第二章力学性能
- 格式:ppt
- 大小:952.50 KB
- 文档页数:40
第二章弹性变形阶段的力学性能一.弹性变形的特点及物理本质特点:1.可逆性:外力去除后,变形随即消失,从而恢复原状;2.单值性:无论加载或卸载,应力应变都保持单值的线性关系;3.变形量很小:一般小于0.5--1。
为什么金属具有上述弹性变形特点?需要进一步了解金属变形的物理过程后才能解释。
我们都知道,金属是由原子规则排列组成的晶体,相邻原子间存在一定的作用力。
弹性变形就是外力克服原子间作用力,使原子间距发生变化的结果;而恢复弹性变形则是在外力去除后,原子间作用力迫使原子恢复原来位置的结果。
为简便起见,可借用双原子模型来进行分析。
如P9及图1-5所示,金属相邻两原子在一定范围内,其间存在有相互作用力,包括有相互引力和相互斥力。
一般认为:引力是由金属正离子和自由电子间的库仑引力所产生;斥力是由正离子和正离子,电子和电子间的斥力所产生。
其中引力和斥力是相互矛盾的。
引力力图使原子n1和n2尽量靠近,而斥力又力图使二原子尽量分开。
曲线1表示引力随原子间距r的变化情况,曲线2表示斥力随r变化情况,曲线3表示引力和斥力的合力。
当无外力作用时,原子在r=r。
处引力和斥力平衡,合力为零。
所以r。
是两原子平衡间距,即正常的晶格原子间距。
下面的曲线表示了原子间势能曲线在r 。
处势能最低,处于稳定状态。
当外力作用促使两原子靠近(r〈r。
)或分开(r〉r。
)时,必须克服相应的斥力或引力,才能是原子达到新的平衡位置,产生原子间距的变化,即所谓的滑变形。
当外力消除后,因原子间力的作用,原子又回到原来平衡位置(r=r。
)即恢复形变,这就是弹变的物理过程,也是弹变具有可逆性的原因。
两原子的作用里P和间距r之间的关系可表示为:P=A/r²-A r²。
/r4=A/r2-B/r4式中A和 r。
是与晶体有关的常数;式中第一项为引力,第二项为斥力,当两原子靠近时,斥力比引力变化快,因而合力表现为相斥,当r〉r。
时,引力起主导作用,各力表现为相引,同时上式还说明各力P和r的是曲线关系。
第2章钢筋混凝土材料的力学性能知识点1. 钢筋的强度和变形, 钢筋的级别和品种, 混凝土结构对钢筋性能的要求;2. 单轴和复合受力状态下混凝土的强度;3. 混凝土在一次短期加荷以及重复荷载和长期荷载作用下的变形性能;4. 混凝土的弹性模量、混凝土的强度和强度等级;5. 钢筋和混凝土的粘结性能。
要点1. 混凝土材料的强度标准值与强度设计值二者的大小关系。
混凝土材料的强度标准值与强度设计值二者的大小关系为标准值大。
2. 有明显流幅的热轧钢筋屈服强度的依据。
有明显流幅的热轧钢筋屈服强度的依据是屈服下限。
3. 混凝土的徐变混凝土承受荷载不变, 而变形随时间增长的现象称为混凝土的徐变4. 混凝土的立方体抗压强度混凝土的立方强度是指按标准方法制作养护的边长为150mm的立方体试件, 在28天龄期用标准试验方法测得的具有95%保证率的抗压强度。
5. 混凝土的轴心抗压强度混凝土的轴心强度是指按标准方法制作养护的边长为150 150 300mm的棱柱体作为标准试件, 试验所测得的具有95%保证率的抗压强度为轴心抗压强度。
6. 光圆钢筋与混凝土的粘结作用的组成光圆钢筋与混凝土的粘结作用由胶结力, 摩阻力, 咬合力三部分组成。
7. 钢筋混凝土结构对钢筋性能的要求有哪些。
钢筋混凝土结构对钢筋性能的要求有强度、塑性或变形能力、可焊性、温度要求及与混凝土的粘结力或称握裹力。
8. 混凝土在荷载作用下的应变包括哪些。
混凝土在荷载作用下的应变包括加载瞬间产生的瞬时应变, 和在长期荷载作用下的徐变。
9. 钢筋与混凝土这两种材料能结合在一起共同工作的原因。
钢筋与混凝土这两种材料能结合在一起共同工作, 其原因是二者之间具有相近的温度线膨胀系数和良好的粘结力。
10. 结构的极限状态分为哪两种。
结构的极限状态分为承载能力极限状态和正常使用极限状态。
金属材料力学性能基本知识及钢材的脆化金属材料是现代工业、农业、国防以及科学技术各个领域应用最广泛的工程材料,这不仅是由于其来源丰富,生产工艺简单、成熟,而且还因为它具有优良的性能。
通常所指的金属材料性能包括以下两个方面:1.使用性能即为了保证机械零件、设备、结构件等能正常工作,材料所应具备的性能,主要有力学性能(强度、硬度、刚度、塑性、韧性等),物理性能(密度、熔点、导热性、热膨胀性等),化学性能(耐蚀性、热稳定性等)。
使用性能决定了材料的应用范围,使用安全可靠性和使用寿命。
2 工艺性能即材料在被制成机械零件、设备、结构件的过程中适应各种冷、热加工的性能,例如锻造,焊接,热处理,压力加工,切削加工等方面的性能。
工艺性能对制造成本、生成效率、产品质量有重要影响。
1.1材料力学基本知识金属材料在加工和使用过程中都要承受不同形式外力的作用,当外力达到或超过某一限度时,材料就会发生变形以至断裂。
材料在外力作用下所表现的一些性能称为材料的力学性能。
锅炉压力容器材料的力学性能指标主要有强度、硬度、塑性、韧性等这些性能指标可以通过力学性能试验测定。
1.1.1 强度金属的强度是指金属抵抗永久变形和断裂的能力。
材料强度指标可以通过拉伸试验测出。
把一定尺寸和形状的金属试样(图1~2)装夹在试验机上,然后对试样逐渐施加拉伸载荷,直至把试样拉断为止。
根据试样在拉伸过程中承受的载荷和产生的变形量之间的关系,可绘出该金属的拉伸曲线(图1—3)。
在拉伸曲线上可以得到该材料强度性能的一些数据。
图1—3所示的曲线,其纵坐标是载荷P(也可换算为应力d),横坐标是伸长量AL(也可换算为应变e)。
所以曲线称为P—AL曲线或一一s曲线。
图中曲线A是低碳钢的拉伸曲线,分析曲线A,可以将拉伸过程分为四个阶段:1.弹性阶段即曲线的o-e段,在此段若加载不超过e点的应力值,卸载后试件的变形可全部消失,故e点的应力值为材料只产生弹性变形时应力的最高限,称为弹性极限,曲线的o~e’段为直线,在此段内应力与应变成正比,即材料符合虎克定律,该段称为线弹性阶段。
第二章钢筋和混凝土的力学性能主要内容:2.1 钢筋的力学性能2.2 混凝土的力学性能2.3 钢筋与混凝土之间的粘结作用重难点:钢筋的种类及力学指标;混凝土的力学指标及力学性能;钢筋与混凝土共同工作的原理2.1 钢筋的力学性能一、钢筋的品种 (Reinforcement types)表面形状:光圆钢筋、带肋钢筋化学成份:碳素钢(低碳钢)普通低合金钢供货方式:直条式(d≥10mm)——6、9、12m盘圆式生产工艺和强度:热轧钢筋、中高强钢丝、钢绞线、冷加工钢筋。
普通混凝土结构中采用较多的是热轧钢筋。
力学性能不同:软钢——有明显屈服台阶的钢筋(热轧钢筋、冷拉钢筋)硬钢——无明显屈服台阶的钢筋(钢丝、热处理钢筋)1、热轧钢筋(Hot Rolled Steel Reinforcing Bar)HPB300级、HRB335级、HRB400级、HRB500级屈服强度 fyk(标准值)HPB300: fyk = 300 N/mm2HRB400: fyk = 400 N/mm2HPB300钢筋(Ⅰ级)多为光面钢筋,多作为现浇楼板的受力钢筋和各种构件中的箍筋。
HRB335 (Ⅱ级) 、HRB400(RRB400)(Ⅲ级) 强度较高,为表面带肋的钢筋,多作为钢筋混凝土构件的受力钢筋。
2、钢丝 (Wire):中强钢丝的强度为800~1200MPa,高强钢丝、钢绞线的强度为 1470 ~1860MPa;钢丝的直径3~9mm;外形有光面、刻痕和螺旋肋三种,另有二股、三股和七股钢绞线,外接圆直径9.5~15.2 mm。
中高强钢丝和钢绞线均用于预应力混凝土结构。
3、冷加工钢筋 Cold working rebar:是由热轧钢筋和盘条经冷拉、冷拔、冷轧、冷扭加工后而成。
冷加工的目的是为了提高钢筋的强度,节约钢材。
但经冷加工后,钢筋的延伸率降低。
近年来,冷加工钢筋的品种很多,应根据专门规程使用。
4、热处理钢筋 Heat treatment :是将Ⅳ级钢筋通过加热、淬火和回火等调质工艺处理,使强度得到较大幅度的提高,而延伸率降低不多。
第2章工程材料的性能问一问,想一想:如果选择能够做铁锤的材料,您可能选择较硬的金属,而如果选择绑扎物件的一般铁丝,您就可能选择较软的金属。
材料性能是选择材料的基本依据。
那么如何科学地评价材料性能呢?学习目标1.重点了解工程材料的常用力学性能;2.了解工程材料的物理、化学及工艺性能并建立材料性能的技术经济概念。
各种材料,按其性能的不同,可以用于结构、机件、工具或物理功能器件等。
工程技术人员选用材料时首先要掌握材料的使用性能(如等),同时要考虑材料的工艺性能和经济性。
使用性能是材料在使用过程中表现出来的性能,主要有力学性能、物理性能与化学性能。
工艺性能是指材料在各种加工过程中表现出来的性能,比如铸造、锻造、焊接、热处理和切削加工等性能。
当然我们还要关注经济性能,要力求材料选用的总成本为最低。
在机械行业选用材料时,一般以力学性能作为主要依据。
2.1 材料的力学性能材料常用的力学性能指标有强度、塑性、硬度、冲击韧度和疲劳极限等。
2.1.1 强度和塑性材料的强度与塑性是极为重要的力学性能指标,采用拉伸试验方法测定。
所谓拉伸试验是指用静拉伸力对标准拉伸试样进行缓慢的轴向拉伸,直至拉断的一种试验方法。
在拉伸试验中和拉伸试验后可测量力的变化与相应的伸长,从而测出材料的强度与塑性。
图2.1.1 标准拉伸试样试验前,将材料制成一定形状和尺寸的标准拉伸试样(见GB 6397-86)。
图2.1.1为常用的圆形标准拉伸试样,试样的直径为d0 ,标距的长度为L。
将试样装夹在拉伸试验机上,缓慢增加试验力,试样标距的长度将逐渐增加,直至拉断。
若将试样从开始加载直到断裂前所受的拉力F,与其所对应的试样标距长度L的伸长量∆L绘成曲线,便得到拉伸曲线。
图2.1.2为退火低碳钢的拉伸曲线。
用试样原始截面积S0去除拉力F得到应力σ。
以试样原始标距L去除绝对伸长∆L得到应变ε,即σ=F S/0,ε=∆L L/,则力-伸长(F-∆L)曲线就成了工程应力应变(σ-ε)曲线。
力学性能试验朱永惺南京汽轮电机厂第二章力学性能试验取样基本知识(P18)第一节试样类型及取样原则(P18)一、取样依据:GB/T 2975-1998《钢及钢产品力学性能试验取样位置及试验制备》二、取样原则:1、取样对力学性能试验结果的影响;三要素:取样部位:1)加工过程中变形量各处不均匀2)材料内部各种缺陷分布和金属组织不均匀取样方向:材料在加工过程中金属是沿晶粒主加工变形方向流动,晶粒被拉长并排成行,夹杂也沿主加工变形方向排列,因此材料性能各向异性。
例如:纵向试样(试样纵向轴线与主加工方向平行)和横向试样(试样纵向轴线与主加工方向垂直)有较大差异:薄板材纵向试样抗拉强度,下屈服强度都高于横向试样,断面收缩率更是远远大于横向试样。
取样数量:1)某些力学性能指标对试验条件和材料本身的特性十分敏感,单个试样结果不足以为信,应采用最小的取样数量;2)试验结果的分散性及经济因素2、样品的代表性;一般性规定:GB/T 2975-1998专门的规定:产品材料标准和协议:①材料的平均性能;②取样方向;一般取其最危险、最薄弱的部位,因为最薄弱、最危险处的力学性能决定了产品的性能;此外受力状态与零部件的受力状态相一致;三、力学性能试验的试样取样类型:1、从原材料上直接取样:2、从产品(结构或零部件)的一定部位上取样;3、把实物作为样品。
四、样坯切取方法:无论用什麽方法都应遵循以下原则:(1)应在外观及尺寸合格的材料上取样,试料应有足够的尺寸,以保证机加工出足够的试样进行规定的试验及复验;(2)取样时,应对样坯和试样做出不影响其性能的标记,以保证始终能识别取样的位置和方向;(3)取样的方向应按材料标准规定或双方协议执行;(4)切取样坯时,应防止因过热、过冷、加工硬化而影响其力学性能及工艺性能。
如果过热了怎么办?比如,采用火焰切割法取样时,由于材料是在火焰喷嘴下熔化而使样坯从整体上分离出来,在熔化区域附近,材料承受了一个从熔化到相变点(723℃)以下温度变化区域,这一局部的高温将会引起材料性能的很大变化,所以切割样坯(样坯切割线至试样边缘)必须留有足够的切割余量。