随机信号分析 课后答案(赵淑清 郑薇 著) 哈尔滨工业大学出版社
- 格式:pdf
- 大小:623.08 KB
- 文档页数:23
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
1. 2. 3. 4. 5.6. 有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少? (2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ==== ()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()0()2xxxf x dx ae dx a e dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a = (2)()1()2x xtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14. 若随机变量X 与Y 的联合分布律为求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
第三次作业:练习一之9、10、11题1.9随机变量X 和Y 分别在[0,a ]和[0,2π]上均匀分布,且互相独立。
对于a b <,证明:a bY b x P π2)cos (=<证:rv . X 和Y 分别在[0,a ]和[0,2π]上均匀分布 有⎪⎪⎩⎪⎪⎨⎧≤≤=其它001)(ax a X f 和⎪⎪⎩⎪⎪⎨⎧≤≤=其它0202)(ππy Y f⎪⎩⎪⎨⎧≤≤<≤⇒⎭⎬⎫<≤<20cos 0cos cos πy y b x a b y b Y b x Y b x cos <)20,cos 0()cos (π≤≤<≤=<y y b x p y b x p⎰⎰=2/0cos 0),(πyb dxdy y x f dy⎰⎰=2/0cos 0)()(πyb dxdy y f x f dy 因为rv . X 和Y 相互独立⎰⎰⋅=2/0cos 021ππyb dxdy a dy⎰⋅=2/0cos 2ππydy a bab π2=命题得证1.10 已知二维随机变量(21,X X )的联合概率密度为),(2121x x f X X ,随机变量(21,X X )与随机变量(21,Y Y )的关系由下式唯一确定⎩⎨⎧+=+=2111221111Y d Y c X Y b Y a X ⎩⎨⎧+=+=212211dX cX Y bX aX Y 证明:(21,Y Y )的联合概率密度为),(1),(21112111212121y d y c y b y a f bcad y y f X X Y Y ++-=证:做由),(2121y y f Y Y 到),(2121x x f X X 的二维变换),(2121x x f X X =J ),(2121y y f Y Y ),(2121y y f Y Y =J1),(2121x x f X X bc ad d c b a x y x y x y x y J -==∂∂∂∂∂∂∂∂=22122111 ),(1),(21112111212121y d y c y b y a f bc ad y y f X X Y Y ++-=1.11 随机变量X,Y 的联合概率密度为2,0)sin(),(π≤≤+=y x y x A y x f XY求:(1)系数A ;(2)X,Y 的数学期望;(3)X,Y 的方差;(4)X,Y 的相关矩及相关系数。
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
1. 有四批零件,第一批有2019个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少? 解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
(2)发现次品后,它来自第二批的概率为, 2. 设随机试验X求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x x δδδ=-+-+- 3. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为4.求:(1)X 与的联合分布函数与密度函数;(2)与的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
(北P181,T3) 解:(1)(2) X 的分布律为 Y 的分布律为(3)Z XY =的分布律为 (4)因为 则X 与Y 的相关系数0XY ρ=,可见它们无关。
5. 设随机变量()~0,1X N ,()~0,1Y N 且相互独立,U X YV X Y =+⎧⎨=-⎩。
(1) 随机变量(),U V 的联合概率密度(),UV f u v ;(2) 随机变量U 与V 是否相互独立? 解:(1)随机变量(),X Y 的联合概率密度为由反函数 22u v x u vy +⎧=⎪⎪⎨-⎪=⎪⎩,1112211222J ==--, (2)由于, 222244414uv u v e π+---⎛⎫⎛⎫=⨯⎪⎪⎪⎪⎭⎭所以随机变量U 与V 相互独立。
6. 已知对随机变量X 与Y ,有1EX =,3EY =,()4D X =,()16D Y =,0.5XY ρ=,又设3U X Y =+,2V X Y =-,试求EU ,EV ,()D U ,()D V 和(,)Cov U V 。
《随机信号分析》教学大纲课程代码:ABJD0633课程中文名称:随机信号分析课程英文名称:RandomSigna1Ana1ysis课程性质:选修课程学分数:2课程学时数:32授课对象:电子信息工程本课程的前导课程:概率论、信号与系统、数字信号分析一、课程简介《随机信号分析》课程是电子信息类、自动控制类、检测技术类专业本科生必修的一门重要的专业基础课。
它是一门研究随机信号规律性的课程。
近年来,随着现代通讯和信息理论的飞速发展,对随机信号的研究已渗透到的各个科学技术领域,随机信号的处理是现代信号处理的重要理论基础和有效方法之一。
《随机信号分析》课程已成为相关学科重要的学科基础课。
本课程作为一门专业基础课,在整个专业知识结构中起着承上启下的作用。
本课程的培养目标是:面向新世纪专业人才培养的要求,紧跟当代电子信息领域内技术的发展。
课程旨在通过各种教学环节,使学生掌握扎实的基础理论知识和科学的思维方法;培养学生解决问题、分析问题的能力,使本科生既有追踪当代科技前沿的理论功底,又有解决当前工程技术问题的能力。
二、教学基本内容和要求(一)随机变量课程教学内容:随机变量要点回顾;随机变量的特征函数;随机信号实用分布律课程的重点、难点:本章重点:随机变量的分布函数与分布密度、随机变量的函数。
本章难点:随机变量的特征函数。
课程教学要求:了解随机信号分析的基本概念、学科体系、相关技术以及其应用现状和发展趋势,掌握随机变量函数的分布、特征函数概念。
(二)从随机变量到随机过程课程教学内容:从随机变量到随机过程;平稳随机过程和各态历经过程;平稳随机过程的功率谱及高阶谱;高斯过程与白噪声;随机序列课程的重点、难点:本章重点:随机过程的基本概念及定义、平稳随机过程、随机过程的联合分布和互相关函数、随机过程的功率谱密度。
本章难点:随机过程的联合分布和互相关函数、随机过程的功率谱密度。
课程教学要求:熟练掌握根据随机过程的具体形式,学会求它的概率分布及各种数字特;熟练掌握已知随机过程的表达式判断该过程是否具有平稳性、遍历性;有图示的函数曲线或者给定的数学表达式,判定其是否是平稳随机过程的正确的相关函数曲线或表达式;掌握对于平稳随机过程,计算它的相关函数和相关时间;熟练掌握平稳过程的自相关函数与功率谱密度之间、联合平稳随机过程的互相关函数与互谱密度之间的关系,知其一可求其二,并能求出平均功率、互功率;熟练掌握功率谱密度、互谱密度的定义、性质及应用。
7.17.2[]A A ,-的双极性二进制传输信号{}(),0U t t ≥的码元符号概率为[],q p 。
将)(t U 送入码元幅度取样累加器,累加器输出为{}(),1,2Y n n =,简记为n Y 。
试求:(1)画出()Y n 的状态图;(2))(n Y 的状态概率)(n k π和[]0≥n Y P ,假定初始分布为等概的; (3))(n Y 状态转移概率),(n m p ij 和[]4,3,13108115====Y Y Y Y P 。
解 (1)将U(t)送入码元幅度取样累加器,则相当于1()()1,2,()()()(),nk Y n X k n Ap X k Aq Y n X n A Y n A A ===⎧⎨-⎩∑其中=对,如果的取值为,则增加否则减少画出状态转移图为(2)222(()),1,01,(())0||0,(())0,(())k kP Y n kA k n n n nP Y n kA n k n k P Y n k p k P Y n k π===--+-==->==<== n-|k|n-|k|2nn-|k|n-|k|2n n-|k|n当n-|k|等于奇数时,可知n-|k|而当等于偶数时,则在个样本中必须选择个样本互相抵消,2可知一共有C种方法,每种方法中,抵消项的发生概率为则C (pq)则C(220||(())0,||0,||k kk k qn k P Y n k p k n k q k n k π--⎧⎪⎪==≥-⎨⎪⎪<-⎩n-|k|2n-|k|n-|k|2n n-|k|n-|k|2npq)为奇数综上所述=C (pq)为偶数C (pq)为偶数20(0)nkn k P Y pq p=∴≥=∑n-|k|n-k 2nC()(3)111122(,)(|)(|)()()()0,nn k n k ij n m nmk k k k nk k m n m k k n m j i n mY X Y P m n P Y j Y i P X j X i P X j i P X j i P Y j i n m j i p j i n m j i ====-=-->=∴========-==-==---+=-≥--+∑∑∑∑∑ n-m-|j-i|n-m-|j-i|2n n-m-|j-i|n-m-|j-i|n设可以得到是马尔可夫序列为奇数C 为偶数C (pq)0,i j q j i n m j i -⎧⎪⎪⎨⎪⎪-<--+⎩2为偶数151810151052223[3|1,3,4][3|4][1]()10P Y Y Y Y P Y Y P Y pq q p q -=========-==5-|-1|5-|-1|(-1)5C7.3 7.4 7.57.6设{}()1X n n ≥,是相互独立随机变量序列,令:∑==ni pi Xn Y 1)()(,p 是任意的整数,试证明:随机序列)(n Y 是马氏链。