送电线路基础知识技术讲座(一)——电力系统及相关知识
- 格式:ppt
- 大小:7.34 MB
- 文档页数:74
电力系统根底学问科普1.电力系统、动力系统和电力网的划分电力网:由变电所和不同电压品级输电线路组成的网络。
电力系统:由发电设备、输电设备和用电设备组成的网络。
动力系统:在电力系统的根底上,把发电厂的动力局部包含在内的系统。
2.电力系统运行的特点:电能不能大量存储;各环节组成的统一整体不行分割;过渡进程超级快速〔百分之几秒到格外之几秒〕;电力系统的地域性特点较强;对电能质量的要求很是严格;与国民经济各部门和人民生活关系极为严密3.电力系统运行的大体要求:保证供电的靠得住性:削减停电损失,要求元件有足够的靠得住性,要求提高系统运行的稳固性,保证良好的供电质量:电压、频率、波形,提高电力系统运行的经济性:降低能耗4.发电厂的类型:常规能源发电〔要紧发电形式〕:火力发电厂,水力发电厂,核能电厂;能源发电:地热电厂、潮汐电厂、风力发电厂、太阳能电站、海洋能发电、磁流体发电、氢能发电、核聚变发电5.电力系统的中性点接地址式四种中性点接地址式:〔前两种属于小电流接地,后两种属于大电流接地〕中性点不接地;中性点经消弧线圈接地;中性点直接接地;中性点经电阻接地6.电力系统的电压品级。
我国电力系统的电压品级分为:用电电压品级从 220V〔380V)、3 kV、6kV、10kV、35kV、66kV〔农电〕、110kV、220kV、380kV〔国外〕、500kV、750kV、1000kV 这几个品级。
电力行业通常所说的高压指的是 35kV 以上到 500kV 为高压,500~1000kV 为超高压,1000kV 以上为特高压。
中压是国外的概念,一样指的是6~35kV 那个品级。
随着电机制造工艺的提高,10 kV 电动机已批量生产,因此 3 kV、6 kV 已较少利用,20 kV、66 kV 也很少利用。
供电系统以 10 kV、35 kV 为主。
输配电系统以 110 kV 以上为主。
发电厂发电机有 6 kV 与 10 kV 两种,此刻以 10 kV 为主,用户均为 220/380V kV)低压系统。
第一节国家电网及山东电网输电线路概况一、国家电网概况目前,国家电网公司已经形成东北、华北、华中、华东、西北五个区域电网,华东和华中电网之间实现了跨大区直流联网,东北~华北~华中电网之间实现了交流联网。
随着华中和西北直流背靠背联网工程的投产运行,标志着全国联网的格局初步形成。
我国第一个750 kV交流输变电示范工程、直流国产化工程和可控串补国产化示范工程均顺利投产并稳定运行。
公司正在规划以百万伏交流和±800kV级直流为依托的特高压骨干网架,建设以特高压电网为核心的坚强的国家电网,以促进更大范围内的资源优化配置。
截止到2005年12月底,国家电网公司共有110(66)kV及以上线路共计17583条,总长度为369551.132km。
其中:750kV线路一条,长度为140.705km;±500kV直流线路4条,长度为1722.41km;500kV线路479条,长度为43699.65km;220kV线路4570条,长度为144487.8km;110kV线路10501条,长度为166481.6km;66kV线路1857条,长度为26982.96km。
二、山东电网概况我省输电线路的电压等级,是随着大容量、远距离电能的输送,而不断提高的。
1957年2月,山东电网首次出现了110kV线路,从博山神头电厂至济南的神济线投运;随着莱芜电厂125MW机组的建设,配套送出的莱芜电厂到淄博魏庄站的220kV莱魏线于1973年12月投运;500kV超高压电压等级的出现,是由于邹县电厂300MW机组的建成投产,我省第一条500kV邹县电厂~济南~潍坊线路于1987年11月投运,长度376 km。
目前,山东电网主网架仍处于220kV到500kV的过渡期,部分500kV/220kV电磁环网具备开环运行条件。
2005年3月1日,山东电网与华北电网成功联网。
山东省电源集中分布于煤炭资源丰富的鲁西南地区,负荷主要集中在经济较发达的中东部地区,山东电网西电东送、南电北送格局依旧,近期不会改变。
电力系统线路保护基础知识讲座§1 绪论§1-1 继电保护的作用一、故障及不正常运行状态┌ Id↑危害┌故障元件故障│ U ↓——→│非故障元件(各种短路) └ f │用户└电力系统┌过负荷│过电压危害┌元件不能正常工作不正常运行状态│f↓—→│长时间将损坏设备└系统振荡└发展成故障二、继电保护的任务┌故障时:自动、快速、有选择性地切除故障元件系统事故│保证非故障部分恢复正常运行└不正常运行时:自动、及时、有选择地动作于信号、减负荷或跳闸§1-2 继保的基本原理和保护装置的组成一、反应系统正常运行与故障时基本参数的区别而构成的原理(单端测量)运行参数:I、U、Z∠φ反应I↑→过电流保护反应U↓→低电压保护反应Z↓→低阻抗保护(距离保护)二、反应电气元件内部故障与外部故障及正常运行时两端电流相位和功率方向的差别而构成的原理(双端测量)以A-B线路为例:规定电流正方向:由保护安装处母线→被保护线路1、外部短路时(及正常运行时) d1点短路:I d1B(-) U B(+) P B(-) ┐│→θ=180°I d1A(+) U A(+) P A(+) ┘2、内部短路时 d2点短路:I d2B(+) U B(+) P B(+) ┐│→θ=0°I d2A(+) U A(+) P A(+) ┘3、利用以上差别,构成差动原理保护纵联差动保护相差高频动保护方向高频保护等三、保护装置的组成部分┌───┐┌───┐┌───┐输入信号─→│测量│─→│逻辑│─→│执行│─→输出信号└───┘└───┘└───┘↑└整定值§1-3 对电力系统继电保护的基本要求一、选择性:保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
d3点短路:6动作:有选择性5再动作:无选择性如果6拒动,5再动作:有选择性(5作为6的远后备保护)d1点短路:1、2动作:有选择性3、4动作:无选择性┌本元件主保护拒动时,由前一级保护作为后备叫远后备.后备保护│└本元件主保护拒动时,由本元件的另一套保护作为后备叫近后备.二、速动性:故障后,为防止并列运行的系统失步,减少用户在电压降低的情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。
送电线路安全运行常识范文电线路安全运行常识一、电线路的基本知识1.1 电线路的定义电线路是指电流经过导线、线路以及电力设备和电力装置之间所形成的连通系统。
1.2 电线路的组成电线路由导线、绝缘体和支架等组成。
1.3 电线路的分类按电压等级可分为高压线路、中压线路和低压线路;按类型可分为供电线路、接地线路和信号线路。
1.4 电线路的运行原理电线路让电流从发电站输送到用户,其运行依赖于电压和电流的作用。
二、电线路安全运行注意事项2.1 电线路绝缘的检查电线路的绝缘是保证线路正常运行的重要保障,因此需要定期检查绝缘是否完好,如有损坏应及时修复或更换。
2.2 电线路的防雷措施由于雷电是较大威胁线路安全的因素,因此需要采取防雷措施保护电线路,如安装避雷针、避雷线等。
2.3 电线路的防护设施为了确保电线路的安全运行,需要设置防护设施,如警示牌、安全标识等,以提醒人们注意线路的存在,避免触碰导线。
2.4 电线路的保护装置为了保护电线路免受外界干扰和故障的影响,需要安装保护装置,如断路器、接地装置等。
2.5 电线路的安全操作使用电器设备时,应遵循操作规程,合理使用电线路,并注意防止电线路的过载、短路等情况。
2.6 电线路的定期维护定期检修和维护是保持电线路安全运行的重要措施,应定期检查电线路的连接、绝缘等情况,并及时处理问题。
三、电线路安全运行的意义3.1 保障人身安全电线路安全运行是确保人们生活和工作环境安全的基础,有效预防电线路事故发生,保护人们免受电击等伤害。
3.2 保证电力供应稳定电线路安全运行能够保证电力输送的可靠性和稳定性,避免电力中断和故障,保障人们正常用电需求。
3.3 促进经济发展电线路安全运行对于电力系统的稳定运行和经济发展具有重要意义,可以提高电力传输效率,支持产业发展和城市建设。
3.4 保护环境电线路安全运行可以减少电线路事故的发生,避免电线路发生火灾等事故,保护环境和资源不受中断和浪费。
送电线路基本常识高压架空送电线路通常由基础、杆塔、绝缘子、金具、导线、地线和接地装置等部件组成。
高压架空送电线路是电力系统中的重要组成部分,它是低成本高效输送电能的重要环节,它建设质量的优劣直接关系到将来的经济、安全、可靠运行。
一、什么是电力系统?电力系统的动力源构成比例是怎样的?答:电力系统是由动力源、发电机组、升压变电装置、输电线路(送电线路)、降压变电装置、配电线路、配电变压器直到用户设备所组成的系统。
电力系统的动力源目前的构成比例是:火力发电约80%、水力发电约19%、其它(核电、风电、潮汐发电、太阳能等)约1%。
二、送电线路的三个特点是什么?其与电力系统的关系是什么?答:送电线路的三个特点是电压高、输送距离远、高效节能输送电能。
送电线路是电力系统的重要组成部分,是电力系统高效节能输送电能的重要手段。
三、送电线路主要由什么构成?答:送电线路主要由基础、杆塔、金具、绝缘子、导线、架空地线、接地装置等构成。
四、送电线路杆塔种类有哪些?答:按用途分为:直线杆塔、耐张杆塔(又分为直线耐张和转角耐张)、终端杆塔、分歧杆塔、换位杆塔等。
按材质分为:钢筋混凝土电杆、普通型角钢铁塔、钢管塔。
五、目前送电线路主要故障类型是什么?答:主要有外力破坏故障、雷害故障、鸟害故障、覆冰闪络故障、污闪故障等。
六、导、地线覆冰的生成条件是什么?答:覆冰闪络故障的生成条件有三个:温度在-5˚C~5˚C;湿度较大(雨夹雪或湿度较大的雾);风速较小(0~5m/s)。
七、导、地线震动与风速的关系是怎样的?答:导地线振动也叫微风震动,一般风速为0~5m/s,超过5m/s 的风对导地线的作用表现为大风舞动。
八、西安供电局送电工区1985年发生的两起死亡事故是什么时间发生的?答:1985年1月21日送电工区临潼保线站苏某在35kv代渭线带电更换瓷瓶工作中误碰带电导线造成死亡事故。
1985年11月13日送电工区检修一班在35kv杜太线改线立杆工作中,由于新立电杆浅埋加之临时拉线选择不当造成电杆倾倒,杆上四人随杆摔下,其中李某经抢救无效死亡。
送电线路安全运行常识电线路是将电能从发电站或输电站输送至用户的线路系统,是电力系统中至关重要的组成部分。
为了确保电线路安全运行,保障供电的连续性和可靠性,下面是一些电线路安全运行的常识。
一、电线路的基本知识1. 电线路的分类:电线路可以按照电流的方向分为直流线路和交流线路,按照电压的等级分为高压线路、中压线路和低压线路。
2. 电线路的构成:电线路主要由导线、绝缘子和支架等组成。
导线是电能传输的主要介质,绝缘子用于支撑导线并隔离与支架接触的地面,支架用于固定绝缘子和导线。
二、电线路的安全隐患1. 导线的破损:导线经常受到风吹雨打和外力影响,容易造成导线的断裂或破损。
断裂的导线会导致电能传输中断,甚至引发火灾。
2. 绝缘子的损坏:绝缘子通常由陶瓷或玻璃等材料制成,能够有效隔离导线和地面。
然而,绝缘子也容易受到外力碰撞或老化等因素的影响,导致绝缘子的损坏或脱落,进而影响电力安全。
3. 支架的不稳定:支架用于固定绝缘子和导线,支撑着整个电线路系统。
如果支架不稳定或松动,就会导致绝缘子和导线的摆动,进一步加剧线路的损坏和安全隐患。
4. 异物的侵入:在电线路运行过程中,有时会有外来物体进入电线路,如树枝、鸟巢、风筝等。
这些异物可能导致短路、触电等危险,同时也会对电线路的正常运行造成干扰。
5. 气候因素的影响:恶劣的气候条件,如雷电、暴风雨、大雪等,会对电线路的安全运行产生重大影响。
例如,雷击可能破坏导线和绝缘子,降雨可能导致导线湿漉漉而引发触电。
送电线路安全运行常识(二)1. 定期巡视检查:对电线路进行定期巡视检查,发现并及时修复导线、绝缘子和支架等设施的损坏,确保线路的正常运行和安全。
2. 维护绝缘子的完好:定期检查绝缘子的外观和固定情况,及时更换破损或老化的绝缘子,确保绝缘子的完好,提高电线路的安全性。
3. 加强支架的稳固:定期检查支架的稳定性,加强支架的紧固,确保绝缘子和导线的固定牢固,避免导线摆动和跳线。
电力系统线路保护基础知识讲座§1 绪论§1-1 继电保护的作用一、故障及不正常运行状态┌ Id↑危害┌故障元件故障│ U ↓——→│非故障元件(各种短路) └ f │用户└电力系统┌过负荷│过电压危害┌元件不能正常工作不正常运行状态│f↓—→│长时间将损坏设备└系统振荡└发展成故障二、继电保护的任务┌故障时:自动、快速、有选择性地切除故障元件系统事故│保证非故障部分恢复正常运行└不正常运行时:自动、及时、有选择地动作于信号、减负荷或跳闸§1-2 继保的基本原理和保护装置的组成一、反应系统正常运行与故障时基本参数的区别而构成的原理(单端测量)运行参数:I、U、Z∠φ反应I↑→过电流保护反应U↓→低电压保护反应Z↓→低阻抗保护(距离保护)二、反应电气元件内部故障与外部故障及正常运行时两端电流相位和功率方向的差别而构成的原理(双端测量)以A-B线路为例:规定电流正方向:由保护安装处母线→被保护线路1、外部短路时(及正常运行时) d1点短路:I d1B(-) U B(+) P B(-) ┐│→θ=180°I d1A(+) U A(+) P A(+) ┘2、内部短路时 d2点短路:I d2B(+) U B(+) P B(+) ┐│→θ=0°I d2A(+) U A(+) P A(+) ┘3、利用以上差别,构成差动原理保护纵联差动保护相差高频动保护方向高频保护等三、保护装置的组成部分┌───┐┌───┐┌───┐输入信号─→│测量│─→│逻辑│─→│执行│─→输出信号└───┘└───┘└───┘↑└整定值§1-3 对电力系统继电保护的基本要求一、选择性:保护装置动作时,仅将故障元件从电力系统中切除,使停电范围尽量缩小,以保证系统中的无故障部分仍能继续安全运行。
d3点短路:6动作:有选择性5再动作:无选择性如果6拒动,5再动作:有选择性(5作为6的远后备保护)d1点短路:1、2动作:有选择性3、4动作:无选择性┌本元件主保护拒动时,由前一级保护作为后备叫远后备.后备保护│└本元件主保护拒动时,由本元件的另一套保护作为后备叫近后备.二、速动性:故障后,为防止并列运行的系统失步,减少用户在电压降低的情况下工作的时间及故障元件损坏程度,应尽量地快速切除故障。