⎨⎪⎧x +y =3,y =1得A (2,1), ∴z max =10.6.{x |x ≥2或x ≤1}解析 x 2+px +q x 2-x +6≥0⇔(x -1)(x -2)x 2-x +6≥0⇔(x -1)(x -2)x 2-x +6≥0. ∴不等式的解集为{x |x ≥2或x ≤1}.7.8解析 因为函数y =log a (x +3)-1,当x +3=1时,函数值y 恒等于-1,所以A (-2,-1).又因为点A 在直线mx +ny +1=0上,所以2m +n =1.所以1m +2n =(1m +2n )(2m +n )=4+n m +4m n, 又因为mn >0,即n m >0,4m n>0. 所以1m +2n =4+n m +4m n ≥8(当且仅当m =14,n =12时取等号). 8.14解析 设直角三角形的两条直角边边长分别为a 、b ,则2+1=a +b +a 2+b 2≥2ab +2ab ,解得ab ≤12,当且仅当a =b =22时取“=”,所以直角三角形面积S ≤14,即S 的最大值为14. 9.-3≤k <2解析 x 2-x -2>0⇔x <-1或x >2.2x 2+(5+2k )x +5k <0⇔(2x +5)(x +k )<0.在数轴上考察它们的交集可得-3≤k <2. 10. (-4,2)解析 作出可行域如图所示,直线ax +2y =z 仅在点(1,0)处取得最小值,由图象可知-1<-a 2<2, 即-4<a <2.11.②⑥解析 ①若a >0,b <0,则1a >1b,故①不成立; ②∵y =x 3在x ∈R 上单调递增,且a >b .∴a 3>b 3,故②成立;③取a =0,b =-1,知③不成立;④当c =0时,ac 2=bc 2=0,2ac 2=2bc 2,故④不成立;⑤取a =1,b =-1,知⑤不成立;⑥∵a 2+b 2+1-(ab +a +b )=12[(a -b )2+(a -1)2+(b -1)2]>0, ∴a 2+b 2+1>ab +a +b ,故⑥成立.12.18解析 由2x +8y -xy =0,得y (x -8)=2x ,∵x >0,y >0,∴x -8>0,得到y =2x x -8, 则μ=x +y =x +2x x -8=x +(2x -16)+16x -8=(x -8)+16x -8+10≥2(x -8)·16x -8+10=18,当且仅当x -8=16x -8,即x =12,y =6时取“=”. 13.(-∞,-1)∪(1,+∞)解析 可行域如图阴影,y x -1的几何意义是区域内点与(1,0)连线的斜率,易求得y x -1>1或y x -1<-1. 14.8解析 这批货物从A 市全部运到B 市的时间为t ,则t =400+16⎝⎛⎭⎫v 202v =400v +16v 400≥2 400v ×16v 400=8(小时),当且仅当400v =16v 400,即v =100时等号成立,此时t =8小时. 15.解 (1)由题意知1-a <0且-3和1是方程(1-a )x 2-4x +6=0的两根,∴⎩⎨⎧ 1-a <041-a=-261-a =-3,解得a =3.∴不等式2x 2+(2-a )x -a >0即为2x 2-x -3>0,解得x <-1或x >32. ∴所求不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-1或x >32. (2)ax 2+bx +3≥0,即为3x 2+bx +3≥0,若此不等式解集为R ,则b 2-4×3×3≤0,∴-6≤b ≤6.16.解 原不等式可化为(7x +a )(8x -a )<0,即⎝⎛⎭⎫x +a 7⎝⎛⎭⎫x -a 8<0. ①当-a 7<a 8,即a >0时,-a 7<x <a 8; ②当-a 7=a 8,即a =0时,原不等式解集为∅; ③当-a 7>a 8,即a <0时,a 8<x <-a 7. 综上知,当a >0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |-a 7<x <a 8; 当a =0时,原不等式的解集为∅;当a <0时,原不等式的解集为⎩⎨⎧⎭⎬⎫x |a 8<x <-a 7. 17.证明 ∵a 4+b 4≥2a 2b 2,b 4+c 4≥2b 2c 2,c 4+a 4≥2c 2a 2,∴2(a 4+b 4+c 4)≥2(a 2b 2+b 2c 2+c 2a 2)即a 4+b 4+c 4≥a 2b 2+b 2c 2+c 2a 2.又a 2b 2+b 2c 2≥2ab 2c ,b 2c 2+c 2a 2≥2abc 2,c 2a 2+a 2b 2≥2a 2bc .∴2(a 2b 2+b 2c 2+c 2a 2)≥2(ab 2c +abc 2+a 2bc ),即a 2b 2+b 2c 2+c 2a 2≥abc (a +b +c ).∴a 4+b 4+c 4≥abc (a +b +c ).18.解 设投资人分别用x 万元、y 万元投资甲、乙两个项目,由题意知⎩⎪⎨⎪⎧ x +y ≤10,0.3x +0.1y ≤1.8,x ≥0,y ≥0.目标函数z =x +0.5y.上述不等式组表示的平面区域如图所示,阴影部分(含边界)即可行域.作直线l 0:x +0.5y =0,并作平行于直线l 0的一组直线x +0.5y =z ,z ∈R ,与可行域相交,其中有一条直线经过可行域上的M 点,且与直线x +0.5y =0的距离最大,这里M 点是直线x +y =10和0.3x +0.1y =1.8的交点.解方程组⎩⎪⎨⎪⎧x +y =10,0.3x +0.1y =1.8, 得x =4,y =6,此时z =1×4+0.5×6=7(万元).∵7>0,∴当x =4,y =6时,z 取得最大值.答 投资人用4万元投资甲项目、6万元投资乙项目,才能在确保亏损不超过1.8万元的前提下,使可能的盈利最大.19.解 设f (x )=7x 2-(a +13)x +a 2-a -2.因为x 1,x 2是方程f (x )=0的两个实根,且0<x 1<1,1<x 2<2, 所以⎩⎪⎨⎪⎧ f (0)>0,f (1)<0,f (2)>0⇒⎩⎪⎨⎪⎧ a 2-a -2>0,7-(a +13)+a 2-a -2<0,28-2(a +13)+a 2-a -2>0⇒⎩⎪⎨⎪⎧ a 2-a -2>0,a 2-2a -8<0,a 2-3a >0⇒⎩⎪⎨⎪⎧ a <-1或a >2,-2<a <4,a <0或a >3⇒-2<a <-1或3<a <4.所以a 的取值范围是{a |-2<a <-1或3<a <4}.20.解 (1)设题中比例系数为k ,若每批购入x 台,则共需分36x批,每批价值20x .由题意f (x )=36x·4+k ·20x , 由x =4时,y =52,得k =1680=15. ∴f (x )=144x+4x (0<x ≤36,x ∈N *). (2)由(1)知f (x )=144x+4x (0<x ≤36,x ∈N *).∴f(x)≥2144x·4x=48(元).当且仅当144x=4x,即x=6时,上式等号成立.故只需每批购入6张书桌,可以使资金够用.。
高三复习基本不等式练习题不等式作为高中数学中的一个重要内容,占据了复习的重要一部分。
本文将提供一些基本不等式的练习题,供高三学生复习使用。
练习题1:解不等式组:{x+2>0, x-3<0}练习题2:求解不等式:(x+1)(x-3)<0练习题3:解不等式组:{x^2 - 4>0, x-1<0}练习题4:求解不等式:x^2 - 5x + 6>0练习题5:解不等式组:{x^2-4x+3>0, x^2+6x+8>0}练习题6:求解不等式:(x-2)(x+3)(x-7)<0练习题7:解不等式组:{x^3-9x^2+20x-12>0, x^2-4x+4>0}练习题8:求解不等式:(x-2)^2(x+4)>0练习题9:解不等式组:{x^3-x^2+4x-4>0, x^2 + 3x + 2>0}练习题10:求解不等式:(x-1)^3+8>0以上是关于高三复习基本不等式的一些练习题。
希望同学们能够认真思考,按照正确的解题步骤解答。
复习不等式时,应重点掌握不等式的基本性质和解不等式的方法,如辨别二次不等式的判别式、区间法等。
在解题过程中,也要注意进行化简和因式分解,以便于对不等式进行分类讨论。
基本不等式是高中数学中一个重要的内容,对于加深对不等式的理解和掌握不等式的解法有着重要的意义。
因此,同学们要多进行基本不等式的练习,理解和掌握不等式的性质和方法,为高考做好充分准备。
希望以上的练习题能够帮助到高三的同学们,祝大家能够在高三阶段取得优异的成绩!。
2013届南通高中数学小题校本作业(38)基本不等式及其应用一、填空题(共12题,每题5分)1. 若x >0,则x +2x 的最小值为 .2. 已知,x y +∈R ,且满足134x y+=,则xy 的最大值为 .3. 已知x >2,则y =12x x +-的取值范围为 .4. 设02x ≤≤,则函数()f x =的值域为 .5. 当32x <时,823x a x +-≤恒成立,则a 的取值范围为 .6. 已知函数y =231x x x+++(x >0),当x = 时,y 取得最小值.7. 已知a >0,b >0,a +b =2,则14y a b=+的最小值是 .8. 已知320x y +-=,则3271x y ++的最小值是 .9. 若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是 .10.已知x 、y t 的取值范围是 .11.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x = 吨.12.已知0,0x y >>,且211x y+=,若222x y m m +>+恒成立,则实数m 的取值范围是 .13.围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m, 设利用的旧墙的长度为x(单位:元).(Ⅰ)将y表示为x的函数;(Ⅱ)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.。
高中不等式练习题及答案高中不等式练习题及答案在高中数学学习中,不等式是一个重要的概念和工具。
不等式是数学中描述数值大小关系的一种方式,它可以帮助我们解决各种实际问题。
在学习不等式的过程中,练习题是必不可少的,下面我将为大家提供一些高中不等式练习题及其答案。
1. 练习题一:解不等式:2x - 5 < 3x + 2解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 3x < 2 + 5化简得:-x < 7由于系数为负数,所以不等号方向需要翻转,得到:x > -72. 练习题二:解不等式:3(x - 2) > 2(x + 3)解答:先进行分配律的运算,得到:3x - 6 > 2x + 6将变量移到一边,常数移到另一边,得到:3x - 2x > 6 + 6化简得:x > 123. 练习题三:解不等式:4x + 5 > 3 - 2x解答:将变量移到一边,常数移到另一边,得到:4x + 2x > 3 - 5化简得:6x > -2由于系数为正数,所以不等号方向不需要翻转,得到:x > -1/34. 练习题四:解不等式:2x - 3 > 5x + 1解答:将不等式中的变量移到一边,常数移到另一边,得到:2x - 5x > 1 + 3化简得:-3x > 4由于系数为负数,所以不等号方向需要翻转,得到:x < -4/35. 练习题五:解不等式:2x + 1 < 3(x - 2)解答:先进行分配律的运算,得到:2x + 1 < 3x - 6将变量移到一边,常数移到另一边,得到:2x - 3x < -6 - 1化简得:-x < -7由于系数为负数,所以不等号方向需要翻转,得到:x > 7通过以上的练习题,我们可以看到解不等式的基本步骤。
首先,将不等式中的变量移到一边,常数移到另一边;然后,化简不等式;最后,根据系数的正负确定不等号的方向。
2021年高中数学 第三章 不等式单元综合测试 苏教版一、填空题(每小题5分,共70分) 1.不等式x 2≥2x 的解集是( )2.已知m ,n ∈R +,且m +n =2,则mn 有最大值( )3.设M =2a (a -2)+3,N =(a -1)(a -3),a ∈R ,则N 与M 的大小关系 ( ) 4.设x ,y >0,且x +2y =3,则1x +1y的最小值为( )5.若实数x ,y 满足⎩⎪⎨⎪⎧x -y +1≥0x +y ≥0x ≤0,则z =3x +2y 的最小值是( )6.不等式ax 2+bx +2>0的解集是(-12,13),则a -b 等于( )7.某人要买房,调查数据显示:随着楼层的升高,上下楼耗费的体力增多,因此不满意度升高,当住第n 层楼时,上下楼造成的不满意度为n ;但高处空气清新,嘈杂音较小,环境较为安静,因此随着楼层的升高,环境不满意度降低,当住第n 层楼时,环境不满意度为8n,则此人应选( )8.设函数f (x )=x 3+x ,x ∈R ,若当0≤θ<π2时,f (m sin θ)+f (1-m )>0恒成立,则实数m 的取值范围是( )9.不等式x -x 2>0的解集是________.10.x ≥0,y ≥0,x +y ≤4所围成的平面区域的周长是________.11.某种汽车,购车费用是10万元,每年使用的保险费、养路费、汽油费约为0.9万元,年维修费第一年是0.2万元,以后逐年递增0.2万元.那么这种汽车使用________年时,它的平均费用最少.12.若关于x 的不等式4x-2x +1-a ≥0在区间[1,2]上恒成立,则实数a 的取值范围为________.13.已知则不等式≤5的解集是 . 14.已知a >0,b >0,且,则的最大值是 .三、解答题(写出必要的计算步骤,只写最后结果不得分,共90分)15.(本小题14分)已知a >0,试比较a 与1a的大小.16.(本小题14分)已知a 、b 、c 为不等正数,且abc =1.求证:a +b +c <1a +1b+1c.17、(本小题15分)已知实数x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,求(a 1+a 2)2b 1b 2的取值范围( )18、(本小题15分)设集合A 、B 分别是函数y =1x 2+2x -8与函数y =lg(6+x -x 2)的定义域,C ={x |x 2-4ax +3a 2<0}.若A ∩B ⊆C ,则实数a 的取值范围( ).19.(本小题16分)某工厂生产甲、乙两种产品,其产量分别为45个与55个,所用原料分别为A 、B 两种规格的金属板,每张面积分别为2 m 2与3 m 2.用A 种规格的金属板可造甲种产品3个,乙种产品5个;用B 种规格的金属板可造甲、乙两种产品各6个.问A 、B 两种规格的金属板各取多少张,才能完成计划,并使总的用料面积最省?20、(本小题16分)如图3所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知|AB |=3米,|AD |=2米.(1)要使矩形AMPN 的面积大于32平方米,则AN 的长度应在什么范围内?(2)当AN 的长度是多少时,矩形AMPN 的面积最小?并求出最小值.图3第三章不等式单元综合测试答案1、x ≤0或x ≥2.2、mn ≤(m +n2)2=1. 3、解析:M -N =2a (a -2)+3-(a -1)(a -3)=a 2≥0,所以M ≥N . 4、解析:1x +1y =13(3x +3y )=13(x +2y x +x +2y y )=13(2y x +x y +3)≥13(22+3)=232+1,当且仅当2y x =x y ,即x =32-3,y =3-322时取等号. 5解析:在坐标平面内画出已知不等式组表示的平面区域,此区域是以O (0,0),A (0,1),B (-12,12)为顶点的三角形内部(含边界).当x =y =0时,x +2y 取最小值0,所以z =3x+2y 的最小值是1.6、解析:∵2a =(-12)×13=-16,∴a =-12.又-b a =-12+13=-16,∴b =-2,∴a -b=-10.7、解析:只需求不满意度n +8n 的最小值.由均值不等式得n +8n≥42,当且仅当n =8n,即n =22≈3时,n +8n取得最小值.8、解析:∵f (x )=x 3+x ,x ∈R 是奇函数且是增函数,∴f (m sin θ)+f (1-m )>0恒成立,即f (m sin θ)>f (m -1),∴m sin θ>m -1,即m <11-sin θ.∵θ∈[0,π2),∴11-sin θ≥1,∴m <1.9、解析:原不等式等价于x 2-x <0,解得0<x <1. 10、解析:如下图1中阴影部分所示,围成的平面区域是Rt △OAB . 可求得A (4,0),B (0,4),则OA =OB =4,AB =42,所以Rt △OAB 的周长是4+4+42=8+4 2. 图111、解析:设使用x 年平均费用最少,由年维修费第一年是0.2万元,以后逐年递增0.2万元,可知汽车年维修费构成首项为0.2万元,公差为0.2万元的等差数列.因此,汽车使用x 年总的维修费用为0.2+0.2x2x 万元,设汽车的年平均费用为y 万元,则有y =10+0.9x +0.2+0.2x2x x =10+x +0.1x 2x =1+10x +x10≥1+210x ·x 10=3.当且仅当10x =x10,即x =10时,y 取最小值.12、解析:设y =4x -2x +1=(2x )2-2·2x =(2x -1)2-1.由于1≤x ≤2,则2≤2x≤4,由二次函数性质,知当2x=2,即x =1时y 有最小值0,所以原不等式在区间[1,2]上恒成立,只要a ≤0.13.; 14. 15、解:a -1a =a 2-1a =(a -1)(a +1)a.因为a >0,所以当a >1时,(a -1)(a +1)a>0,有a >1a ;当a =1时,(a -1)(a +1)a=0,有a =1a ;当0<a <1时,(a -1)(a +1)a <0,有a <1a.综上,当a >1时,a >1a ;当a =1时,a =1a ;当0<a <1时,a <1a.16、解:方法1:∵a 、b 、c 为不等正数,且abc =1,∴a +b +c =1bc+1ca+1ab <1b +1c 2+1c +1a 2+1a +1b 2=1a +1b +1c.故原不等式成立. 方法2:∵a 、b 、c 为不等正数,且abc =1,∴1a +1b +1c =bc +ca +ab =bc +ca 2+ca +ab 2+ab +bc2>abc 2+a 2bc +ab 2c =a +b +c .故原不等式成立.17.解:因为x ,a 1,a 2,y 成等差数列,所以x +y =a 1+a 2. 因为x ,b 1,b 2,y 成等比数列,所以xy =b 1b 2,且xy ≠0. 所以(a 1+a 2)2b 1b 2=(x +y )2xy =x 2+y 2+2xy xy =x 2+y2xy+2.当x 、y 同号时,x 2+y 2≥2xy ,当且仅当x =y 时,等号成立,又xy ≠0,所以上式≥2xyxy+2=4;当x 、y 异号时,x 2+y 2≥2|xy |,当且仅当|x |=|y |时,等号成立,又xy ≠0,所以上式≤2|xy |xy +2=0. 故(a 1+a 2)2b 1b 2的取值范围为(-∞,0]∪[4,+∞).18、解:由x 2+2x -8>0,得x <-4或x >2,所以A ={x |x <-4或x >2};由6+x -x 2>0,即x 2-x -6<0,得-2<x <3,所以B ={x |-2<x <3}.于是A ∩B ={x |2<x <3}. 由x 2-4ax +3a 2<0,得(x -a )(x -3a )<0,当a >0时,C ={x |a <x <3a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧ a ≤23a ≥3,所以1≤a ≤2;当a =0时,不等式x 2-4ax +3a 2<0即为x 2<0,解集为空集,此时不满足A ∩B ⊆C ;当a <0时,C ={x |3a <x <a },由A ∩B ⊆C ,得⎩⎪⎨⎪⎧3a ≤2a ≥3,此不等式组无解.综上,满足题设条件的实数a 的取值范围为{a |1≤a ≤2}. 19、解:图2设A ,B 两种金属板各取x 张,y 张,用料面积为z ,则约束条件为 ⎩⎪⎨⎪⎧3x +6y ≥45,5x +6y ≥55,x ≥0,y ≥0,目标函数z =2x +3y .作出可行域,如右图2所示的阴影部分.目标函数z =2x +3y 即直线y =-23x +z 3,其斜率为-23,在y 轴上的截距为z3,且随z变化的一族平行线.由图知,当直线z =2x +3y 过可行域上的点M 时,截距最小,z 最小.解方程组⎩⎪⎨⎪⎧5x +6y =55,3x +6y =45,得M 点的坐标为(5,5),此时z min =2×5+3×5=25(m 2),即两种金属板各取5张时,用料面积最省.20、解:设AN 的长为x 米(x >2),由|DN ||AN |=|DC ||AM |,得|AM |=3xx -2,∴S 矩形AMPN =|AN |·|AM |=3x 2x -2. (1)由S 矩形AMPN >32,得3x2x -2>32,又x >2,则3x 2-32x +64>0,解得2<x <83或x >8,即AN 长的取值范围为(2,83)∪(8,+∞).(2)y=3x2x-2=3(x-2)2+12(x-2)+12x-2=3(x-2)+12x-2+12≥23(x-2)×12x-2+12=24,当且仅当3(x-2)=12x-2,即x=4时,取等号,∴当AN的长度是4米时,矩形AMPN的面积最小,最小值为24平方米.25109 6215 戕27703 6C37 氷c37527 9297 銗23854 5D2E 崮33062 8126 脦 29659 73DB 珛G38420 9614 阔Oso22877 595D 奝22961 59B1 妱。
2021-2022年高中数学第三章不等式9课时作业苏教版必修5
分层训练
1.若点P满足(x+2y-1) (x-y+3)≥0, 求P到原点的最小距离为。
.
考试热点
2一家饮料厂生产甲、乙两种果汁饮料, 甲种饮料主要西方是每3份李子汁加1份苹果汁, 乙种饮料的西方是李子汁和苹果汁各一半. 该厂每天能获得的原料是2000L李子汁和1000L苹果汁, 又厂方的利润是生产1L甲种饮料得3元, 生产1L 乙种饮料得4元. 那么厂方每天生产甲、乙两种饮料各多少, 才能获利最大?拓展延伸
3.有粮食和石油两种物资, 可用轮船与飞机两种方式运输, 每天每艘轮船和每
本节学习疑点:
26885 6905 椅20549 5045 偅40280 9D58 鵘26800 68B0 械34113 8541 蕁24206 5E8E 庎
zZ32327 7E47 繇29033 7169 煩23228 5ABC 媼H 28309 6E95 溕。
课时作业38 一元二次不等式及其解法一、选择题1.已知集合A ={x |x ≥0},B ={x |(x +1)(x -5)<0},则A ∩B 等于( B ) A .[-1,4) B .[0,5)C .[1,4]D .[-4,-1)∪[4,5)解析:由题意得B ={x |-1<x <5},故A ∩B ={x |x ≥0}∩{x |-1<x <5}=[0,5).故选B. 2.不等式1-x2+x ≥1的解集为( B )A.⎣⎡⎦⎤-2,-12 B.⎝⎛⎦⎤-2,-12 C .(-∞,-2)∪⎝⎛⎭⎫-12,+∞ D .(-∞,-2]∪⎝⎛⎭⎫-12,+∞ 解析:1-x 2+x≥1⇔1-x 2+x-1≥0⇔1-x -2-x 2+x≥0⇔-2x -12+x≥0⇔2x +1x +2≤0⇔⎩⎪⎨⎪⎧(2x +1)(x +2)≤0,x +2≠0⇔-2<x ≤-12.故选B.3.使不等式2x 2-5x -3≥0成立的一个充分不必要条件是( C ) A .x ≥0 B .x <0或x >2 C .x ∈{-1,3,5}D .x ≤-12或x ≥3解析:不等式2x 2-5x -3≥0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪x ≥3或x ≤-12,由题意,选项中x 的X 围应该是上述解集的真子集,只有C 满足.故选C.4.关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( C )A .(-∞,-1)∪(3,+∞)B .(1,3)C .(-1,3)D .(-∞,1)∪(3,+∞)解析:关于x 的不等式ax -b <0即ax <b 的解集是(1,+∞),∴a =b <0,∴不等式(ax +b )(x -3)>0可化为(x +1)(x -3)<0,解得-1<x <3,∴所求不等式的解集是(-1,3).5.若不等式ax 2+bx +2>0的解集为{x |-1<x <2},则不等式2x 2+bx +a >0的解集为( A )A.⎩⎨⎧⎭⎬⎫x ⎪⎪ x <-1或x >12 B.⎩⎨⎧⎭⎬⎫x ⎪⎪-1<x <12 C .{x |-2<x <1} D .{x |x <-2或x >1}解析:∵不等式ax 2+bx +2>0的解集为{x |-1<x <2},∴ax 2+bx +2=0的两根为-1,2,且a <0,即-1+2=-b a ,(-1)×2=2a ,解得a =-1,b =1,则所求不等式可化为2x 2+x -1>0,解得x <-1或x >12,故选A.6.若一元二次不等式2kx 2+kx -38<0对一切实数x 都成立,则k 的取值X 围为( A )A .(-3,0)B .[-3,0]C .[-3,0)D .(-3,0]解析:由题意可得⎩⎪⎨⎪⎧k <0,Δ=k 2-4×2k ×⎝⎛⎭⎫-38<0,解得-3<k <0.7.若存在实数x ∈[2,4],使x 2-2x +5-m <0成立,则m 的取值X 围为( B ) A .(13,+∞) B .(5,+∞) C .(4,+∞)D .(-∞,13)解析:m >x 2-2x +5,设f (x )=x 2-2x +5=(x -1)2+4,x ∈[2,4],当x =2时,f (x )min =5,∃x ∈[2,4]使x 2-2x +5-m <0成立,即m >f (x )min ,∴m >5.故选B.8.在关于x 的不等式x 2-(a +1)x +a <0的解集中至多包含1个整数,则a 的取值X 围是( C )A .(-3,5)B .(-2,4)C .[-1,3]D .[-2,4]解析:因为关于x 的不等式x 2-(a +1)x +a <0可化为(x -1)(x -a )<0, 当a >1时,不等式的解集为{x |1<x <a }, 当a <1时,不等式的解集为{x |a <x <1}, 当a =1时,不等式的解集为∅.要使得解集中至多包含1个整数,则a =1或1<a ≤3或1>a ≥-1,所以实数a 的取值X 围是a ∈[-1,3],故选C.二、填空题9.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值X 围是(-1,1).解析:由题意知k 2+1+k 2<3,化为(|k |+2)(|k |-1)<0,所以|k |<1,所以-1<k <1.10.若0<a <1,则不等式(a -x )⎝⎛⎭⎫x -1a >0的解集是⎩⎨⎧⎭⎬⎫x ⎪⎪a <x <1a . 解析:原不等式为(x -a )⎝⎛⎭⎫x -1a <0,由0<a <1得a <1a ,∴a <x <1a. 11.若不等式x 2+ax +4≥0对一切x ∈(0,1]恒成立,则a 的取值X 围为[-5,+∞). 解析:由题意,分离参数后得,a ≥-⎝⎛⎭⎫x +4x . 设f (x )=-⎝⎛⎭⎫x +4x ,x ∈(0,1], 则只要a ≥[f (x )]max 即可.由于函数f (x )在区间(0,1]上单调递增, 所以[f (x )]max =f (1)=-5,故a ≥-5.12.已知对于任意的x ∈(-∞,1)∪(5,+∞),都有x 2-2(a -2)x +a >0,则实数a 的取值X 围是(1,5].解析:设f (x )=x 2-2(a -2)x +a , 当Δ=4(a -2)2-4a <0时,即1<a <4时,f (x )>0对x ∈R 恒成立; 当a =1时,f (-1)=0,不合题意; 当a =4时,f (2)=0,符合题意;当Δ>0时,由⎩⎪⎨⎪⎧ Δ>0,1<a -2<5,f (1)≥0,f (5)≥0,即⎩⎪⎨⎪⎧a <1或a >4,3<a <7,a ≤5,a ≤5,即4<a ≤5.综上所述,实数a 的取值X 围是(1,5]. 三、解答题13.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),某某数a ,b 的值. 解:(1)∵f (x )=-3x 2+a (6-a )x +6, ∴f (1)=-3+a (6-a )+6=-a 2+6a +3>0, 即a 2-6a -3<0,解得3-23<a <3+2 3. ∴原不等式的解集为{a |3-23<a <3+23}. (2)∵f (x )>b 的解集为(-1,3),∴方程-3x 2+a (6-a )x +6-b =0的两根为-1,3, ∴⎩⎪⎨⎪⎧-1+3=a (6-a )3,-1×3=-6-b3,解得⎩⎪⎨⎪⎧a =3±3,b =-3.14.已知f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5).(1)求f (x )的解析式;(2)若对于任意的x ∈[-1,1],不等式f (x )+t ≤2恒成立,求t 的取值X 围.解:(1)∵f (x )=2x 2+bx +c ,不等式f (x )<0的解集是(0,5),∴0和5是方程2x 2+bx +c =0的两个根,由根与系数的关系知,-b 2=5,c2=0,∴b =-10,c =0,f (x )=2x 2-10x .(2)对任意的x ∈[-1,1],f (x )+t ≤2恒成立等价于对任意的x ∈[-1,1],2x 2-10x +t -2≤0恒成立,∴2x 2-10x +t -2的最大值小于或等于0. 设g (x )=2x 2-10x +t -2,则由二次函数的图象可知g (x )=2x 2-10x +t -2在区间[-1,1]上为减函数, ∴g (x )max =g (-1)=10+t ,∴10+t ≤0,即t ≤-10. ∴t 的取值X 围为(-∞,-10].15.已知函数f (x )=x 2+ax +b (a ,b ∈R )的值域为[0,+∞),若关于x 的不等式f (x )<c 的解集为(m ,m +6),则实数c 的值为9.解析:由题意知f (x )=x 2+ax +b =⎝⎛⎭⎫x +a 22+b -a 24. 因为f (x )的值域为[0,+∞),所以b -a 24=0,即b =a 24.所以f (x )=⎝⎛⎭⎫x +a 22.又f (x )<c ,所以⎝⎛⎭⎫x +a22<c , 即-a 2-c <x <-a2+c .所以⎩⎨⎧-a2-c =m ①,-a2+c =m +6 ②.②-①,得2c =6,所以c =9.16.已知函数f (x )=ax 2+2ax +1的定义域为R . (1)求a 的取值X 围; (2)若函数f (x )的最小值为22,解关于x 的不等式x 2-x -a 2-a <0. 解:(1)∵函数f (x )=ax 2+2ax +1的定义域为R ,∴ax 2+2ax +1≥0恒成立, 当a =0时,1≥0恒成立.当a ≠0时,需满足题意,则需⎩⎪⎨⎪⎧a >0,Δ=(2a )2-4a ≤0,解得0<a ≤1,综上可知,a 的取值X 围是[0,1]. (2)f (x )=ax 2+2ax +1=a (x +1)2+1-a ,由题意及(1)可知0<a ≤1, ∴当x =-1时,f (x )min =1-a ,由题意得,1-a =22,∴a =12, ∴不等式x 2-x -a 2-a <0可化为x 2-x -34<0.解得-12<x <32,∴不等式的解集为⎝⎛⎭⎫-12,32.。
高中数学不等式综合测试题一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的.共60分) 1.(文)设a b <,c d <,则下列不等式中一定成立的是( ) A .d b c a ->- B .bd ac > C .d b c a +>+ D .c b d a +>+ (理)已知a <0,-1<b <0,那么( ) A .2a ab ab >>B .2ab ab a >>C .2ab ab a >>D .2ab a ab >>2.“0>>b a ”是“222b a ab +<”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件 3.(文)关于x 的不等式(1)ax b a ><-的解集为( ) A .RB .φC .),(+∞a bD .(,)b a-∞(理)不等式b ax >的解集不可能...是( ) A .φB .RC .),(+∞ab D .),(ab--∞4.不等式022>++bx ax 的解集是)31,21(-,则b a -的值等于( ) A .-14 B .14 C .-10 D .10 5.(文)不等式|1|2x -<的解集是( ) A .{|03}x x ≤<B .{|22}x x -<<C .{|13}x x -<<D .{|1,3}x x x <-> (理)不等式||x x x <的解集是( ) A .{|01}x x <<B .{|11}x x -<<C .{|01x x <<或1}x <-D .{|10,1}x x x -<<> 6.(文)若0b a <<,则下列结论不正确...的是( ) A .11a b <B .2b ab < C .2>+b a a bD .||||||b a b a +>+(理)若011<<ba ,则下列结论不正确...的是( ) A .22b a <B .2b ab <C .2>+baa bD .||||||b a b a +>+ 7.若13)(2+-=x x x f ,12)(2-+=x x x g ,则)(x f 与)(x g 的大小关系为( ) A .)()(x g x f > B .)()(x g x f = C .)()(x g x f < D .随x 值变化而变化8.下列各式中最小值是2的是( )A .y x +xyB .4522++x x C .tan x +cot xD .xx -+229.下列各组不等式中,同解的一组是( )A .02>x 与0>xB .01)2)(1(<-+-x x x 与02<+xC .0)23(log 21>+x 与123<+x D .112≤--x x 与112≤--x x 10.(文)如果a x x >+++|9||1|对任意实数x 总成立,那么a 的取值范围是( ) A .}8|{<a a B .}8|{>a a C .}8|{≥a a D .}8|{≤a a(理)函数y =log a (x +3)-1(a >0,a ≠1)的图象恒过定点A ,若点A 在函数1mx y n n=--的图像上,其中mn >0,则nm 21+的最小值为( ) A .8 B .6 C .4 D .2 11.(文)已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式()0xf x <的解集是( ) A .{|20,2}x x x -<<>或 B .{|2,02}x x x <-<<或 C .}22|{>-<x x x 或D .{|20,02}x x x -<<<<或(理)已知()f x 是奇函数,且在(-∞,0)上是增函数,(2)0f =,则不等式2(1)()0x f x -<的解集是( )A .{|10}x x -<<B .{|2,12}x x x <-<<或C .{|2112}x x x -<<<<或D .{|210,12}x x x x <--<<<<或或12.(文)已知不等式1()()25ax y xy++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( ) A .16625B .16C .254D .18(理)已知不等式()()25x ay x y xy ++≥对任意正实数,x y 恒成立,则正实数a 的最小值为( )A .16625B .16C .254D .18二、填空题(每小题4分,共16分) 13.(文)若+∈R b a ,,则b a 11+与ba +1的大小关系是____________. (理)不等式|21|1x x --<的解集是_____________.14.函数121lg +-=x xy 的定义域是_____________. 15.某公司一年购买某种货物400吨,每次都购买x 吨,运费为4万元/次,一年的总存储费用为4x 万元,要使一年的总运费与总存储费用之和最小,则x =_____________吨.16.已知0()1,0x x f x x ≥⎧=⎨-<⎩,,则不等式3)2(≤+x f 的解集____________.三、解答题(共74分) 17. 解不等式122log 1815x x x ⎛⎫≤- ⎪-+⎝⎭18.解关于x 的不等式22x ax -+>--.20.(本小题满分12分)(文)对任意[1,1]x ∈-,函数a x a x x f 220)4()(2-+-+=的值恒大于零,求a 的取值范围.19.如图所示,校园内计划修建一个矩形花坛并在花坛内装置两个相同的喷水器.已知喷水器的喷水区域是半径为5m 的圆.问如何设计花坛的尺寸和两个喷水器的位置,才能使花坛的面积最大且能全部喷到水?22.(本小题满分14分)已知函数b ax x x f ++=2)(.(1)若a =0,且对任意实数x ,都有a x x f +≥2)(,求b 的取值范围; (2)当]1,1[-∈x 时,)(x f 的最大值为M ,求证:1+≥b M ;(3)若)21,0(∈a ,求证:对于任意的]1,1[-∈x ,1|)(|≤x f 的充要条件是.142a b a -≤≤-参考答案一、 选择题 1、(文)C (理)C 2、A 3、(文)D (理)D 4、C 5、(文)C (理)C 6、(文)D (理)D 7、A 8、D 9、B10、(文)A (理)A11、(文)D (理)D 12、(文)B (理)B二、 填空题13、ba b a +>+111 14、{|02}x x <<15、)21,1(- 16、2017]3,(-∞三、 解答题18、解:原不等式等价于:21582≥+-x x x0158301720158301720215822222≤+-+-⇔≥+--+-⇔≥-+-x x x x x x x x x x x 3250)5)(3()52)(6(<≤⇔≤----⇔x x x x x 或65≤<x∴原不等式的解集为]6,5()3,25[Y19、解:变形得:(4)02x a x -->-当(4-a )>2,即a <2时,24x x a <>-或 当(4-a )<2,即a >2时,42x a x <->或 当(4-a )=2,即a =2时,2x ≠综上所述:当a <2时,原不等式的解集为{|24}x x x a <>-或 当a ≥2时,原不等式的解集为{|42}x x a x <->或20、325≤a21、解:设花坛的长、宽分别为xm ,ym ,根据要求,矩形花坛应在喷水区域内,顶点应恰好位于喷水区域的边界.依题意得:25)2()4(22=+y x ,(0,0>>y x )问题转化为在0,0>>y x ,100422=+y x 的条件下,求xy S =的最大值. 法一:100)2(2222=+≤⋅⋅==y x y x xy S Θ,由y x=2和100422=+y x 及0,0>>y x 得:25,210==y x 100max =∴S法二:∵0,0>>y x ,100422=+y x , 41002x x xy S -==∴=10000)200(41)4100(2222+--=-⋅x x x∴当2002=x ,即210=x ,100max =S由100422=+y x 可解得:25=y .答:花坛的长为m 210,宽为m 25,两喷水器位于矩形分成的两个正方形的中心,则符合要求.21、解(1):由题得022≥++b x x 恒成立1044≥⇔≤-=∆⇔b b 对任意的R x ∈,0)()2(2≥-+-+a b x a x 0)(4)2(2≤---=∆⇔a b a)(1412R a b a b ∈≥⇔+≥⇔Θ∴),1[+∞∈b .(2)证明:∵,1)1(M b a f ≤++=,1)1(M b a f ≤+-=- ∴222+≥b M ,即1+≥b M .(3)证明:由210<<a 得,0241<-<-a∴)(x f 在]2,1[a --上是减函数,在]1,2[a-上是增函数.∴当1||≤x 时,)(x f 在2ax -=时取得最小值42a b -,在1=x 时取得最大值b a ++1.故对任意的]1,1[-∈x ,.1414111|)(|22a b a a b b a x f -≤≤-⇔⎪⎩⎪⎨⎧-≥-≤++⇔≤。
南通中学数学高考小题专题复习练习基本不等式及其应用一、填空题(共12 题,每题 5 分)1、若x 0,则x 2的最小值为. x2、已知( x, y R ),且满足x y1,则 xy 的最大值为___________. 341的取值范围为.3、已知 x> 2,则 y=xx24、设0x 2 ,则函数 f ( x)x(8 2x) 的值域为.5、当x 38a 恒成立,则a 的取值范围为.时, x2x233 x x 2时, y 取得最小值 .6、已知函数 y=(x > 0) ,当 x=1x7、已知 x>0, y>0,x+2y+2xy=8 ,则 x+2y 的最小值是.8、已知x 3 y 2 0,则3x27 y 1 的最小值是.9、若正数a、 b 满足 ab=a+b+3,则 ab 的取值范围是.10、已知 x、y 是正数,则使x y t x y 恒成立的实数t的取值范围是.11、某公司一年购买某种货物400 吨,每次都购买x 吨,运费为费用为 4x 万元,要使一年的总运费与总存储费用之和最小,则4 万元 / 次,一年的总存储x吨.12、已知x0, y0 ,且211,若x 2 y m22m 恒成立,则实数m 的取值范围x y是.南通中学数学高考小题专题复习练习答题纸班级一、填空题:(共1、212 小题,每小题、3姓名5 分)4分数、5、67、8、9 、10、11、12、二、解答题( 共 20分 , 要求写出主要的证明、解答过程)13、围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45 元 /m, 新墙的造价为180 元 /m, 设利用的旧墙的长度为x( 单位:元 ) 。
(Ⅰ)将y 表示为 x 的函数:(Ⅱ)试确定x, 使修建此矩形场地围墙的总费用最小,并求出最小总费用。
2013届南通高中数学小题校本作业(39)
不等式单元练习
一、填空题(共12题,每题5分)
1. 比较大小:(3)(5)a a +- (2)(4)a a +-.
2. 不等式2560x x -+<的解集为 .
3. 已知集合11
{|()}24
x A x =>,2{|log (1)2}B x x =-<,则A B = .
4. 一元二次不等式ax 2
+bx +2>0的解集是(-12,13
),则a +b 的值是 .
5. 当不等式240x px ++≤恰有一个解时,实数p 的值为 .
6. 若a >0,b >0,a +b =2,则下列不等式对一切满足条件的a ,b 恒成立的
是 (写出所有正确命题的编号).
①ab
a 2+
b 2≥2;④a 3+b 3
≥3;⑤112a b
+≥.
7. 设实数x ,y 满足3≤2
xy ≤8,4≤2x y ≤9,则34x y
的最大值是 .
8. 关于x 的不等式2293x x x kx ++-≥在[1,5]上恒成立,则实数a 的范围为 .
9. 若对任意0x >,231
x
a x x ++≤恒成立,则a 的取值范围是 .
10
.已知函数()f x 12310x x x -<<<≤,()2
n n n
f x a x +=
,则实数123,,a a a 中最大的一个数是 .
11.设m 为实数,A =250(,)|300x y x y x mx y ⎧-+⎫⎧⎪⎪⎪-⎨⎨⎬⎪⎪⎪
+⎩⎩⎭
≥≥≥,B =22
{(,)|25}x y x y +≤,若A ⊆B ,
则m 的取值范围是 .
12.过点(1,2)的直线l 与x 轴的正半轴,y 轴的正半轴分别交于A 、B 两点,O 为坐
标原点,当△AOB 的面积最小时,直线l 的方程是 .
二、解答题(共20分,要求写出主要的证明、解答过程)
13.已知正数x 、y 满足11
21,x y x y
+=+求的最小值.
: 210x y x y +=>解且、,
∴11112x y x y x y +=+⋅+()()≥
∴min 11()x y
+=
判断以上解法是否正确?说明理由.若不正确,请给出正确解法.。