弧、弦、圆心角的关系
- 格式:pdf
- 大小:2.78 MB
- 文档页数:22
弧、弦、圆心角、圆周角--知识讲解(基础)【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
弧、弦、圆心角、圆周角--知识讲解(基础)责编:康红梅【学习目标】1.了解圆心角、圆周角的概念;2.理解圆周角定理及其推论,能灵活运用圆周角的定理及其推理解决有关问题;3.掌握在同圆或等圆中,三组量:两个圆心角、两条弦、两条弧,只要有一组量相等,就可以推出其它两组量对应相等,及其它们在解题中的应用.【要点梳理】要点一、弧、弦、圆心角的关系1.圆心角定义如图所示,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.2.定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.3.推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.要点诠释:(1)一个角要是圆心角,必须具备顶点在圆心这一特征;(2)注意定理中不能忽视“同圆或等圆”这一前提.要点二、圆周角1.圆周角定义:像图中∠AEB、∠ADB、∠ACB这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.2.圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.圆周角定理的推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交.(2)圆周角定理成立的前提条件是在同圆或等圆中.4.圆内接四边形:(1)定义: 圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形.(2)性质:圆内接四边形对角互补,外角等于内对角(即它的一个外角等于它相邻内角的对角).5.弦、弧、圆心角、弦心距的关系:在同圆或等圆中,弦,弧,圆心角,弦心距等几何量之间是相互关联的,即它们中间只要有一组量相等,(例如圆心角相等),那么其它各组量也分别相等(即相对应的弦、弦心距以及弦所对的弧也分别相等)。
*如果它们中间有一组量不相等,那么其它各组量也分别不等。
圆弦长公式计算公式初中
我们要找出圆弦长的计算公式。
首先,我们需要了解一些关于圆的基础知识。
假设圆的半径为 r,弦长为 L,弦到圆心的距离为 d。
根据圆的性质,我们知道:
1. 圆的周长C = 2πr
2. 圆心角和弧长的关系是:弧长 = 圆心角(以弧度为单位) × 半径
3. 弦长 L 和圆心角及半径的关系是:L = 2 × 圆心角(以弧度为单位) × 半径
4. 弦到圆心的距离 d 和半径及圆心角的关系是:d = r - L/2
我们的目标是找到 L 的公式,所以我们可以用上面的关系来推导。
计算结果为: [{L: 2pir, d: pi}]
所以,圆弦长的计算公式为:L = 2pir。
九年级下册数学——圆心角、弧、弦、弦心距之间的关系讲义【1】圆心角定义在纸上任意画一个圆,任意画出两条不在同一条直线上的半径,构成一个角,这样的角就是圆心角.如图所示,∠AOB 的顶点在圆心,像这样,顶点在圆心的角叫做圆心角.【2】圆心角、弧、弦之间的关系定理在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等. 【定理拓展】○1在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角,•所对的弦也分别相等 ○2在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角,•所对的弧也分别相等 综上所述,同圆或等圆中,两个圆心角、两条弧、两条弦中有一组量相等,就可以推出它们所对应的其余各组量也相等.【经典例题】【例1】下列说法中,正确的是( B )A.等弦所对的弧相等B.等弧所对的弦相等C.圆心角相等,所对的弦相等D.弦相等所对的圆心角相等 【例2】如图2,同心圆中,大圆的弦AB 交小圆于C 、D ,已知AB=4,CD=2,AB 的弦心距等于1,那么两个同心圆的半径之比为( C )图2A.3∶2B.5∶2C.5∶2D.5∶4 【解析】作OE ⊥CD 于E ,则CE=DE=1,AE=BE=2,OE=1.在Rt △ODE 中,OD=2211+=2.在Rt △OEB 中,OB=22OE BE +=14+=5.∴OB ∶OD=5∶2.【例3】半径为R 的⊙O 中,弦AB=2R ,弦CD=R ,若两弦的弦心距分别为OE 、OF ,则OE ∶OF等于( D )A.2∶1B.3∶2C.2∶3D.0 【解析】∵AB 为直径,∴OE=0. ∴OE ∶OF=0.【例4】一条弦把圆分成1∶3两部分,则弦所对的圆心角为_____________. 【解析】41×360°=90°,∴弦所对的圆心角为90°. 【答案】90°【例5】弦心距是弦的一半时,弦与直径的比是____________,弦所对的圆心角是____________.【解析】OD ⊥AB ,OD=DB=AD.设OD=x ,则AD=DB=x.在Rt △ODB 中,∵OD=DB ,OD ⊥AB, ∴∠DOB=45°.∴∠AOB=2∠DOB=90°, OB=22222=+++x x DB OD x. ∴AB ∶BC=1∶2=2∶2.∴弦与直径的比为2∶2,弦所对的圆心角为90°. 【答案】2∶2 90°【例6】如图6,已知以点O 为公共圆心的两个同心圆,大圆的弦AB 交小圆于C 、D.图6(1)求证:AC=DB ;(2)如果AB=6 cm ,CD=4 cm ,求圆环的面积.【分析】求圆环的面积不用求出OA 、OC ,应用等量代换的方法.事实上,OA 、OC 的长也求不出来.(1)证明:作OE ⊥AB 于E ,∴EA=EB ,EC=ED.∴EA -EC=EB -ED ,即AC=BD. (2)解:连结OA 、OC.∵AB=6 cm ,CD=4 cm ,∴AE=21AB=3 cm.CE=21CD=2 cm. ∴S 环=π·OA 2-π·OC 2=π(OA 2-OC 2)=π[(AE 2+OE 2)-(CE 2+OE 2)]=π(AE 2-CE 2)=π(32-22)=5π( cm 2).【例7】如图7所示,AB 是⊙O 的弦(非直径),C 、D 是AB 上的两点,并且AC=BD.求证:OC=OD.图7【分析】根据弧、弦、圆心角的关系得出.证法一:如图(1),分别连结OA 、OB.∵OA=OB ,∴∠A=∠B. 又∵AC=BD ,∴△AOC ≌△B OD.∴OC=OD.(1) (2) 证法二:如图(2),过点O 作OE ⊥AB 于E , ∴AE=BE.∵AC=BD ,∴CE=DE.∴OC=OD.【例8】如图8,⊙O 的直径AB 和弦CD 相交于点E ,已知AE=6 cm ,EB=2 cm ,∠CEA=30°,求CD 的长.图8【分析】如何利用∠CEA=30°是解题的关键,若作弦心距OF ,构造直角三角形,问题就容易解决.【解】过O 作OF ⊥CD 于F ,连结CO. ∵AE=6 cm ,EB=2 cm ,∴AB=8 cm.∴OA=21AB=4(cm ),OE=AE -AO=2(cm ). 在Rt △OEF 中, ∵∠CEA=30°,∴OF=21OE=1(cm ). 在Rt △CFO 中,OF=1 cm ,OC=OA=4(cm),∴CF=22OF OC =15(cm). 又∵OF ⊥CD ,∴CD=2CF=215( cm).【例10】如图10所示,AB、CD是⊙O的两条直径,弦BE=BD,则弧AC与弧BE是否相等?为什么?图10【分析】欲求两弧相等,结合图形,可考虑运用“圆心角、弧、弦、弦心距”四量之间的“等对等”关系,可先求弧AC与弧BE所对的弦相等,也可利用“等量代换”的思想,先找一条弧都与弧AC以及弧BE相等.【解】弧A C=弧BE.原因如下:法一:连结AC,∵AB、CD是直径,∴∠AOC=∠BOD.∴AC=BD.又∵BE=BD,∴AC=BE.∴弧AC=弧BE.法二:∵AB、CD是直径,∴∠AOC=∠BOD.∴弧AC=弧BD.∵BE=BD,∴弧BE=弧BD.∴弧AC=弧BE.【例11】如图11所示,AB是⊙O的弦,C、D为弦AB上两点,且OC=OD,延长OC、OD,分别交⊙O于点E、F.试证:弧AE=弧BF.图11【分析】欲求弧相等,结合图形,可先求弧所对的圆心角相等,即求∠AOE=∠BOF.【证明】∴∠OCD=∠ODC.∵AO=OB,∴∠A=∠B.∴∠OCD-∠A=∠ODC-∠B,即∠AOC=∠BOD,即∠AOE=∠BOF.∴弧AE=弧BF.【例12】如图12,AB、CD、EF都是⊙O的直径,且∠1=∠2=∠3,弦AC、EB、DF是否相等?为什么?图12【分析】应用圆心角、弧、弦的关系解决.证明弦相等往往转化成圆心角相等.【解】在⊙O中,∵∠1=∠2=∠3,又∵AB、CD、EF都是⊙O的直径,∴∠FOD=∠AOC=∠BOE.∴弧DF=弧AC=弧BE.∴AC=EB=DF.【例15】如图15,AB为⊙O的弦,P是AB上一点,AB=10 cm,OP=5 cm,PA=4 cm,求⊙O 的半径.图15【分析】圆中的有关计算,大多都是通过构造由半径、弦心距、弦的一半组成的直角三角形,再利用勾股定理来解决.【解】过O作OC⊥AB于C,连结OA,则AB=2AC=2BC.在Rt△OC A和△OCP中,OC2=OA2-AC2,OC2=OP2-CP2,∴OA2-AC2=OP2-CP2.∵AB=10,PA=4,AB=2AC=2BC ,∴CP=AB -PA -BC=1,AC=5. ∴OA 2-52=52-1.∴OA=7, 即⊙O 的半径为7 cm.【例16】⊙O 的直径为50 cm ,弦AB ∥CD ,且AB=40 cm ,CD=48 cm ,求弦AB 和CD 之间的距离.【分析】(1)图形的位置关系是几何的一个重要方面,应逐步加强位置感的培养.(2)本题往往会遗忘或疏漏其中的一种情况.(1)【解】(1)当弦AB 和CD 在圆心同侧时,如图(1),作OG ⊥AB 于G ,交CD 于E ,连结OB 、OD.∵AB ∥CD ,OG ⊥AB ,∴OE ⊥CD.∴EG 即为AB 、CD 之间的距离. ∵OE ⊥CD ,OG ⊥AB ,∴BG=21AB=21×40=20(cm ), DE=21CD=21×48=24(cm ).在Rt △DEO 中,OE=22DE OD -=222425-=7(cm ). 在Rt △BGO 中,OG=22BG OB -=222025-=15(cm ). ∴EG=OG -OE=15-7=8(cm ).(2)(2)当AB 、CD 在圆心两侧时,如图(2),同理可以求出OG=15 cm ,OE=7 c m ,∴GE=OG +OE=15+7=22(cm ).综上所述,弦AB 和CD 间的距离为22 cm 或7 cm.1. 过点O 作OE CD ⊥于E ∴=CE ED∴=∴≅∴=AD DB AOE BOE AO OB ∆∆2. 175mm3.略4. 85. 26. 427. 3.68. 1209. B10. D11. A 12. D13. 内部、外部14. 13cm cm 或15. BC=4cm。
圆心角弧弦之间的关系公式文章一朋友们,咱们今天来聊聊圆心角弧弦之间的关系公式。
比如说,你想象一下有个圆形的大蛋糕,从圆心切出一个角来,这就是圆心角。
那连接圆心角两端的曲线就是弧啦。
而从圆心角的两个端点连接到圆上的线段,就是弦。
咱就拿个实际的例子说,一个半径为 5 厘米的圆,有个圆心角是60 度,那对应的弧长怎么算呢?这时候关系公式就派上用场啦!通过公式,咱们就能算出这段弧的长度。
其实啊,圆心角、弧和弦,它们就像是圆这个大家庭里的好伙伴,相互之间有着密切的联系,只要掌握了它们的关系公式,就能轻松解决好多和圆有关的问题。
文章二嗨,大家好!今天咱们要弄明白圆心角弧弦之间的关系公式。
比如说,你去公园玩,看到了一个圆形的喷泉,这时候你就可以想想圆心角弧弦啦。
想象一下从喷泉的中心引出一个角度,这就是圆心角。
沿着这个角度的边,那弯曲的部分就是弧。
而连接角度两边端点到圆边的线段,就是弦。
就像一个半径是 3 厘米的圆,有个圆心角是 90 度,那根据关系公式,就能很快算出弧长和弦长。
所以说,只要理解了这个公式,以后再看到圆的东西,心里就有数啦,是不是挺有趣的?文章三亲爱的小伙伴们,咱们一起来讲讲圆心角弧弦之间的关系公式。
打个比方,你正在画一个圆,然后在圆里随便画一个角,从圆的中心出发的这个角就是圆心角。
这个角所对应的圆上那一段弯曲的线,就是弧。
而把这个角的两个端点和圆连接起来的线段,就是弦。
比如说有个圆,半径是 4 厘米,圆心角是 120 度。
这时候用关系公式,就能算出弧长和弦长到底是多少。
学会了这个公式,不管是做数学题,还是在生活中看到圆形的东西,都能更明白其中的道理啦。
文章四朋友们,今天咱们来探讨一下圆心角弧弦之间的关系公式。
你可以想象一下,一个圆形的摩天轮,当你坐在上面,从摩天轮的中心看出去的角度就是圆心角。
你所经过的那一段圆形轨道就是弧。
而连接你所在位置和摩天轮边缘的线段就是弦。
比如有个半径为 6 厘米的圆,圆心角是 45 度,通过关系公式就能算出弧和弦的长度。