第二篇汽轮机的汽水系统
- 格式:ppt
- 大小:7.09 MB
- 文档页数:13
4.3 热力系统方案4.3.1 主蒸汽系统主蒸汽系统采用切换母管制,主蒸汽从锅炉过热器出口集箱接出,经电动闸阀一路接至主蒸汽母管,另一路接至汽轮机。
为确保供热的可靠性,主蒸汽母管的一端接减温减压器,通过其向热网管道供汽。
锅炉主蒸汽出口电动闸阀和进入汽轮机自动主汽门前的电动闸阀均设有小旁路,在暖管和暖机时使用。
4.3.2 主给水系统主给水热母管采用切换制系统。
设低压给水母管、高压给水热母管。
给水经低压给水母管分别进入四台给水泵,一台定速泵和一台调速泵为一组,每组给水泵加压后,分别送至两台高加去加热,加热后热水采用切换母管制,一路直接送至锅炉,另一路与高压给水热母管相接。
系统配置四台电动给水泵,二台运行,一台备用。
为防止给水泵在低负荷时产生汽化,另设给水再循环管与再循环母管。
高压加热器设有电动旁路,当高压加热器发生故障时,高加旁路自动开启,系统经由高加旁路直接向省煤器供水。
为保证给减温减压器提供减温水,系统设置了一根减温水母管,分别接自每台电动给水泵出口管道。
4.3.3 回热抽汽系统汽机回热系统,设有二级非调整抽汽及一级调整抽汽,非调整抽汽分别向一台高压加热器和一台除氧器供汽。
在调整抽汽管道上接一路供低压加热器用汽,另一路接至热网母管送至换热站。
为了防止在机组甩负荷时蒸汽倒入汽缸,而使汽轮机超速,以及防止因加热器水位过高而使汽轮机进水,在各级抽汽管道上分别装有抽汽逆止阀和闸阀,并且在调整抽汽管道上加装了抽汽速关阀,以此保证运行安全。
4.3.4 除氧系统为保证锅炉给水除氧可靠性,本工程设置二台150t/h的旋膜式热力除氧器,水箱容积40m3。
可以保证本期工程锅炉给水的除氧。
进入除氧器的汽水管道均采用母管制,两台除氧器之间设置汽、水平衡母管。
进入除氧器前的除盐水管道、加热蒸汽管道、热网疏水管道上均设置自动调节阀。
4.3.5 抽真空系统为保证汽轮机凝汽器运行时的真空度,本工程设置二台射水抽气器(一运一备)一个射水箱和两台射水泵。
汽轮机的汽水流程The steam water cycle of a steam turbine is an essential process in power generation and thermodynamics. 汽轮机的汽水循环是发电和热力学中一个不可或缺的过程。
It involves the continuous circulation of steam and water within the turbine system to convert thermal energy into mechanical work. 它涉及蒸汽和水在汽轮机系统内的持续循环,将热能转换为机械能。
This process is crucial in ensuring the efficient and reliable operation of the steam turbine, as well as in maintaining the overall energy balance within the power plant. 这一过程对于保证汽轮机的高效可靠运行以及维持电厂内的能量平衡至关重要。
The steam water cycle begins with the production of high-pressure steam by the boiler. 汽水循环始于锅炉产生高压蒸汽。
The boiler is designed to heat water and produce steam at extremely high temperatures and pressures, typically ranging from 1000 to 3500 psi (pounds per square inch) and 1000 to 1200 degrees Fahrenheit. 锅炉的设计是将水加热并在极高的温度和压力下产生蒸汽,通常范围在1000到3500磅/平方英寸和1000到1200华氏度之间。
2 汽水系统2.1 概述左权电厂锅炉为超临界直流炉。
由其直流炉的工作原理可知,锅炉正常运行中汽机来的给水变成过热蒸汽只经历了两个阶段,加热和过热。
即给水状态由未饱和水→干饱和蒸汽→过热蒸汽。
锅炉产出的过热蒸汽送至汽轮机高压缸,从高压缸排出的蒸汽作为低温再热蒸汽送至锅炉再热器系统加热后再引出至汽轮机中压缸。
中间点温度取自启动分离器前,即锅炉转干态运行后机组给水在启动分离器前转变为带有微过热度的过热蒸汽,汽水分离器只作为蒸汽通道。
而在锅炉湿态运行时,锅炉给水经水冷壁蒸发受热面后,过热蒸汽经汽水分离器后送至锅炉过热蒸汽系统,被分离出的汽水进入锅炉储水罐,经361阀送至锅炉启动疏水扩容器,根据水质要求被排放至雨水井或送至汽机排气装置。
锅炉汽水系统设备主要由省煤器,水冷壁,启动系统,顶棚及包墙过热器,低温过热器,屏式过热器,高温过热器,低温再热器,高温再热器及相关的疏水系统,采样系统等组成。
2.2 汽水流程锅炉汽水系统流程框图如图2-1所示。
锅炉给水由机侧给水系统提供,其配置为2×50%B-MCR调速汽动给水泵和一台30% B-MCR 容量的电动给水泵。
给水泵供水汇集至给水母管,给水母管上取有两个用户,分别是高压旁路减温水、过热器一、二级减温水备用水源。
给水母管来的水经高压加热器送至锅炉给水操作平台,经主给水阀后,送至锅炉省煤器。
从锅炉省煤器右侧出来的水经一根下降管送至锅炉底部螺旋水冷壁入口联箱。
其中省煤器出口的水还作为过热器一、二级正常减温水和361阀及启动旁路系统倒暖的水源。
省煤器的来水经螺旋水冷壁入口分配联箱进入螺旋水冷壁,其出口主要为两大路,一路为:经螺旋水冷壁各出口联箱后引至螺旋水冷壁出口混合联箱(左右各一个);另一路为:后墙螺旋水冷壁直接引出的凝渣管。
螺旋水冷壁出口混合联箱出口的水分别引至前墙垂直水冷壁、水平烟道左右侧墙水冷壁、左右侧墙垂直水冷壁、折焰角水冷壁。
经过这几个水冷壁的介质同凝渣管出口的介质一同都汇集到了炉顶汇集集箱。
锅炉汽水系统第一篇:锅炉汽水系统汽水系统锅炉的汽水系统由给水管路、省煤器、汽包、下降管、水冷壁、过热器、再热蒸汽及主再热蒸汽管路等组成。
其主要任务是使水吸热、蒸发,最后变成有一定参数的过热蒸汽。
从给水管路来的水经过给水阀进入省煤器,加热到接近饱和温度,进入汽包,经过下降管进入水冷壁,吸收蒸发热量,在回到汽包。
经过汽水分离以后,蒸汽进入过热器,水在进入水冷壁进行加热。
进入过热器的蒸汽吸收热量,成为具有一定温度和压力的过热蒸汽,经过主蒸汽管,进入汽轮机高压缸做功。
蒸汽从高压缸做完工后,经再热蒸汽管冷段,进入锅炉再热器加热至额定温度后,经再热蒸汽热段,进入汽轮机中缸、低压缸继续做功。
汽水系统是锅炉的一个主要系统,可以进一步划分为:1给水系统;2主蒸汽系统3炉内外水循环系统和主蒸汽管道系统;4疏放水系统;5排污系统。
第二篇:锅炉汽水系统介绍锅炉汽水系统介绍锅炉给水首先进入省煤器,经省煤器加热后引入汽包水空间,汽包内的锅水通过集中下降管进入水冷壁下集箱,经炉膛膜式水冷壁加热后成为汽水化合物,流经上集箱、汽水引出管引入汽包进行汽水分离。
被分离出来的水进入汽包水空间,进行再循环。
分离出来的饱和蒸汽从汽包顶部的蒸汽连接管引至布置在尾部烟道、炉膛或外置换热器内的过热蒸汽受热面加热,最后将合格的过热蒸汽引向汽机,过热器系统布置有调节灵活的喷水减温作为气温调节和保护受热面管子的手段。
对于带再热的循环流化床锅炉,在锅炉的尾部竖井烟道内、或炉膛内,或外置换热器内,布置有再热器,由汽机来的再热蒸汽经再热器加热后再引回汽机。
在再热器进口管道上布置有事故喷水减温器,用于紧急状况下控制再热器进口气温。
一般采用喷水减温或烟气挡板的方式对再热蒸汽温度进行调节,如果再热器布置在外置换热器内,再热蒸汽温度也可依靠外置换热器来调节,通过调整进入外置换热器的灰流量,改变再热器的吸热量,以达到调温目的。
冷渣器所用冷却水来自回热西戎或锅炉给水系统。
汽机汽水回路复习(二期四值)2011.11.19主蒸汽、再热及旁路系统1.流程2.高旁减温水:给水低旁减温水:凝结水3.高排通风阀的作用(VV阀)在中压缸启动的情况下,由于高压缸不进汽,而高压缸转子高速旋转产生的鼓风摩擦损失会使得高压缸温度上升,通过高排通风阀的开启可以将高压缸内鼓风产生的热量排放到凝汽器,避免造成高压缸温度过高。
4.高压门杆漏气设置的目的高主门、高调门、中主门和中调门因压力高,且经常活动,密封不能过紧,门杆与密封有一间隙,运行中从该间隙漏出的蒸汽称为门杆漏汽。
门杆漏汽一般通过不同的途径(抽至除氧器、轴加、凝汽器等)进行回收,起到回收工质、减少环境污染的作用,同时门杆漏汽持续回收时,可以使相关阀门不易积水,保持受热均匀,避免出现阀门卡涩情况。
5.再冷的用户:辅汽联箱、2#高加、轴封供汽、小机、锅炉再热器6.旁路作用a)加快启动速度,改善启动条件b)保护锅炉再热器c)回收工质、消除噪音d)防止锅炉超压,减少锅炉安全门动作次数e)发电机或电网故障时,可以做到停机不停炉,或带厂用电运行7.联锁a)快开:先开低旁,再开高旁b)快关:先关高旁,再关低旁8.高排温度高的原因及危害原因:a)高压缸内部通流部分级内叶片可能结垢或变形损坏造成做功能力下降;b)高压旁路可能有泄漏现象;逆止门不严c)平衡活塞汽封间隙过大,造成其漏汽至汽缸夹层的冷却蒸汽量过大(一部分与高排蒸汽汇合);做功的蒸汽少,漏出的气多d)如果高排压力与高排温度同时升高,还要考虑中压主汽门或调门有否门芯脱落或卡死节流的可能;e)静叶环(隔板)或动叶顶间隙漏汽量过大;做功的蒸汽少,漏出的气多f)机组真空过低,造成蒸汽量增大;g)高调门阀门控制方式,一般单阀比顺序阀高排温度要高。
危害:主要是使高压缸效率下降,易过热损害高压缸末级叶片,同时冷再管道材质耐温是有规定的,这样就容易造成冷再管道以及再热器超温等高温损伤。
凝结水系统1.流程2.水幕喷水作用在减温减压器的上方布置有水幕保护装置,以便在减温减压器喷水减温不正常,其排汽温度升高而使低压缸排汽温度升高时投入凝汽器水幕保护喷水,防止喉部温度过高3.后缸喷水汽轮机冲转和低负荷运行时由于鼓风摩擦损失产生的热量,造成排气温度过高,使末级叶片变形和使凝汽器铜管膨胀,容易使凝汽器上部冷却管损害,所以设置喷水降低乏汽温度。
汽轮机系统介绍范文
汽轮机系统的工作原理是将燃料在燃烧室中燃烧产生高温高压燃气,燃气经过燃气轮机进行膨胀从而驱动轴上的转子旋转。
随后,膨胀后的燃气排出,通过余热回收锅炉产生高温高压蒸汽,蒸汽进入蒸汽轮机使其转动。
在热能转化过程中,燃气轮机和蒸汽轮机共同推动发电机发电,完成能量转换。
首先,汽轮机系统具有高效率和灵活性。
它的能量转化效率高,热力循环运行,能够充分利用燃气和燃油的热能。
同时,汽轮机系统还具有灵活性,可以适应各种不同负载需求,通过调整燃烧室燃烧量和转速等参数来控制输出功率。
其次,汽轮机系统具有可靠性和稳定性。
由于汽轮机系统采用了模块化设计,各个组件可以独立工作,使系统更加可靠。
此外,汽轮机系统还有多个备份装置,如冷却系统、润滑系统和控制系统,可以提供额外的安全保障。
再次,汽轮机系统对环境污染较小。
由于燃烧过程发生在封闭的燃烧室内,燃烧产生的废气经过严格处理后排放,污染物排放量较少。
此外,汽轮机系统还可以利用废热产生蒸汽用于供热或其他工艺用途,提高能源利用效率。
最后,汽轮机系统具有较长的使用寿命和可维护性。
由于汽轮机系统是高负荷运行的设备,所以各个组件都经过了严格的设计和制造,具有较长的使用寿命。
此外,汽轮机系统的维护保养也相对简单,只需要定期清洗和更换燃料和润滑油等。
总之,汽轮机系统是一种高效可靠的能量转换设备,具有高效率、灵活性、环保以及长寿命等优势。
它在发电、船舶、化工等行业广泛应用,为各行各业提供了可靠的能源支持。
随着科技的不断进步和人们对能源的需求不断增加,汽轮机系统将会得到更广泛的应用和发展。