材料力学第2章(2)-材料的力学性能
- 格式:ppt
- 大小:1.45 MB
- 文档页数:15
材料力学性能材料力学性能是指材料在外力作用下所表现出的力学特性,包括材料的强度、韧性、硬度、塑性等。
这些性能直接影响着材料在工程领域的应用,因此对材料力学性能的研究和评价显得尤为重要。
首先,强度是材料力学性能中的重要指标之一。
材料的强度是指材料抵抗外力破坏的能力,通常用抗拉强度、抗压强度、抗弯强度等来表示。
不同材料的强度差异很大,例如金属材料的强度通常较高,而塑料和橡胶等材料的强度相对较低。
材料的强度直接影响着材料在工程中的承载能力和使用寿命。
其次,韧性是衡量材料抵抗断裂的能力。
韧性高的材料在受到外力作用时能够延展变形而不易断裂,这对于一些需要承受冲击或振动载荷的工程结构来说尤为重要。
例如,航空航天领域对材料的韧性要求较高,以确保飞行器在受到外部冲击时能够保持结构完整。
此外,硬度是材料力学性能中的重要参数之一。
材料的硬度是指材料抵抗划痕和压痕的能力,通常用洛氏硬度、巴氏硬度等来表示。
硬度高的材料通常具有较好的耐磨性和耐腐蚀性,适用于一些对材料表面要求较高的工程领域,例如汽车制造、船舶建造等。
最后,塑性是材料力学性能中的重要特性之一。
材料的塑性是指材料在受到外力作用时能够发生塑性变形而不断裂,这对于一些需要进行成形加工的工程材料来说尤为重要。
例如,金属材料的塑性使其能够通过锻造、轧制等工艺进行成形,从而制备出各种复杂的零部件。
综上所述,材料力学性能是材料工程领域中的重要研究内容,不同的材料力学性能对材料的应用具有重要的影响。
因此,对材料力学性能的研究和评价具有重要的意义,可以为工程领域的材料选择和设计提供重要的参考依据。
第一章 单向静拉伸力学性能1、 解释下列名词。
1弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
2.滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
3.循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
4.包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
5.解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面.6.塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
7.解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b 的台阶.8。
河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
9.解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂.沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂.11。
韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变12.弹性不完整性:理想的弹性体是不存在的,多数工程材料弹性变形时,可能出现加载线与卸载线不重合、应变滞后于应力变化等现象,称之为弹性不完整性。
弹性不完整性现象包括包申格效应、弹性后效、弹性滞后和循环韧性等2、 说明下列力学性能指标的意义。
答:E 弹性模量 G 切变模量 r σ规定残余伸长应力 2.0σ屈服强度 gt δ金属材料拉伸时最大应力下的总伸长率 n 应变硬化指数 【P15】3、 金属的弹性模量主要取决于什么因素?为什么说它是一个对组织不敏感的力学性能指标?答:主要决定于原子本性和晶格类型。
工程材料力学性能课后题答案第三版(束德林)第一章单向静拉伸力学性能1、解释下列名词。
(1)弹性比功:金属材料吸收弹性变形功的能力,一般用金属开始塑性变形前单位体积吸收的最大弹性变形功表示。
(2)滞弹性:金属材料在弹性范围内快速加载或卸载后,随时间延长产生附加弹性应变的现象称为滞弹性,也就是应变落后于应力的现象。
(3)循环韧性:金属材料在交变载荷下吸收不可逆变形功的能力称为循环韧性。
(4)包申格效应:金属材料经过预先加载产生少量塑性变形,卸载后再同向加载,规定残余伸长应力增加;反向加载,规定残余伸长应力降低的现象。
(5)解理刻面:这种大致以晶粒大小为单位的解理面称为解理刻面。
(6)塑性:金属材料断裂前发生不可逆永久(塑性)变形的能力。
脆性:指材料在外力作用下(如拉伸、冲击等)仅产生很小的变形即断裂破坏的性质。
韧性:指金属材料断裂前吸收塑性变形功和断裂功的能力。
(7)解理台阶:当解理裂纹与螺型位错相遇时,便形成一个高度为b的台阶。
(8)河流花样:解理台阶沿裂纹前端滑动而相互汇合,同号台阶相互汇合长大,当汇合台阶高度足够大时,便成为河流花样。
是解理台阶的一种标志。
(9)解理面:是金属材料在一定条件下,当外加正应力达到一定数值后,以极快速率沿一定晶体学平面产生的穿晶断裂,因与大理石断裂类似,故称此种晶体学平面为解理面。
(10)穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。
沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。
(11)韧脆转变:具有一定韧性的金属材料当低于某一温度点时,冲击吸收功明显下降,断裂方式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变。
2、说明下列力学性能指标的意义。
答:(1)E(G)分别为拉伸杨氏模量和切边模量,统称为弹性模量表示产生100%弹性变所需的应力。
σ规定残余伸长应力,试样卸除拉伸力后,其标距部分的残余伸长达到规定的原始标距百分比时的应力。
(2)rσ名义屈服强度(点),对没有明显屈服阶段的塑性材料通常以产生0.2%的塑性形变对应的应力作为屈2.0服强度或屈服极限。
第二单元第二章 杆件的轴向拉压应力与材料的力学性能§2-1 引言工程实例: 连杆、螺栓、桁架、房屋立柱、桥墩……等等。
力学特征: 构件:直杆外力:合力沿杆轴作用(偏离轴线、怎样处理?)内力:在轴向载荷作用下,杆件横截面上的唯一内力分量为轴力N ,它们在该截面的两部分的大小相等、方向相反。
规定拉力为正,压力为负。
变形:轴向伸缩§2-2 拉压杆的应力一、拉压杆横截面上的应力(可演示,杆件受拉,上面所划的横线和纵线仍保持直线,仅距离改变,表明横截面仍保持为平面)平面假设→应变均匀→应力均匀AN=σ或A P =σ(拉为正,压为负)二、Saint-Venant 原理(1797-1886,原理于1855年提出)问题:杆端作用均布力,横截面应力均布。
杆端作用集中力,横截面应力均布吗? 如图, 随距离增大迅速趋于均匀。
局部力系的等效代换只影响局部。
它已由大量试验和计算证实,但一百多年以来,无数数学力学家试图严格证明它,至今仍未成功。
这是固体力学中一颗难以采撷的明珠。
三、拉压杆斜截面上的应力(低碳钢拉伸,沿45°出现滑移线,为什么?)0cos =-P Ap αα ασ=α=αcos cos AP p ασ=α=σαα2cos cos pασ=α=ταα22sin sin p ()0=ασ=σm ax ()452=ασ=τmax方位角α:逆时针方向为正剪应力τ:使研究对象有顺时针转动趋势为正。
例1和例2,看书p17,18§2-3 材料拉伸时的力学性能(构件的强度、刚度和稳定性,不仅与构件的形状、尺寸和所受外力有关,而且与材料的力学性能有关。
拉伸试验是最基本、最常用的试验。
)一、拉伸试验P18: 试样 拉伸图绘图系统放大变形传感器力传感器--→→→→二、低碳钢拉伸时的力学性能材料分类:脆性材料(玻璃、陶瓷和铸铁)、塑性材料(低碳钢:典型塑性材料)四个阶段:线性阶段(应力应变成正比,符合胡克定律,正比阶段的结束点称为比例极限)、屈服阶段(滑移线)(可听见响声,屈服极限s σ)、强化阶段(b σ强度极限)、局部变形(颈缩)阶段(名义应力↓,实际应力↑) 三(四个)特征点:比例极限、(接近弹性极限)、屈服极限、强度极限(超过强度极限、名义应力下降、实际应力仍上升)。
材料力学性能教案第一章:材料力学性能概述教学目标:1. 理解材料力学性能的概念及其重要性。
2. 掌握材料力学性能的主要指标。
3. 了解不同材料的力学性能特点。
教学内容:1. 材料力学性能的概念:定义、重要性。
2. 材料力学性能的主要指标:弹性模量、屈服强度、抗拉强度、韧性、硬度等。
3. 不同材料的力学性能特点:金属材料、非金属材料、复合材料等。
教学活动:1. 引入讨论:为什么了解材料的力学性能很重要?2. 讲解材料力学性能的概念及其重要性。
3. 通过示例介绍不同材料的力学性能特点。
4. 练习计算材料力学性能指标。
作业:1. 复习材料力学性能的主要指标及其计算方法。
2. 选择一种材料,描述其力学性能特点,并解释其在实际应用中的作用。
第二章:弹性模量教学目标:1. 理解弹性模量的概念及其物理意义。
2. 掌握弹性模量的计算方法。
3. 了解弹性模量在不同材料中的变化规律。
教学内容:1. 弹性模量的概念:定义、物理意义。
2. 弹性模量的计算方法:胡克定律、应力-应变关系。
3. 弹性模量在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入弹性模量的概念。
2. 讲解弹性模量的计算方法,并通过示例进行演示。
3. 通过实验或示例观察不同材料的弹性模量变化规律。
作业:1. 复习弹性模量的概念及其计算方法。
2. 完成弹性模量的计算练习题。
第三章:屈服强度与抗拉强度教学目标:1. 理解屈服强度与抗拉强度的概念及其物理意义。
2. 掌握屈服强度与抗拉强度的计算方法。
3. 了解屈服强度与抗拉强度在不同材料中的变化规律。
教学内容:1. 屈服强度与抗拉强度的概念:定义、物理意义。
2. 屈服强度与抗拉强度的计算方法:应力-应变关系、极限状态方程。
3. 屈服强度与抗拉强度在不同材料中的变化规律:金属材料、非金属材料、复合材料等。
教学活动:1. 复习上一章的内容,引入屈服强度与抗拉强度的概念。
材料⼒学性能复习第⼆章材料在静载荷下的⼒学性能1.连续塑性变形强化材料和⾮连续塑性形变强化材料曲线、变形过程、屈服强度。
2.指出以下应⼒应变曲线与哪些典型材料相对应,并对其经历的变形过程做出说明。
3.拉伸断裂前,发⽣少量塑性变形,⽆颈缩,在最⾼载荷点处断裂;4.断裂前先发⽣弹性变形,然后进⼊屈服阶段,之后发⽣形变强化+均匀塑性变形,有颈缩现象,再发⽣⾮均匀塑性变形直⾄断裂;5.应⼒状态软性系数的定义及其意义、应⼒状态图的应⽤。
6.画出低碳钢的应⼒应变曲线,并说明获得该材料的强度和塑性指标?⽐例极限弹性极限屈服极限强度极限断裂强度延伸率断⾯收缩率7.⼯程应⼒、⼯程应变、真应⼒和真应变之间有什么关系?8.为什么灰⼝铸铁的拉伸断⼝与拉伸轴垂直,⽽压缩断⼝却与压缩⼒轴成45o⾓?9.材料为灰铸铁,其试样直径d=30mm,原标距长度h。
=45mm。
在压缩试验时,当试样承受到485kN压⼒时发⽣破坏,试验后长度h=40mm。
试求其抗压强度和相对收缩率。
10.布⽒、洛⽒、维⽒硬度的试验原理、特点、应⽤。
11.现有如下⼯件需测定硬度,选⽤何种硬度试验⽅法为宜? (1) 渗碳层的硬度分布;(2)灰铸铁;(3)淬⽕钢件;(4)氮化层;(5)双相钢中的铁素体和马⽒体;(6)⾼速钢⼑具;(7)硬质合⾦;(8)退⽕态下的软钢。
第三章材料的变形12.⾦属的弹性模量主要取决于什么?材料的弹性模量可以通过材料热处理等⽅式进⾏有效改变的吗?为什么说它是⼀个对结构不敏感的⼒学性能?弹性也称之为刚度,都是表征材料变形的能⼒?特点:单值性,可逆性,变形量⼩;物理本质:克服原⼦间⼒(双原⼦模型)组织不敏感:E主要取决于材料的本性,与晶格类型和原⼦间距有关,合⾦中固溶原⼦、热处理⼯艺、冷塑性变形,温度、加载⽅式等都对弹性模量影响不⼤;刚度:弹性与刚度是不同的,弹性表征材料弹性变形的能⼒,刚度表征材料弹性变形的抗⼒。
13.弹性变形的不完整性?灰⼝铸铁可以⽤作机床机⾝,为什么?对理想弹性体,在应⼒作⽤下产⽣的应变,与应⼒间存在三个关系:线性、瞬时和唯⼀性。
材料的力学性能和弹性模量材料的力学性能和弹性模量是材料科学中非常重要的参数,它们与材料的力学行为和性能密切相关。
本文将对材料的力学性能和弹性模量进行详细介绍和分析。
一、力学性能1. 强度:材料的强度是指材料在受力情况下能够承受的最大应力。
强度高的材料具有较高的抗拉、抗压等能力,常用来制造承重结构或需要抗外力作用的零部件。
2. 韧性:材料的韧性是指材料在受力情况下能够吸收能量的能力。
韧性高的材料能够在受到冲击或弯曲时发生塑性变形而不易断裂,常用于制造需要抗冲击或吸能的零部件。
3. 延展性:材料的延展性是指材料在受力情况下能够发生塑性变形的能力,即能够被拉长或压扁。
延展性高的材料具有较好的可加工性和适应性,常用于制造需要复杂形状或变形的零部件。
4. 脆性:材料的脆性是指材料在受力情况下发生断裂的倾向。
脆性高的材料容易发生断裂,常用于制造需要刚性和脆性的结构或零部件。
二、弹性模量弹性模量是材料在弹性阶段的应力和应变之间的比例关系。
常用的弹性模量包括杨氏模量、剪切模量和泊松比。
1. 杨氏模量:杨氏模量是指材料在拉伸或压缩过程中单位面积的应力与应变之间的比值。
杨氏模量越大,材料的刚度越高,即抵抗外力变形的能力越强。
2. 剪切模量:剪切模量是指材料在剪切过程中单位面积的剪应力与剪应变之间的比值。
剪切模量描述了材料在剪切应力作用下的变形特性。
3. 泊松比:泊松比是指材料在受力方向上的拉伸或压缩与垂直方向上的应力变形之间的比值。
泊松比描述了材料在受力作用下的变形特性,对材料的破坏和失效具有重要的影响。
三、材料选择和应用材料的力学性能和弹性模量是根据具体应用需求进行选择的。
不同的材料在力学性能和弹性模量上具有各自的优势和适用范围。
1. 金属材料:金属材料具有优异的强度和韧性,常用于制造机械零件、建筑结构和汽车零件等需要抗拉、抗压和抗冲击能力的领域。
2. 高分子材料:高分子材料具有良好的延展性和可加工性,常用于制造塑料制品、橡胶制品和纤维材料等需要复杂形状和变形能力的领域。
第二章轴向拉压应力与材料的力学性能2-1试画图示各杆的轴力图.题2-1图解:各杆的轴力图如图2-1所示。
图2-12—2试画图示各杆的轴力图,并指出轴力的最大值。
图a与b所示分布载荷均沿杆轴均匀分布,集度为q。
题2—2图(a)解:由图2—2a(1)可知,)(qx=2F-qaxN轴力图如图2—2a(2)所示,qa F 2max ,N =图2-2a(b )解:由图2—2b(2)可知, qa F =Rqa F x F ==R 1N )(22R 2N 2)()(qx qa a x q F x F -=--=轴力图如图2-2b(2)所示,qa F =max N,图2-2b2—3 图示轴向受拉等截面杆,横截面面积A =500mm 2,载荷F =50kN 。
试求图示斜截面m -m 上的正应力与切应力,以及杆内的最大正应力与最大切应力。
题2-3图解:该拉杆横截面上的正应力为100MPa Pa 1000.1m10500N 10508263=⨯=⨯⨯==-A F σ 斜截面m -m 的方位角, 50-=α故有MPa 3.41)50(cos MPa 100cos 22=-⋅== ασσαMPa 2.49)100sin(MPa 502sin 2-=-⋅== αστα杆内的最大正应力与最大切应力分别为MPa 100max ==σσMPa 502max ==στ 2-5 某材料的应力—应变曲线如图所示,图中还同时画出了低应变区的详图。
试确定材料的弹性模量E 、比例极限p σ、屈服极限s σ、强度极限b σ与伸长率δ,并判断该材料属于何种类型(塑性或脆性材料)。
题2-5解:由题图可以近似确定所求各量。
220GPa Pa 102200.001Pa10220ΔΔ96=⨯=⨯≈=εσEMPa 220p ≈σ, MPa 240s ≈σMPa 440b ≈σ, %7.29≈δ该材料属于塑性材料。
2—7 一圆截面杆,材料的应力-应变曲线如题2—6图所示。