5第三章 自然电位测井解析
- 格式:ppt
- 大小:424.50 KB
- 文档页数:52
自然电位测井曲线的分析解释自然电位测井曲线是一种常见的地球物理测井方法,通过测量地层自然电位的变化来获取地下地质信息。
本文将对自然电位测井曲线的分析解释进行详细探讨,帮助读者更好地了解和应用该方法。
一、自然电位测井曲线的概述自然电位测井曲线是通过电极在地层中测量地下电场的差异而得到的测井曲线。
电极对地下电场的测量可以反映地层的电性、含水层、岩石类型和地下流体性质等信息。
自然电位测井曲线通常以深度为横坐标,电位值为纵坐标,形成一条随深度变化的曲线。
二、自然电位测井曲线的主要特征1. 深度响应特征:自然电位测井曲线随深度变化,可以发现一些特殊的变化规律,如异常电位值、陡降和平缓变化等。
2. 地层特征反映:自然电位测井曲线能够反映地下地层的一些特征,如含水层界面、地层厚度和地下流体类型等。
3. 岩性识别:不同岩石具有不同的导电特性,自然电位测井曲线可以通过岩性识别来帮助解释地下岩石类型。
4. 地下流体性质分析:自然电位测井曲线的变化可以推测地下流体(如水、油、气)的存在和特性。
三、自然电位测井曲线的解释方法1. 异常值分析:通过对自然电位测井曲线的异常值进行分析,可以判断是否存在异常地层或地下流体的存在。
异常值可能是由含水层边界、地下断层、堆积岩层等引起的。
2. 曲线趋势分析:对自然电位测井曲线的整体趋势进行分析,可以发现地层的变化规律,如地下流体的分布、地层的递增或递减等。
3. 地下流体判别:通过自然电位测井曲线的变化,结合其他地球物理测井数据,可以判别地下流体的类型和性质。
4. 岩性推测:利用自然电位测井曲线与岩石类型的关系,可以对地下岩石进行识别和推测。
四、自然电位测井曲线的应用领域1. 油气勘探:自然电位测井曲线在油气勘探中起到重要的作用,通过分析曲线特征和解释结果,可以确定油气藏的存在和性质。
2. 水源勘探:自然电位测井曲线可以用于水源勘探,通过测量地下含水层的特征,判断水源的位置和质量。
3. 工程应用:自然电位测井曲线在地质工程和水文地质工程中也有广泛应用。
思考题第一课自然电位测井SP?*1.分析自然电位的成因,写出扩散电动势、扩散吸附电动势、总电动势表达式。
答:自然电场的产生(原理)扩散电动势、扩散吸附电动势、过滤电动势1.扩散电动势产生原因:泥浆和地层水矿化度不同——电化学过程——电动势——自然电场产生过程:溶液浓度不同——离子扩散——离子迁移率不同——两边分别富集正、负离子(延缓离子迁移速度)——产生电动势(直到正负离子达到动态平衡为止) 公式:2.扩散吸附电动势产生原因:泥浆和地层水矿化度不同——产生阳离子交换——产生电动势——自然电场产生过程:溶液浓度不同——带电离子扩散——阳离子交换——孔隙内溶液阳离子增多——浓度小的一方富集正电荷,浓度大的一方富集负电荷产生电动势(扩散吸附)公式:3.过滤电动势产生原因:泥浆柱与地层之间的压差造成离子的扩散。
一般在近平衡钻井情况下不考虑。
总电动势公式:*2.不同Cw、Cmf情况下自然电位测井曲线有哪些特征?1.当Cw>Cmf:(Rmf>Rw,E<0)负异常(淡水泥浆)2.当Cw<Cmf:(Rmf<Rw,E>0)正异常(咸水泥浆)3.当Cw=Cmf:(Rmf=Rw, E=0)无异常,自然电位测井失效*4.自然电位测井曲线在油田勘探开发中应用于哪些方面?1.划分渗透层(半幅点法,砂泥岩剖面较常用)2.估算泥质含量3.地层对比依据:1)相同沉积环境下沉积的地层岩性特征相似; 2)同一段地层有相同或相似的沉积韵律组合; 3)由1)和2)决定同层、同沉积(相)的SP曲线特征一致。
4.确定、划分沉积相5.确定油水层及油水界面(△USP油小于△USP水)6.识别水淹层(依据Cw <或> Cwz)渗透层水淹后SP基线偏移,偏移量与Cw/Cwz(注入)有关7.确定地层水电阻率Rw3.影响自然电位测井的因素有哪些?1.Cw/Cmf影响(地层水矿化度/泥浆滤液矿化度)当Cw>Cmf:(Rmf>Rw,E<0)负异常(淡水泥浆).当Cw<Cmf:(Rmf<Rw,E>0)正异常(咸水泥浆)当Cw=Cmf:(Rmf=Rw, E=0)无异常,自然电位测井失效2 .岩性影响砂泥岩剖面泥岩(纯泥岩)——基线纯砂岩——SSP(h>4d)当储层Vsh 增大,自然电位幅度△USP(变小)<SSP 靠近泥岩基线3..温度影响温度对离子运动,离子扩散速率有影响不同深度地层温度不同4.地层水、泥浆滤液中含盐性质影响(溶液中离子类型不同,迁移速率不同,直接影响Kd、Kda)5.地层电阻率影响(当地层电阻率较大时,其影响不容忽视。
自然电位测井曲线的分析解释自然电位测井是石油工程领域中一种常用的电测方法,用于获取地下储层的电性信息。
这种测井方法利用了地球本身的电场分布特点,通过测量井眼与地面之间的电位差来获得有关储层性质的信息。
本文将对自然电位测井曲线的分析解释进行阐述和探讨。
自然电位测井曲线能够提供有关地下储层的电性差异以及程度的信息。
测井仪器测量的是井眼电位与地面电位之间的变化情况,通过电导率的计算可以推导得到该井段的电阻率。
电阻率是地下储层的重要参数之一,能够反映储层的含油/气性质、孔隙度、渗透率等重要信息。
在分析自然电位测井曲线时,首先需要注意的是曲线的特征和变化趋势。
一般来说,自然电位测井曲线呈现出较为平缓的趋势,波动性较小。
这是因为地球的电场分布会受到地下储层的影响,而储层电阻率与周围地层相比较高,使得曲线整体上呈现比较平缓的趋势。
根据曲线的特征,我们可以将自然电位测井曲线分为几个主要的部分。
首先是浅层地层部分,这一部分曲线呈现近似平直的趋势,说明浅层地层的电阻率相对较低。
接下来是渗透性较好的油气层,曲线出现波动并开始下降。
这是因为储层电阻率较高,电场在储层中的分布较为均匀,使得测井曲线出现了波动。
曲线下降的幅度和波动的频率可以提供更加详细的信息。
波动的频率越高,说明储层的渗透性越好,油气分布越均匀。
而下降的幅度越大,通常表示储层的电阻率越高,可能是由于含油/气性质较好的区域。
此外,自然电位测井曲线还可以用于判断地下水位的位置。
根据曲线的变化趋势,我们可以推测地下水位的高低。
当地下水位较高时,曲线会出现明显的波动并下降;而地下水位较低时,曲线则比较平缓。
在进行自然电位测井曲线的分析和解释时,我们还需要考虑其他地质因素的影响。
例如,地层的含盐性和含水量等都会对测井曲线产生一定的影响。
因此,在分析测井曲线时,必须将这些地质因素考虑在内,以获得更准确的解释和分析结果。
总结起来,自然电位测井曲线是一种常用的方法,用于获取地下储层的电性差异信息。
自然电位测井曲线解释自然电位测井曲线是一种在油气勘探和地质调查中常用的测井方法,用于评价地下储层的电性特征和盐水储层的分布情况。
该曲线是通过测量井眼周围地层自然电位与参考电极之间的电位差来得出的。
在自然电位测井中,测井仪器通过将参考电极放置在地面上,并将测量电极降至井眼中,记录电极间的电位差。
这种电位差反映了地层中构成井眼周围环境的电性差异。
通过分析测井曲线的起伏和趋势,我们可以获得一些关键的地质信息。
首先,自然电位测井曲线可以帮助我们识别地下储层的边界。
当电位曲线出现剧烈的起伏或突变时,这往往表示存在着不同电性的地层界面。
这些界面可能是岩石层序变化、孔隙度的改变或者含盐水的分布等的结果。
通过分析这些界面的位置和特征,我们可以了解储层的垂向和水平分布情况。
其次,自然电位测井曲线还可以提供有关地下水的信息。
由于地下水中含有溶解的离子,它可能对地层的电性产生影响。
在测井曲线中,我们可以观察到水位附近的曲线起伏和基线的变化。
这些变化往往与地下水的深度、盐度和流动等特征有关,因此,可以使用自然电位测井曲线来研究水文地质条件和水资源的开发潜力。
最后,自然电位测井曲线还可以用于评价岩石的电性特征。
地层中不同岩石的电性差异反映了它们的化学成分和物理性质的差异。
通过分析自然电位测井曲线的特征,如起伏、梯度和峰谷等,我们可以推断出地层中存在的不同岩石类型和岩性特征。
这对于确定地层的岩石组成及岩性有重要意义,进一步帮助我们了解储层的性质和勘探潜力。
总之,自然电位测井曲线是一种有效的工具,可用于评价储层的电性特征、地下水的分布和岩石类型的推断。
通过分析测井曲线,我们能够获得更深入的地质信息,为油气勘探和地质调查提供重要的依据。
1自然电位测井 1 自然电位测井1.1 自然电场产生(原理)1.2 自然电位测井曲线特征1.3 自然电位曲线应用由于物体的高度h 而具有的能量叫重力势E=mgh重力势在A 点,重力势只与A 的高度h 有关,即A 点与参考零点(地面)的势差。
A类似地电场中任何一点的电势,就是该点相对于参考零点的电势差AOA U =ϕφA φBABo+电势1.1 自然电场产生¾电位与电势的关系?¾自然电位的发现。
(20年代电阻率测量)¾自然电场的产生由于泥浆和地层水的矿化度不同,在钻开岩层后,在井壁附近两种不同矿化度的溶液产生电化学过程,结果产生电动势造成自然电场。
(扩散、扩散吸附电动势,牢记!)一、扩散电动势1.1 自然电场产生Cw Cm ------++++++1.1 自然电场产生一、扩散电动势在NaCl溶液中,扩散电动势Ed可写成1.1 自然电场产生二、扩散吸附电动势Cw Cm------++++++阳离子交换1.1 自然电场产生二、扩散吸附电动势Cw>CmfK da 与阳离子交换能力有关若储层中泥质的阳离子交换量较高,则会导致低电阻率油层。
1.2 自然电位曲线特征一、井内总电动势二、自然电位测量(1)自然电位计算1.2 自然电位曲线特征二、自然电位测量(2)曲线测量三、自然电位测井曲线特征曲线以地层中点对称h>4d 时,SP=SSP ,半幅点对应地层界面。
h<4d 时,SP ≠SSP ,h 越小差别越大随h 减小地层界面界线向峰值移动,中点SP 取得最大值。
随h 减小,SP 幅度减小。
三、自然电位测井曲线特征当Cw>Cmf :负异常(淡水泥浆) 当Cw<Cmf :正异常(咸水泥浆) 当Cw=Cmf :无异常¾划分渗透性岩层(半幅点)¾估计泥质含量¾确定地层水电阻率Rw ¾判断水淹层1.3 自然电位曲线应用¾划分渗透性岩层(半幅点)1.3自然电位曲线应用¾估计泥质含量1.3自然电位曲线应用¾确定地层水电阻率(不做要求)1.3自然电位曲线应用¾判断水淹层(不做要求)1.3 自然电位曲线应用。
自然电位测井自然电位测井的基本原理、曲线形态、影响因素、地质应用。
测量自然电位随井深变化的曲线,用于划分岩性和研究储集层性质。
其测井的基本方法如下:如图所示,在井内放一测量电极M,地面放一测量电极N,将M 电极沿井筒移动,即可测出一条井内自然电位变化的曲线。
要对所测的SP曲线进行地质解释,首先应该了解自然电位是怎样产生的,它与地层的那些件质有关.一、自然电位产生的原因井内自然电位产生的原因是复杂的,对于油气井来说,主要有以下两个原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。
②地层压力与泥浆柱压力不同而引起的过滤电动势。
实践证明,在油气井中,这两种电动势以扩散电动势和吸附电动势占绝对优势。
1.扩散电位当两种不同浓度的溶液被半透膜隔开,离子在渗透压作用下,高浓度溶液的离子将穿过半透膜向较低浓度的溶液中移动。
这种现象叫扩散,形成的电位叫扩散电位,在油井中,此种扩散有两种途径:一是高浓度一方通过砂岩向低浓度泥浆中扩散;二是通过泥岩向泥浆中扩散。
其扩散电位大小取决于①正负离子的运移率(单价离子在强度为1伏特/厘米的电场作用下的移动速度);②温度、压力;③两种溶液的浓度差;④浓度、离子类型及浓度差。
离子由砂岩向泥浆中扩散时,由于Cl-比Na+的运移率大,因此在砂岩高浓度一侧聚集多余的正电荷,而在泥浆中聚集负电荷。
离子量移动到一定程度,形成动态平衡,此时电位叫扩散电位,经实验,扩散电位Ed可由以下公式求得:Ed=Kdlg(Cw/Cmf)Kd-扩散电位系数,与盐类的化学成份及温度有关。
在井中,18℃时若地层水浓度Cw 等于10倍的泥浆溶液矿化度Cmf时,经理论推算:kd=-11.6mv,其中负号表示低度一方井中的电位低Cmf、Cw-泥浆滤液和地层水矿化度。
当溶液矿化度不高时,溶液浓度与电阻率成反比,即Ed=Kdlg(Cw/Cmf)=Kdlg(Rmf/Rw) Rmf,Rw-泥浆滤液和地层水电阻率12. 吸附电位(隔膜作用-砂岩通过泥岩与泥浆之间交换离子)因为泥岩结构、化学成分等与砂岩不同,因此与泥浆之间形成的电位差大,且符号与扩散电位相反,这是由于粘土矿物表面具有选择吸附负离子的能力。