输出以下的杨辉三角形要求输出8行111
- 格式:ppt
- 大小:54.00 KB
- 文档页数:13
c语⾔-杨辉三⾓的两种输出⽅法c语⾔对杨辉三⾓的简单实现杨辉三⾓是数字与⼏何的完美融合,杨辉三⾓有着⾮常神奇的排列规律。
下⾯我们来复习以下杨辉三⾓形的特性,并⽤程序来输出杨辉三⾓形。
11 11 2 11 3 3 11 4 6 4 1如上,可以看出⼀个很简单的规律:每个数等于它上⽅两数之和。
每⾏数字左右对称,由1开始逐渐变⼤。
第n⾏的数字有n项。
利⽤这三个规律,我们可以⽤数组来实现杨辉三⾓的排列。
#include <stdio.h>#define N 14void main(){int i, j, k, n, arr[N][N]; /*定义⼆维数组arr[14][14]*/do{printf("请输⼊要打印的⾏数:");scanf("%d",&n);}while(n<=0||n>=N-1); //对打印⾏数进⾏判断,避免越界for(i=1;i<=n;i++)a[i][1] = a[i][i] = 1; //两边的数令它为1,因为现在循环从1开始,就认为a[i][1]为第⼀个数for(i=3;i<=n;i++)for(j=2;j<=i-1;j++)a[i][j]=a[i-1][j-1]+a[i-1][j]; //除两边的数外都等于上⽅两数之和for(i=1;i<=n;i++){for(k=1;k<=n-i;k++)printf(" "); //对打印进⾏排版for(j=1;j<=i;j++)printf("%6d",a[i][j]);printf("\n");}return 0;}以上就是数组对杨辉三⾓的实现,如果不想使⽤数组还可以利⽤以下规律,进⾏直接打印。
第n⾏的m个数可表⽰为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。
在他所着的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。
我们则来对“杨辉三角”的规律进行探讨和研究。
内容1二项式定理与杨辉三角与杨辉三角联系最紧密的是二项式乘方展开式的系数规律,即。
杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为:121则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为:1331但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:14641似乎发现了一些规律,就可以发现以下呈三角形的数列:1(110)11(111)121(112)1331(113)14641(114)15101051(115)1615201561(116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+C(n,n)a^0*b^n 因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把带进了。
求二项式展开式系数的问题,实际上是一种组合数的计算问题。
用系数来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1(1)11(1+1=2)121(1+2+1=4)1331(1+3+3+1=8)14641(1+4+6+4+1=16)15101051(1+5+10+10+5+1=32)1615201561(1+6+15+20+15+6+1=64)……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3杨辉三角中斜行和水平行之间的关系(1)1(2)n=111(3)n=2121(4)n=31331(5)n=414641(6)n=515101051n=61615201561把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
2024年9月GESP 编程能力认证C++等级考试八级真题试卷(含答案)一、单选题(每题2分,共30分)。
1.下面关于C++类和对象的说法,错误的是()。
A. 类的析构函数可以为虚函数。
B. 类的构造函数不可以为虚函数。
C. class 中成员的默认访问权限为private 。
D. struct 中成员的默认访问权限为private 。
2.对于一个具有n 个顶点的无向图,若采用邻接矩阵表示,则该矩阵的大小为()。
A. 2n n B. n ×nC. (n-1)×(n-1)D. (n+1)×(n+1)3.设有编号为A 、B 、C 、D 、E 的5个球和编号为A 、B 、C 、D 、E 的5个盒子。
现将这5个球投入5个盒子,要求每个盒子放一个球,并且恰好有两个球的编号与盒子编号相同,问有多少种不同的方法()。
A. 5B. 120C. 20D. 604.从甲地到乙地,可以乘高铁,也可以乘汽车,还可以乘轮船。
一天中,高铁有10班,汽车有5班,轮船有2班。
那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法()。
A. 100B. 60C. 30D. 175.题n 个结点的二叉树,执行释放全部结点操作的时间复杂度是()。
A. O(n)B. O(n log n)C. O(log n)D. O(2n )6.在一个单位圆上,随机分布n 个点,求这n 个点能被一个单位半圆周全部覆盖的概率()。
nA.1-n21B.2n1C.n1D.n27.下面pailie函数是一个实现排列的程序,横线处可以填入的是()。
#include <iostream>using namespace std;int sum =0;void swap(int & a, int & b){int temp =a;a =b;b =temp;}void pailie(int begin, int end, int a[]){if(begin ==end){for(int i =0;i < end;i++)cout << a[i];cout << endl;}for(int i =begin;i < end;i++){__________ // 在此处填入选项。
《Visual C++与面向对象程序设计》课外训练体系第1章 C++入门一、作业习题:1.在计算机上通过运行本章的各例题,熟悉Developer Studio 的使用方法。
2.请仿照例1-2,编写一个计算矩形面积的程序。
二、讨论习题:1.乘法计算器程序:请同学们根据例1-3自行改编。
三、思考题:1.使用梯形法计算下式定积分的值。
⎰-+11sin dx e x x积分区域等分数可取为200,并将计算结果和手算结果相比较。
2.修改例1-4的生日卡程序,使其能够输入和显示日期。
第2章 控制结构一、作业习题:1.编写计算阶乘 n!的程序。
二、讨论习题: 1.编程求 ...)12()!(2)!2( (5)423132arcsin 221252++++⋅⋅⋅⋅+⋅+≈+n n x n xxx x nn ,其中1<x 。
提示:结束条件可用 ε<u ,其中u 为通项。
四、思考题:1. 弦截法求一元方程0)(=x f 在区间[]10,x x 之间的一个根。
提示:考虑当区间[]10,x x 足够小,在此区间中方程0)(=x f 仅有一个单根的情况,如图2.14(见教材)所示。
此时如)(0x f 和)(1x f 异号,则可用两点间直线公式求出x 2:2.编写程序求斐波那契数列的第n 项和前n 项之和。
斐波那契数列是形如0, 1, 1, 2, 3, 5, 8, 13, ...其通项为:F 0 = 0; F 1 = 1;F n = F n -1+F n -2。
第3章 基本数据类型一、作业习题:1.用牛顿迭代法求方程:2x 3—4x 2十3x 一6=0在1.5附近的根。
2.用数组来处理求斐波那挈数列的第n 项和前n 之和。
二、讨论习题:1.打印出以下的杨辉三角形(要求打印出10行) 1 1 1 1 2 1 1 3 3 1 1 4 6411510 10 51… …提示:打印杨辉三角形有两种方法:1)杨辉三角形表现的是二项式n b a )+(的展开式的系数。
C语言杨辉三角(两种方法)杨辉三角是我们从初中就知道的,现在,让我们用C语言将它在计算机上显示出来。
在初中,我们就知道,杨辉三角的两个腰边的数都是1,其它位置的数都是上顶上两个数之和。
这就是我们用C语言写杨辉三角的关键之一。
在高中的时候我们又知道,杨辉三角的任意一行都是的二项式系数,n 为行数减1。
也就是说任何一个数等于这个是高中的组合数。
n 代表行数减1,不代表列数减1。
如:第五行的第三个数就为=6。
现在我们按第一种思路来写:先定义一个二维数组:a[N][N],略大于要打印的行数。
再令两边的数为1,即当每行的第一个数和最后一个数为1。
a[i][0]=a[i][i-1]=1,n 为行数。
除两边的数外,任何一个数为上两顶数之和,即a[i][j] = a[i-1][j-1] + a[i-1][j]。
最后输出杨辉三角。
代码如下:1.#include<stdio.h>2.#define N 143.void main()4.{5.int i, j, k, n=0, a[N][N];/*定义二维数组a[14][14]*/6.while(n<=0||n>=13){/*控制打印的行数不要太大,过大会造成显示不规范*/7.printf("请输入要打印的行数:");8.scanf("%d",&n);9.}10.printf("%d行杨辉三角如下:\n",n);11.for(i=1;i<=n;i++)12. a[i][1]= a[i][i]=1;/*两边的数令它为1,因为现在循环从1开始,就认为a[i][1]为第一个数*/13.for(i=3;i<=n;i++)14.for(j=2;j<=i-1;j++)15. a[i][j]=a[i-1][j-1]+a[i-1][j];/*除两边的数外都等于上两顶数之和*/16.for(i=1;i<=n;i++){17.for(k=1;k<=n-i;k++)18.printf(" ");/*这一行主要是在输出数之前打上空格占位,让输出的数更美观*/19.for(j=1;j<=i;j++)/*j<=i的原因是不输出其它的数,只输出我们想要的数*/20.printf("%6d",a[i][j]);21.22.printf("\n");/*当一行输出完以后换行继续下一行的输出*/23.}24.printf("\n");25.}运行结果:上面的这一种方法我们用到了二维数组,下面的这一方法我们将用到自定义函数。
杨辉三角的规律以及定理1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)杨辉三角形的系数分别为:1,(1,1),(1,2,1),(1,3,3,1),(1,4,6,4,1)(1,5,10,10,5,1),(1,6,15,20,15,6,1),(1,7,21,35,35,21,7,1)所以:(a+b)7=a7+7a6b+21a5b2+35a4b3+35a3b4+21a2b5+7ab6+b7。
由上式可以看出,(a+b)n等于a的次数依次下降n、n-1、n-2…n-n,b的次数依次上升,0、1、2…n次方。
系数是杨辉三角里的系数。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…n次幂,即杨辉三角第n 行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。
杨辉三角的规律以及定理李博洋摘要杨辉三角中的一些规律关键词杨辉三角幂二项式引言杨辉是我国南宋末年的一位杰出的数学家。
在他所著的《详解九章算法》一书中,画了一张表示二项式展开后的系数构成的三角图形,称做“开方做法本源”,现在简称为“杨辉三角”,它是世界的一大重要研究成果。
我们则来对“杨辉三角”的规律进行探讨和研究。
内容1二项式定理与杨辉三角杨辉三角我们首先从一个二次多项式(a+b)2的展开式来探讨。
由上式得出:(a+b)2=a2+2ab+b2此代数式的系数为: 1 2 1则(a+b)3的展开式是什么呢?答案为:a3+3a2b+3ab2+b3由此可发现,此代数式的系数为: 1 3 3 1 但似乎没有什么规律,所以让我们再来看看(a+b)4的展开式。
展开式为:a4+4a3b+6a2b2+4ab3+b4由此又可发现,代数式的系数为:1 4 6 4 1 似乎发现了一些规律,就可以发现以下呈三角形的数列:1 (110)1 1 (111)1 2 1 (112)1 3 3 1 (113)1 4 6 4 1 (114)1 5 10 10 5 1 (115)1 6 15 20 15 6 1 (116)因此可得出二项式定理的公式为:(a+b)n=C(n,0)a^n*b^0+C(n,1)a^(n-1)*b^1+...+C(n,r)a^(n-r)*b^r...+ C(n,n)a^0*b^n因此,二项式定理与杨辉三角形是一对天然的数形趣遇,它把数形结合带进了计算数学。
求二项式展开式系数的问题,实际上是一种组合数的计算问题。
用系数通项公式来计算,称为“式算”;用杨辉三角形来计算,称作“图算”。
2杨辉三角的幂的关系首先我们把杨辉三角的每一行分别相加,如下:1 ( 1 )1 1 ( 1+1=2 )1 2 1 (1+2+1=4 )1 3 3 1 (1+3+3+1=8 )1 4 6 4 1 (1+4+6+4+1=16 )1 5 10 10 5 1 (1+5+10+10+5+1=32 )1 6 15 20 15 6 1 (1+6+15+20+15+6+1=64 )……相加得到的数是1,2,4,8,16,32,64,…刚好是2的0,1,2,3,4,5,6,…次幂,即杨辉三角第n行中n个数之和等于2的n-1次幂3 杨辉三角中斜行和水平行之间的关系(1)1 (2) n=11 1 (3) n=21 2 1 (4) n=31 3 3 1 (5) n=41 4 6 4 1 (6) n=51 5 10 10 5 1 n=61 6 15 20 15 6 1把斜行(1)中第7行之前的数字相加得1+1+1+1+1+1+1=6把斜行(2)中第7行之前的数字相加得1+2+3+4+5=15把斜行(3)中第7行之前的数字相加得1+3+6+10=20把斜行(4)中第7行之前的数字相加得1+4+10=15把斜行(5)中第7行之前的数字相加得1+5=6把斜行(6)中第7行之前的数字相加得1将上面得到的数字与杨辉三角中的第7行中的数字对比,我们发现它们是完全相同的。