《三角形中的主要线段》教案
- 格式:doc
- 大小:27.50 KB
- 文档页数:3
三角形的高、中线、角平分线的教案一、教学目标:1. 让学生理解三角形的高、中线、角平分线的概念。
2. 让学生掌握三角形的高、中线、角平分线的性质。
3. 培养学生运用三角形的高、中线、角平分线解决问题的能力。
二、教学内容:1. 三角形的高:从三角形的一个顶点向对边所在的直线画垂线,顶点到垂足之间的线段叫做三角形的高。
2. 三角形的中线:连接三角形的一个顶点和它对边中点的线段叫做三角形的中线。
3. 三角形的角平分线:从三角形的一个顶点出发,把这个顶点的角平分成两个相等的角的线段叫做这个角的角平分线。
三、教学重点与难点:1. 教学重点:三角形的高、中线、角平分线的概念及性质。
2. 教学难点:三角形的高、中线、角平分线的画法及运用。
四、教学方法:1. 采用直观演示法,让学生通过观察实物和图形,理解三角形的高、中线、角平分线的概念。
2. 采用讲解法,讲解三角形的高、中线、角平分线的性质和画法。
3. 采用练习法,让学生通过练习巩固所学知识。
五、教学过程:1. 导入:通过展示三角形的高、中线、角平分线的实物模型,引导学生思考三角形的高、中线、角平分线的概念。
2. 讲解:讲解三角形的高、中线、角平分线的定义和性质,让学生理解并掌握。
3. 演示:教师演示如何画三角形的高、中线、角平分线,并讲解画法的注意事项。
4. 练习:学生分组练习,画出给定三角形的的高、中线、角平分线,并互相检查。
5. 总结:教师引导学生总结三角形的高、中线、角平分线的性质和画法,巩固所学知识。
六、教学拓展:1. 引导学生思考:在三角形中,高、中线、角平分线有何联系和区别?2. 讲解三角形的高、中线、角平分线在几何中的应用,如:解直角三角形、证明线段相等等。
七、课堂小结:1. 让学生回顾本节课所学内容,总结三角形的高、中线、角平分线的概念和性质。
2. 强调三角形的高、中线、角平分线在几何问题中的重要性。
八、课后作业:1. 画出给定三角形的的高、中线、角平分线,并标注出来。
三角形中的主要线段【教学目标】1.认识并会画出三角形的高线,利用其解决相关问题;2.认识并会画出三角形的中线,利用其解决相关问题;3.认识并会画出三角形的角平分线,利用其解决相关问题;【教学重点】认识三角形的高线、中线与角平分线,并会画出图形【教学难点】画出三角形的高线、中线与角平分线。
【教学过程】一、预习导学预习教材,并尝试完成自主预习案二、情境引入与三角形有关的线段,除了三条边还有哪些呢?通过折纸引出高、角平分线、中线等概念。
三、新知探究合作交流探究一:三角形高的概念及画法画法:什么是三角形的高,怎样画三角形的高,怎样画三角形的高?一个三角形有几条高?小组讨论交流回答,老师点评。
从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高,如图:AD是△ABC的边BC上的高线。
练习:分别画出钝角三角形、直角三角形、锐角三角形的三条高,它们所在的直线交于一点吗?同一个小组的成员分工协作完成,教师巡视评价探究二:三角形中线及角平分线的概念及画法活动:1.三角形的中线及其画法2.三角形的角平分线及其画法教师指导出三角形的中线的定义及角平分线的定义,然后依照三角形的教学过程,安排学生画一画,并相应地提出类似的问题学生动手操作,然后交流、探讨,师生共同归纳总结。
探究三:综合应用1.三角形的角平分线是()。
A.直线B.射线C.线段D.以上都不对2.下列说法:①三角形的角平分线、中线、高线都是线段;•②直角三角形只有一条高线;③三角形的中线可能在三角形的外部;④三角形的高线都在三角形的内部,并且相交于一点,其中说法正确的有()。
A.1个B.2个C.3个D.4个3.课件展示图,AD是△ABC的高,AE是△ABC的角平分线,AF是△ABC的中线,写出图中所有相等的角和相等的线段。
4.(选做)在△ABC中,AB=AC,AC边上的中线BD把三角形的周长分为12cm和15cm 两部分,求三角形各边的长。
与三角形有关的线段【教学目标】1.亲历认识与三角形有关的线段的探索过程,体验分析归纳得出三角形的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,进一步发展学生的探究、交流能力。
2.掌握三角形三边之间的大小关系。
3.熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。
【教学重难点】重点:掌握三角形边的性质。
难点:熟练运用三角形三边之间的大小关系,三角形的高、中线与角平分线。
【教学过程】一、直接引入师:今天这节课我们主要学习与三角形有关的线段,这节课的主要内容有:三角形的的定义与分类,三角形三边之间的大小关系,三角形的高、中线与角平分线的定义,以及三角形的稳定性,并且我们要掌握这些知识的具体应用,能熟练解决相关问题。
二、讲授新课(1)教师引导学生在预习的基础上了解三角形的定义,形成初步感知。
(2)首先,我们先来学习三角形三边之间的大小关系,它的具体内容是三角形两边的和大于第三边,三角形的两边的差小于第三边。
它是如何在题目中应用的呢?我们通过一道例题来具体说明。
例1.用一条长为的细绳围成一个等腰三角形。
(1)如果腰长是底边的2倍,那么各边的长是多少?(2)能围成有一边的长是的等腰三角形吗?为什么?解:(1)设底边长为,则腰长为。
解得所以,三边长分别为。
(2)因为长为的边可能是腰,也可能是底边,所以需要分情况讨论。
18cm 4cm xcm 2xcm 2218x x x ++=3.6x = 3.67.27.2cm cm cm ,,4cm如果长的边为底边,设腰长为,则解得如果长的边为腰,设底边长为,则解得因为,不符合三角形两边的和大于第三边,所以不能围成腰长是的等腰三角形。
由上讨论可知,可以围成底边边长是的等腰三角形。
(3)接着,我们再来看下三角形的高、中线与角平分线的定义内容,它的具体内容是从的顶点向它所对的边所在的直线画垂线,垂足为,所得线段叫做的边上的高。
教学设计织学生主动参与、勤于动手、积极思考,使他们在自主探究与合作交流的过程中把握三大概念。
2学法课前进行预习,明确学习目标,了解所需掌握的知识,课上在教师的组织、引导、点拨下折纸和画图形等实践过程等活动,从而真正理解和掌握三角形的高、中线与角平分线等概念。
五、教学重点及难点教学重点:理解三角形的高、中线及角平分线概念及画法。
教学难点:钝角三角形的高的画法及不同类型的三角形高线的位置关系。
六、课时设计:1课时教学过程教师活动学生活动预设设计意图一、知识回顾:出示课件,结合图形回顾已学知识:1垂线的定义:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线。
2线段中点的定义:把一条线段分成两条相等的线段的点。
3角平分线的定义:一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。
4 同学们还记得“过一点画已知直线的垂线”的作法吗画法(提问演示)学生回答回顾旧知识,为本节课学习三角形中几条重要线段作铺垫。
二、探究新知探究一:三角形的高让学生找出概念,然后探究以下问题:1出示课件,先演示画三角形的一条高后提问:学生动手操作,先独立思考后与同桌相互交流让学生通过观察、归纳、总结出三角形高三、课堂练习1、下图作三角形中的高正确的是( )2、在❒ABC 中,AD 是BC 边上的中线,若❒ABC 的面积是4,则❒ABD 的面积为3、角平分线的理解:∵BE 是△ABC 的角平分线 ∴ = =21∠ABC ∵CF 是△ABC 的角平分线 ∴∠ACB= =学生独立完成解答,教师提问学生对本节知识进行巩固练习,学以致用四、课堂小结1、谈谈本节课学习了什么内容2、你有什么收获学生畅所欲言,谈谈本节课学到了哪些知识, 需要注意什么问题。
师生互相交流本节课的内容及应用需要注意的问题。
北师大版八年级下册数学《6.3 三角形的中位线》教案一. 教材分析北师大版八年级下册数学《6.3 三角形的中位线》这一节主要介绍了三角形的中位线的性质和运用。
通过学习,学生能够掌握三角形中位线的定义、性质,并能运用中位线解决一些几何问题。
本节内容是学生学习几何知识的重要组成部分,也为后续学习其他几何图形奠定了基础。
二. 学情分析学生在学习本节内容前,已经掌握了平行线、相交线的相关知识,对图形的性质有一定的了解。
但部分学生对几何图形的理解和运用能力较弱,需要通过实例和练习来提高。
此外,学生对数学语言的表述和逻辑推理能力也需加强。
三. 教学目标1.理解三角形中位线的定义和性质;2.能够运用中位线解决一些简单的几何问题;3.培养学生的空间想象能力和逻辑推理能力;4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.三角形中位线的定义和性质;2.运用中位线解决几何问题。
五. 教学方法1.采用问题驱动法,引导学生探究三角形中位线的性质;2.利用几何画板和实物模型,直观展示中位线的特点;3.通过实例分析和练习,巩固所学知识;4.采用小组讨论和合作交流的方式,培养学生的团队合作能力。
六. 教学准备1.准备相关几何画板软件和实物模型;2.设计好教学问题和练习题;3.准备好黑板和粉笔。
七. 教学过程导入(5分钟)1.回顾上节课的内容,引导学生复习平行线和相交线的性质;2.提问:你们认为三角形有哪些特殊的线段?它们有什么性质?呈现(10分钟)1.引入三角形中位线的概念,让学生观察和描述三角形的中位线;2.利用几何画板展示三角形中位线的特点,引导学生发现中位线的性质;3.引导学生用数学语言表述中位线的性质。
操练(10分钟)1.让学生自主探究三角形中位线的性质,分组讨论;2.每组选取一名代表,向全班汇报讨论结果;3.教师点评并总结,强调中位线的性质。
巩固(10分钟)1.设计一些有关三角形中位线的练习题,让学生独立完成;2.教师挑选一些学生的作业,进行分析讲解;3.让学生互相交流解题心得,分享解决问题的方法。
《三角形中的主要线段》教案
教学目标
知识与技能
1.经历折纸、画图等实践过程,认识三角形的中线、角平分线、高.
2.会画出任意三角形的中线、角平分线、高,通过画图了解三角形三条中线、三条角平分线、三条高会交于一点.
过程与方法
1.通过折纸、画图等实践活动丰富学生对所学内容的理解和体验,同时发展他们的空间观念.
2.注重学生在具体活动中的参与程度以及与同伴之间交流的情况.
情感、态度与价值观
在学生充分进行操作、思考和交流过程中,激发学生的求知欲.
重点难点
重点
了解三角形的中线、角平分线、高的概念,会画出三角形的中线、角平分线、高.难点
了解三角形三条中线、三条角平分线、三条高会交于一点.
教学设计
情景一
复习回顾:上节课我们学习三角形按角分为哪几类?
学生回顾思考,并举例回答:
1.锐角三角形2.直角三角形3.钝角三角形
情景二
1.(1)什么是三角形的中线?
(2)如何画出三角形的中线?
学生阅读教材相关内容,明确三角形中线定义:在三角形中,连接一个顶点与它对边中点的线段,叫做这个三角形的中线.
在课本第78页图12-13中,D是BC的中点,那么线段AD是BC边上的中线.
2.探索:
在一块质地均匀的三角形硬纸板上,画出它的三条中线.观察这三条中线是否交于一点.如果这三条中线交于一点,用笔尖托住这个交点,观察硬纸板能否保持平衡.
相关结论:
三角形三条边的中线交于一点,这点称为三角形的重心.
情景三
1.复习用量角器或折纸的办法画出或折出一个角的平分线.
学生在纸上利用量角器画出任意一个角的平分线,或用折纸的办法得到角的平分线.2.在一张薄纸上任意画出一个三角形,你能设法画出它的一个内角平分线吗?
学生可利用在1中的折纸的办法得到,也可通过量角器画出.
3.三角形角平分线定义.
在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线.
学生观察、阅读、体会角平分线定义的含义,它是一条线段,而角的平分线是一条射线.4.每人准备锐角三角形、钝角三角形和直角三角形纸片各一个:
毎个学生拿出准备好的三角形利用量角器画出它们的角平分线.
(1)你能分别画出这三个三角形的三条角平分线吗?
(2)你能用折纸的办法得到它们吗?
学生先独立完成,然后小组内互相交流,最后小组派代表演示.
(3)在每个三角形中,这三条角平分线之间有怎样的位置关系?
5.三角形的三条角平分线是否交于一点?动手试一试.
学生讨论后举手回答.
三角形的三条角平分线交于一点.
情景四
1.什么是三角形的髙?
理高的概念.
2.三角形的三条高(或所在的直线)交于一点吗?
相关结论:三角形的三条高交于一点.
3.每人准备锐角三角形、钝角三角形和直角三角形纸片各一个.(1)分别画出它们的三条高.(2)用折纸的办法能得到它们吗?你发现它们的位置有什么关系?
学生思考后画、折,小组内讨论、相互交流.以小组为代表回答所得的结论.
结论:锐角三角形的三条高交于一点,交点在三角形的内部;直角三角形的三条高交于一点,交点与直角顶点重合;钝角三角形的三条高所在的直线交于一点,交点在三角形的内部(如课本第80页图12-18).
课堂小结
1.本节课我收获了哪些知识?
2.本节课我还有哪些不明白问题?
学生交流总结得出本节知识点:
(1)三角形的角平分线;(2)三角形的中线;(3)三角形的高.
教师总结本节重难点.。