整数指数幂1
- 格式:ppt
- 大小:411.50 KB
- 文档页数:21
人教版数学八年级上册15.2.3.1《整数指数幂》说课稿1一. 教材分析人教版数学八年级上册15.2.3.1《整数指数幂》是初中数学的重要内容,属于代数学的范畴。
本节课的主要内容是让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。
通过本节课的学习,为学生进一步学习分数指数幂、负整数指数幂以及指数函数等知识打下基础。
二. 学情分析八年级的学生已经学习了有理数的乘方,对幂的概念有了初步的认识。
但在理解和应用整数指数幂方面,学生还可能存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习需求,引导学生通过自主学习、合作交流等方式,逐步掌握整数指数幂的知识。
三. 说教学目标1.知识与技能目标:让学生理解整数指数幂的概念,掌握整数指数幂的运算性质及应用。
2.过程与方法目标:通过观察、分析、归纳等方法,让学生体会数学知识之间的联系,培养学生的逻辑思维能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。
四. 说教学重难点1.教学重点:整数指数幂的概念,整数指数幂的运算性质。
2.教学难点:整数指数幂的应用,以及与其他知识点的联系。
五. 说教学方法与手段1.教学方法:采用问题驱动法、案例分析法、小组合作法等,引导学生主动探究、积极思考。
2.教学手段:利用多媒体课件、黑板、教具等,辅助教学,提高教学效果。
六. 说教学过程1.导入新课:通过复习有理数的乘方,引出整数指数幂的概念。
2.自主学习:让学生自主探究整数指数幂的运算性质,引导学生发现规律。
3.合作交流:学生分组讨论,分享学习心得,互相解答疑问。
4.教师讲解:针对学生的疑问和难点,进行讲解,梳理知识体系。
5.巩固练习:布置练习题,让学生及时巩固所学知识。
6.课堂小结:总结本节课的主要内容,强调重点知识。
7.拓展延伸:引导学生思考整数指数幂在实际生活中的应用,激发学生的学习兴趣。
七. 说板书设计板书设计要清晰、简洁,突出整数指数幂的概念和运算性质。
整数指数幂的性质整数指数幂是一种数学中常见的运算,其定义为把一个数x乘以它自己n次,即x^n。
它有着各种有趣的性质。
第一个性质是整数指数幂的交换律。
这种性质指出,只要两个数字都是整数,任意两个以上的指数变量可以交换而不影响结果。
例如,x^2 * y^3 = y^3 * x^2。
第二个性质是整数指数幂的结合律。
这种性质指出,只要两个数字是整数,就可以结合其所有指数变量,而不会影响结果。
例如,x^2 * y^2 = (x*y)^2。
第三个性质是整数指数幂的分配律。
这种性质指出,如果一个数字是整数,则可以将两个指数变量(例如x^2和y^2)分别作为x和y两个乘数的乘积来算,这样结果会不变。
例如,x^2 * y^2 =(x*y)^(2+2)= (x*y)^4。
第四个性质是整数指数幂的乘法律。
这种性质指出,如果两个数字都是整数,则它们的整数指数幂可以相乘而不会影响结果。
例如,x^2 * y^3 = (x*y)^(2+3)= (x*y)^5。
第五个性质是整数指数幂的幂加法律。
这种性质指出,如果两个数字都是整数,则它们的整数指数幂可以相加而不会影响结果。
例如,x^2 + y^3 = (x+y)^(2+3)= (x+y)^5。
最后,整数指数幂有着一种特殊的性质,叫做“1的零次幂”。
这种性质指出,任何一个以1为底的任何整数指数,其结果都为1。
例如,1^2 = 1,1^3 = 1,1^4 = 1等等。
以上就是整数指数幂的五种性质,它们在数学中有着重要的应用,并且与其他运算有着密切的联系,可以用来解决许多复杂的问题。
如果我们能够正确运用它们,将能够节省不少的时间,提高效率,从而轻松解决数学难题。
用数学公式表示整数指数幂的运算法则整数指数幂是一种非常常见的数学运算,它可以表示一个数被自身乘以若干次的结果。
比如,2的3次方就表示2自乘3次的结果,即2x2x2=8。
整数指数幂的运算法则可以用数学公式表示,它有以下几个特点:1. 基数相同的指数幂相加时,可以将基数不变而指数相加。
比如,2的3次方加上2的4次方等于2的7次方,即2³+2⁴=2⁷。
这个规律可以用数学公式表示为:a的m次方乘以a的n次方等于a的m+n次方。
2. 基数相同的指数幂相减时,可以将基数不变而指数相减。
比如,2的5次方减去2的3次方等于2的2次方,即2⁵-2³=2²。
这个规律可以用数学公式表示为:a的m次方除以a的n次方等于a的m-n次方。
3. 指数为0的整数幂等于1。
比如,2的0次方等于1,即2⁰=1。
这个规律可以用数学公式表示为:a的0次方等于1。
4. 指数为1的整数幂等于它本身。
比如,2的1次方等于2,即2¹=2。
这个规律可以用数学公式表示为:a的1次方等于a。
5. 指数为负数的整数幂可以转化为指数为正数的倒数幂。
比如,2的-3次方可以转化为1除以2的3次方,即2的-3次方=1/2³。
这个规律可以用数学公式表示为:a的-m次方等于1除以a的m 次方。
6. 不同基数的指数幂不能直接进行运算。
比如,不能计算2的3次方加上3的4次方。
这个规律没有单独的数学公式表示,但是它提醒我们在进行指数幂运算时要注意基数的一致性。
以上是整数指数幂的运算法则的基本特点和数学公式表示方法。
在数学中,指数幂运算是非常常见的,涉及到很多实际问题的计算,比如复利计算、物理学中的功率计算等等。
因此,掌握整数指数幂的运算法则是非常重要的,它可以帮助我们更好地理解和解决实际问题。
15.2.3整数指数幂(1)一、教学目标:1.知道负整数指数幂=(a ≠0,n 是正整数). 2.掌握整数指数幂的运算性质.二、重点、难点1.重点:掌握整数指数幂的运算性质.2.难点:掌握整数指数幂的运算性质.三、例、习题的意图分析1. P 142思考提出问题,引出本节课的主要内容负整数指数幂的运算性质.2. P 143思考是为了引出同底数的幂的乘法:,这条性质适用于m ,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.3. P 144例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.四、课堂引入1.回忆正整数指数幂的运算性质:(1)同底数的幂的乘法:(m ,n 是正整数);(2)幂的乘方:(m ,n 是正整数); (3)积的乘方:(n 是正整数);(4)同底数的幂的除法:( a ≠0,m ,n 是正整数,m >n ); (5)商的乘方:(n 是正整数); 2.回忆0指数幂的规定,即当a ≠0时,.3.你还记得1纳米=10-9米,即1纳米=米吗? 4.计算当a ≠0时,===,再假设正整数指数幂的运算性质(a ≠0,m ,n 是正整数,m >n )中的m >n 这个条件去掉,那么==.于是得到=(a ≠0),就规定负整数指数幂的运算性质:当n 是正整数时,=(a ≠0). n a -n a1n m n m a a a +=⋅n m n m a a a +=⋅mn n m aa =)(n nn b a ab =)(n m n m a a a -=÷n nn ba b a =)(10=a 910153a a ÷53a a 233aa a ⋅21a n m n m a a a -=÷53a a ÷53-a 2-a 2-a 21a n a -na 1五、例题讲解(P144)例9.计算[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.六、随堂练习1.填空(1)-22= (2)(-2)2= (3)(-2) 0=(4)20= (5)2-3= (6)(-2)-3=2.计算(1) (x3y-2)2(2)x2y-2 ·(x-2y)3 (3)(3x2y-2) 2 ÷(x-2y)3课后反思:参考答案:六、1.(1)-4 (2)4 (3)1 (4)1(5) (6) 2.(1) (2) (3) 8181 46y x 4x y 7109y x。
指数的运算与指数函数4.1指数的运算【知识梳理】1. 整数指数幂1)定义:我们把n a 叫做a 的n 次幂,a 叫做幂的底数,n 叫做幂的指数。
在上述定义中,n 为整数时,这样的幂叫做整数指数幂。
2)整数指数幂的运算法则:(1)n m a a = (2)=n m a )((3)=n maa (4)=m ab )(3)此外,我们作如下规定:零次幂:)0(10≠=a a ; 负整数指数幂:),0(1+-∈≠=N n a a a nn; 2. 根式:1)n 次方根:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *。
注:①当n 是偶数时,正数的n 次方根有两个,这两个数互为相反数,分别表示为n a -,n a ;负数的偶次方根在实数范围内不存在;②当n 是奇数时,正数的n 次方根是一个正数;负数的n 次方根是一个负数,都表示为na ;③0的任何次方根都是0,记作00=n。
2)正数a 的正n 次方根叫做a 的n 次算数根。
当na 有意义时,n a 叫做根式,这里n 叫做根指数,a 叫做被开方数.注:当n 是奇数时,a a nn =;当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn ;3. 有理指数幂1)我们进行如下规定: n na a=1 (0>a )那么,我们就将整数指数幂推广到分数指数幂。
此外,下面定义也成立: )1,,,0(*>∈>=n N n m a a a n m nm)1,,,0(11*>∈>==-n N n m a a aanmnm nm注:0的正分数指数幂等于0,0的负分数指数幂没有意义。
2)规定了分数指数幂的意义后,指数的概念就从整数指数幂推广到了有理数指数幂。
3)有理指数幂的运算性质:(1)r a ·sr r aa +=),,0(Q s r a ∈>; (2)rs s r a a =)(),,0(Q s r a ∈>;(3)s r r a a ab =)(),0,0(Q r b a ∈>> 题型一 根式与幂的化简与求值 【例1】.求下列各式的值:(1)223223-++ (2)347246625-+--+【例2】.计算下列各式的值: (1)()[]75.0343031162)87(064.0---+-+-- (2)()()()012132232510002.0833-+--+⎪⎭⎫⎝⎛----【例3】.化简下列各式:(1)()0,0332>>b a b a ab ba (2)212121211111a a a a a ++------【过关练习】1.求值:(1)335252-++ (2)3332332313421248a a b a ab b ba a ⋅⎪⎪⎭⎫ ⎝⎛-÷++-2.化简:(1)111113131313132---+++++-x xx x x x x x(2)()()14214214433332)1()1(1))((----------++-++-++-+a a a a a a a a a a a a a a a a3.下列关系式中,根式与分数指数幂的互化正确的是_____.())0()4)(0()1()3();0()2();0()1(434334316221>=>=<=>-=--a a a a x xxy y y x x x题型二 含附加条件的求值问题 【例1】(1)若3193=⋅ba,则下列等式正确的是( ) A. 1-=+b a B. 1=+b a C. 12-=+b a D.12=+b a(2)若,123-=++x x x 则2827211227281x x x x x x x x ++⋅⋅⋅++++++⋅⋅⋅++----的值是_____.【例2】(1)已知,32,21==y x 求yx y x y x y x +---+的值; (2)已知b a ,是方程0462=+-x x 的两个根,且0>>b a ,求ba ba +-的值.【过关练习】 1.已知.88(22的值常数),求x x xxa --+=+2.已知32121=+-a a ,求21212323----aa a a 的值.3. 已知122+=xa ,求xx xx aa a a --++33的值题型三 解含幂的方程与等式的证明 【例1】解下列方程 (1)x x )41(212=+ (2)03241=-++x x【例2】已知433cz by ax ==,且1111=++zy x ,求证31313131222)(c b a cz by ax ++=++【过关练习】 1. 解下列方程(1)2291381+⎪⎭⎫⎝⎛=⨯x x (2)0123222=-⨯++x x2.设c b a ,,都是正数,且cb a 643==,求证ba c 122+=.4.2 指数函数及其性质【知识梳理】1. 指数函数 函数 )1,0(≠>=a a a y x叫做指数函数. 2. 指数函数的性质(1)定义域 :实数集合R ; (2)值域 :0>y ;(3) 奇偶性:指数函数是非奇非偶函数(4)单调性:1>a 时,函数 )1,0(≠>=a a a y x在),(+∞-∞上为增函数;10<<a 时,函数)1,0(≠>=a a a y x 在),(+∞-∞上为减函数;(5)函数值:0=x 时,1=y ,图象恒过点(0,1);(6)当0,1>>x a 时1>y ;0,1<>x a 时,10<<y .当10<<a ,0>x 时,10<<y ;0,10<<<x a 时,1>y .题型一 指数函数的概念例1 .已知指数函数)3)(2(--+=a a a y x的图像经过点(2,4),求a 的值.【过关练习】.若指数函数)(x f 的图像经过点(2,9),求)(x f 的解析式及)1(-f 的值.题型二 指数型复合函数的定义域和值域 【例1】.求下列函数的定义域和值域 (1) xy 31-= (2)412-=x y(3)xy -=)32( (4)32221--⎪⎭⎫ ⎝⎛=x x y【例2】.求函数[]2,2,221341-∈+⎪⎭⎫⎝⎛⨯-⎪⎭⎫ ⎝⎛=x y xx 的值域.【例3】.如果函数[]1,1-)1,0(122在且≠>-+=a a a a y x x上有最大值14,试求a 的值.【过关练习】1.求函数xy ⎪⎭⎫⎝⎛-=211的定义域和值域.2.已知集合⎭⎬⎫⎩⎨⎧∈==+R x y y A x,)21(12,则满足B B A =⋂的集合B 可以是( )A. ⎭⎬⎫⎩⎨⎧21,0 B. ⎭⎬⎫⎩⎨⎧<<210x x C.{}11≤≤-x x D.{}0>x x 3.函数22212+-=+x xy 的定义域为M ,值域[]2,1P ,则下列结论一定正确的个数是( )。
数学指数幂运算公式大全
在数学中,指数幂运算是一种常见且重要的数学运算方式。
以下是一些常见的指数幂运算公式:
1.正整数指数幂:
对于任意实数a和正整数n,有a^n = a × a × ... × a (n个a相乘)
2.负整数指数幂:
对于任意非零实数a和负整数n,有a^(-n) = 1 / (a^n)
3.零指数幂:
对于任意非零实数a,有a^0 = 1
4.幂运算的乘法:
对于任意实数a和正整数m、n,有a^m × a^n = a^(m+n)
5.幂运算的除法:
对于任意非零实数a和正整数m、n,有a^m ÷ a^n = a^(m-n)
6.幂运算的乘方:
对于任意实数a和正整数m、n,有(a^m)^n = a^(m×n)
7.幂运算的倒数:
对于任意非零实数a和正整数n,有(1/a)^n = 1 / (a^n)
8.幂运算的分数指数:
对于任意非负实数a、正整数m、n,有(a^m)^(1/n) = a^(m/n)
9.幂运算的乘方根:
对于任意非负实数a、正整数m、n,有(a^m)^(1/n) = a^(m/n)
除了以上基本的指数幂运算公式,还存在更多的特殊公式和拓展,如指数规律、对数运算等。
这些公式和规律在数学的各个领域都有广
泛的应用,包括代数、几何、微积分等。
初中数学整数指数幂的运算规则.docx初中数学整数指数幂的运算规则一、指数的定义和基本性质在数学中,指数表示一个数的乘方运算,其中底数表示要乘的数,指数表示要乘的次数。
初中数学中,我们主要研究整数指数幂的运算规则。
指数的基本性质如下:1. 任何非零数的零次幂都等于1:$a^0=1$。
2. 任何数的一次幂都等于它本身:$a^1=a$。
3. 计算幂的乘积时,底数保持不变,指数相加:$a^m \cdota^n=a^{m+n}$。
4. 计算幂的幂时,底数保持不变,指数相乘:$(a^m)^n=a^{mn}$。
5. 计算除法的幂时,分子和分母的指数相减:$\frac{a^m}{a^n}=a^{m-n}$。
二、同底数的乘方运算当底数相同时,可以进行同底数的乘方运算,我们可以利用指数的性质来计算。
1. 同底数幂的乘法若有两个同底数的幂相乘,可以将底数保持不变,指数相加。
例如:$$a^m \cdot a^n = a^{m+n}$$其中,$a$为底数,$m$和$n$为指数。
2. 同底数幂的除法若有两个同底数的幂相除,可以将底数保持不变,指数相减。
例如:$$\frac{a^m}{a^n} = a^{m-n}$$其中,$a$为底数,$m$和$n$为指数。
3. 同底数幂的乘方若有一个同底数的幂再次进行幂运算,可以将底数保持不变,指数相乘。
例如:$$(a^m)^n = a^{mn}$$其中,$a$为底数,$m$和$n$为指数。
三、不同底数的乘方运算当有不同底数的幂进行乘方运算时,我们通常将底数进行换底,使得底数相同后再进行运算。
1. 底数的换底1.1 同底数幂的换底若有两个同底数的幂进行换底运算,我们可以将它们的指数进行比较。
例如:$$\begin{align*}a^m &= b^n \\m\log_a &= n\log_b \\\end{align*}$$其中,$a$和$b$为底数,$m$和$n$为指数。
16.2.3整数指数幂1备课人 :杨玉英一、学习目标 :1.知道负整数指数幂n a -=na 1(a ≠0,n 是正整数 2.掌握整数指数幂的运算性质.重点:掌握整数指数幂的运算性质.难点:认识负整数指数幂的产生过程及幂运算法则的扩展过程.二、预习提纲:1.回顾已学过的正整数指数幂的运算性质:(1)同底数的幂的乘法:_______________________ .(2)幂的乘方:_______________________________ .(3)积的乘方:________________________ .(4)同底数的幂的除法:________________________.(5)商的乘方:________________________________.(6)0指数幂,即当a ≠0时,___________2.计算 (两种方法)53a a ÷=________________________; .3.反思归纳: .4.思考:引入负整数指数和0指数后,正整数幂的公式还能用吗?反思归纳:5.例题分析:例1 (1)321)(b a - (2) 32222)(---∙b a b a例2 下列等式时否正确,为什么?(1)n m n m aa a a -∙=÷ (2)n n nb a b a -=)(三、讨论与交流要求:以小组为单位对预习提纲的内容展开交流,并准备展示内容.四、展示与点评要求:以小组为单位对预习提纲的内容进行展示,其他小组进行质疑、点评,教师做适当补充.五、当堂检测:A 组:1.填空:(1)03=_______. 23-=_______; (2)0(3)-=_______.2(3)--=_______; (3)0b =_______.2b -=______(b ≠0)B 组:2.计算:(1)2313()x y x y --(2)2323(2)()ab c a b --÷C 组: ⎪⎭⎫ ⎝⎛-÷⎪⎭⎫⎝⎛----42318521q p q p作业1. 若(x -3)-2有意义,则x _______;若(x-3)-2无意义,则x _______.2 . 5-2的正确结果是( ) A .-125 B .125C .110D .-110 3. 化简(-2m 2n -3)·(3m -3n -1),使结果只含有正整数指数幂。
1.3.3 整数指数幂的运算法则人非圣贤,孰能无过?过而能改,善莫大焉。
《左传》原创不容易,【关注】,不迷路!1.理解整数指数幂的运算法则;2.会用整数指数幂的运算法则进行计算.(重点,难点)一、情境导入1.请同学们回顾,我们学过的正整数指数幂的运算法则有哪些?2.我们在前面还学过,可以把幂的指数从正整数推广到整数.这时我们怎样理解这些运算法则呢?二、合作探究探究点一:整数指数幂的运算【类型一】乘积形式的整数指数幂的运算计算:(1)(-a)3÷a-1÷(a-2)-2;(2)(a-2b-3)-3·(a2b)-2;(3)(2x-3y2z-2)-2(3xy-3z2)2;(4)(-2a-3)2b3÷2a-6b-2.解:(1)原式=-a3÷a-1÷a4=-a4÷a4=-1;(2)原式=a6b9·a-4b-2=a2b7;(3)原式=(2-2x6y-4z4)(32x2y-6z4)=2-2·32x8y-10z8=9x8z8 4y10;(4)原式=4a-6b3÷2a-6b-2=2b5.方法总结:整数指数幂的运算要注意运算顺序:先算乘方,再算乘除.最后结果要化为正整数指数. 【类型二】商形式的整数指数幂的运算 计算: (1)(x 2+x x 2+2x +1)-1÷(x x +1)-2; (2)[(2a -3b -2c 3a -4b -2)-1]-2; (3)[(a -b )-3(a +b )3(a +b )2(a -b )-2]-2. 解:(1)原式=[x (x +1)(x +1)2]-1·(x x +1)2=x +1x ·x 2(x +1)2=x x +1; (2)原式=(2a -3b -2c 3a -4b -2)2=4a 2c 29; (3)原式=((a -b )6(a +b )-6,(a +b )-4(a -b )4)=(a -b )2(a +b )2. 方法总结:商形式的整数指数幂的运算有两种方法:一是先把负整数指数幂转化为正整数指数幂,再约分化简;二是先计算整数指数幂,最后再把负整数指数幂化为正整数指数幂.【类型三】逆用幂的运算法则求值已知a -m =3,bn =2,则(a -mb -2n )-2=________.解析:(a -mb -2n )-2=(a -m )-2·b 4n =(a -m )-2(b )4=3-2×24=169.故填169. 方法总结:把要求的代数式逆用幂的运算法则,用已知的式子来表示是解题的关键.计算:(278)x -1·(23)3x -4. 解:(278)x -1·(23)3x -4=(错误!)3x -3·(错误!)3x -4=(错误!)3-3x·(2)3x-4=(23)3-3x+3x-4=(23)-1=32.方法总结:利用负整数指数幂,把底数是互为相反数的两数可以转化为相同,再根据幂的运算法则进行计算.探究点二:整数指数幂运算的实际应用某房间空气中每立方米含3×106个病菌,为了试验某种杀菌剂的效果,科学家们进行实验,发现1毫升杀菌剂可以杀死2×105个这种病菌,问要将长10m,宽8m,高3m的房间内的病菌全部都杀死,需要多少杀菌剂?解:(10×8×3)×(3×106)÷(2×105)=(720×106)÷(2×105)=360×10=3.6×103(毫升)答:需要3.6×103毫升杀菌剂才能将房间中的病菌全部杀死.方法总结:科学记数法在实际生活中应用广泛,在运用科学记数法解题时要注意a×10-n中n的值.三、板书设计整数指数幂的运算法则:(1)同底数幂的乘法:am·an=am+n(a≠0,m,n都是整数);(2)幂的乘方:(am)n=amn(a≠0,m,n都是整数);(3)积的乘方:(ab)n=an·bn(a≠0,b≠0,n是整数).本节课通过把正整数指数幂的五个运算法则,推广到整数范围内,从而可用三个运算法则来概括.整数指数幂的运算是学生学习过程中的一个难点,也是易错点,在教学过程中,可让学生把典型错误展示在黑板上,引导学生分析产生错误的原因.【素材积累】辛弃疾忧国忧民辛弃疾曾写《美芹十论》献给宋孝宗。