初中数学思想方法例说(演示)
- 格式:ppt
- 大小:9.71 MB
- 文档页数:83
初中数学思想方法大全教学的本质到底是什么?很显然,教学最本质的东西就是传授知识,提高素质,培养能力。
那么,数学教学的本质又是什么呢?众所周知:“数学是思维的体操。
”数学思想方法是数学的精髓,它是数学中最本质最有价值的东西。
它是知识转化为能力的桥梁。
所以从某种意义上说,数学教学的本质就是数学思想方法的教学,在数学教学中,教师除了基础知识和基本技能的教学外,更应重视数学思想方法的参透,注意对学生进行数学思想方法的培养。
一、数学思想方法是什么?数学思想方法是什么呢?其实它包换两个方面,即思想和方法。
所谓数学思想,是指人们对数学知识的本质认识,是从某些具体的数学内容和对数学的认识过程中提练上升的数学观点,它在认识活动中被反复运用,带有普遍的指导意义,是用数学解决问题的指导思想,它直接支配着数学的实践活动。
所谓数学方法,则是在数学提出问题、解决问题(包括数学内部问题和实际问题)过程中,所采用的各种方式、手段、途径等。
它具有过程性、层次性和可操作性等特点。
数学思想是数学方法的灵魂,数学方法是数学思想的表现形式和得以实现的手段,因此,人们把它们合称为数学思想方法。
因此,在数学教学中,教师除了基础知识和基本技能的教学外,还应重视数学思想方法的渗透,注重对学生进行数学思想方法的培养,这对学生今后的数学学习和数学知识的应用将产生深远的影响,使学生终生受益。
正如波利亚强调:在数学教学中“有益的思考方式、应有的思维习惯”应放在教学的首位。
加强数学思想方法教学,必然对提高数学教学的质量起到至关重要的作用。
二、初中阶段主要的数学思想方法有哪些?纵观初中新课标教材,涉及到的数学思想方法大体可分为三种类型。
第一类是技巧型思想方法(也称低层次数学思想方法),包括消元、降次、换元、配方、待定系数法等,这类方法具有一定的操作步骤。
比较容易为学生所接受。
第二类是逻辑型的思想方法(也称较高层次数学思想方法),包括类比、抽象、概括、归纳、分析、综合、演绎、特殊化方法、反证法等,这类方法都具有确定的逻辑结构,是普通适用的逻辑推理论证模型。
初中数学中常见的数学思想方法见解作为一门基础学科,数学在我们的生活和学习中扮演着非常重要的角色。
在初中数学学习中,学生需要掌握许多基本概念、基本原理和方法。
除了常见的数学知识点之外,还有一些重要的数学思想方法,如数学归纳法、逆向思维、抽象思维等。
本文将针对初中数学中常见的数学思想方法进行探讨,重点分析其原理和实际应用,并给出具体的数学题例子。
一、数学归纳法数学归纳法是初中数学中常见的数学思想方法之一,它是证明自然数的某些性质时常用的一种方法。
数学归纳法的基本思想是:证明一个性质对于所有自然数都成立,只需证明当自然数 n = 1 时成立,且当自然数 n 成立时,自然数 n+1 也成立,即可推出该性质对于所有自然数都成立。
例如,我们要证明一个常见的命题:对于任意自然数 n,1+2+3+...+n = n(n+1)/2。
首先当 n=1 时,左侧等式为 1,右侧等式为 1×(1+1)/2=1,两边相等。
再假设对于自然数 n 成立,即1+2+3+...+n = n(n+1)/2,那么将 n+1 代入等式,得到:1+2+3+...+(n+1) = [1+2+3+...+n] + (n+1)由假设可得左侧等式为 n(n+1)/2 + (n+1),经过化简得到:(n+1)(n+2)/2 = (n+1)(n+2)/2,由此证明了该命题对于任意自然数 n 成立。
数学归纳法还可以用于证明一些更复杂的命题,例如利用数学归纳法证明斐波那契数列的性质。
斐波那契数列是一个非常经典的数学问题,其定义为:对于自然数 n,斐波那契数列的第 n 项 F(n) 等于前两项的和,即 F(n) = F(n-1) + F(n-2),其中 F(1)=1,F(2)=1。
利用数学归纳法可以证明:对于任意自然数 n,斐波那契数列的第 n 项 F(n) 满足 F(n) = (1/√5){[(1+√5)/2]^n - [(1-√5)/2]^n}。
例说初中数学难题的解题技巧和专题训练初中数学考试,一般都把试题分为容易题(基础题),中档题以及难题。
近年初中数学考试中,难题一般都占全卷总分的四分之一,难题不突破,学生是很难取得考试好成绩的。
初中数学考试中的难题主要有以下几种:1、思维要求有一定深度或技巧性较强的题目。
2、题意新或解题或解题思路新的题目。
3、探究性或开放性的数学。
针对不同题型要有不同的教学策略,无论解哪种题型的数学题,都要求学生有一定的数学基础知识和基本的解题技能(对数学概念的较好理解,对定理公式的理解,对定理公式的证明的理解;能很熟练迅速地解答出直接运用定理公式的基础题),所以对学生进行“双基”训练很必要。
当然,初三毕业复习第一阶段都是进行“双基”训练,但要使学生对数学知识把握得深化和基本技能得到强化,复习效果才好。
多年教学实践证明,针对难题进行专题复习是很有必要的,只要复习得好,对中等以上学生解难题的能力的提高作用是较大的。
对此,我在第二阶段复习中要对学生针对难题进行思维能力的训练和思路拓宽的训练。
当然,这种训练也要针对学生的“双基”情况和数学题型,这种训练要注意题目的选择,不只针对考试,也要针对学生思维的不足,一定量的训练是必要的,但要给出足够的时间给学生进行解题方法和思路的反思和总结,只有多反思总结,学生的解题能力才能提高。
老师要注重引导,不能以自己的思路代替学生的思路,因为每个人解决问题的方法是不一定相同的。
初中数学试题命题者的命题目的是考查我们初中毕业的学对初中数学基础知识的掌握情况,试题当然都离不开初中的基础知识。
所谓难题,只是笼上几层面纱,使我们不容易看到它的真面目。
我们老师的任务就是教会我们的学生去揭开那些看起来神秘的面纱,把握它的真面目。
叙述已经掌握了所有初中数学的基础知识,有一定的解题技能,只要我们对学生的引导和训练得当,我们的学生一定能在考场上取胜。
对难题进行分类专题复习时,应该把重点放在对学生进行对数学难题跟基础知识的联系的把握能力的训练以及引导学生迅速正确分析出解题思路这一点上,并从中培养学生解题的知觉思维。
初中数学:从“整式的加减”看代数思想(含例题和解析)著名数学教育家玻利亚曾说:“代数是一种不用词句而只用符号所构成的语言.”代数式是用加、减、乘、除等运算符号把数或表示数的字母连接而成的式子,是后续学习中进行运算、解决问题的基础.在代数式中,我们把那些含相同的字母,并且相同字母的次数也分别相同的单项式看作一类——称为同类项,一个多项式中的同类项可以合聚在一起——称为合并同类项,整式的加减就是合并同类项.代数式的化简求值是代数式研究的一个重要课题,解这类问题的基本方法有:将字母的值代入或利用字母间的关系整体代入,而关键是对代数式进行恰当变形,其中去括号、添括号能改变代数式的结构,是变形求解的常用工具.接下来,通过6道例题,总结一些解决代数式问题的常用方法:一、用字母表示数,有利于运用代数式揭示问题中的数量关系,便于找到数量的相依关系或相等、不等关系,具有设元意识;会用代数式表示,是由算术习惯向代数过渡的重要步骤,是突破算术方法的定势的关键.二、用字母表示数,是由算术跨越到代数的桥梁,也是算术与代数的最显著的区别.字母表示数,能更普遍地说明数量关系,在列代数式、求代数式的值、形成公式等方面有广泛的应用.三、规律探究题,常按照一定的顺序给出一系列量,要求根据已知量找出一般规律,解题的关键是把变量和序号联系起来. 图形生长规律探寻可以从以下方面入手:(1)整理数据,分析数据. (2)把握图形结构、生长方式.四、整体思考:在微观上重析理,在宏观上看结构.既看结构,又看整体;既见树木,又见森林,两者互用,这是分析问题和解决问题的普遍而有效的办法. 印度诗人泰戈尔说:“采摘花瓣你将无法得到一朵美丽的花朵.” 整体思考是将问题看成一个完整的整体,从大处着眼,由整体入手,突出对问题的整体结构的分析与改造,从整体上把握问题的特征和解题方向. 例6第(3)小问,以式的形式定义“新数”,着眼于新知识与已有知识的联系与转化,对阅读理解、符号运算、整体代入、逻辑推理等能力提出了较高要求.结束语:思维即思考,数学是思维的学科,数学的存在与发展依据思维,精湛的思维艺术又常借助数学彰显其力量.。
例说“转化思想”在初中数学教学中的运用作者:谢金辉来源:《教育周报·教研版》2016年第10期所谓“转化思想”,就是在处理问题时,把待解决或难解决的问题,通过某种转化,变为一类已经解决或比较容易解决的问题,最终使原问题得到解决。
转化思想是最重要的数学思想之一,在数学教学中如何正确引导及指导学生利用转化思想,对提高学生学习数学的兴趣、拓展学生的思维空间、培养学生的思维发散能力起着十分重要的作用。
下面通过举例说明转化思想在数学教学和解题中的运用。
一、化旧知为新知“温故而知新”,新知识的获得,离不开原有的认知基础。
很多新知识都是学生在已有的知识基础上发展起来的。
因此,对于学生来讲,学会怎样在已有知识的基础上掌握新知识的方法是非常必要的。
例如,在学习二次根式时,可向学生提出:我们已经学习了平方根和算术平方根,那么你能根据已学的知识完成今天的学习内容“二次根式”吗?这样简单、明了的一句话就沟通了新旧知识间的内在联系。
问题的提出,激发了学生学习的兴趣,促使了学生思维的展开,提供了回答问题的机会,创造了活跃的教学气氛,学生会迅速而准确地回答出二次根式的定义。
二、化不规则为规则,化零散为整体初中几何教学,经常涉及到求几何图形的面积,尤其是求不规则图形的面积或求几个不规则图形的面积之和时,难度往往较大。
这时,就要进行图形变换。
把不规则图形转化为规则图形,或把几个不规则图形拼接成规则图形。
图形变换的目的就是化繁为简,化难为易,化笨为巧,寻找解题捷径,通过转化思想来开拓学生的解题思路。
例:如图,菱形ABCD的边长是2cm,∠A=60°,以点A为圆心,AB长为半径,画弧BD,以点B为圆心,BC长为半径,画弧CD。
则阴影部分的面积为 cm2分析:所求阴影部分面积为不规则图形,连接BD,由菱形的性质知AB=BC=CD=AD,又∠A=60°,所以△ABD和△BCD都是等边三角形,故阴影部分的面积等于△BCD的面积。