新北师大版八年级上册《§4.5回顾与思考》教案
- 格式:doc
- 大小:22.00 KB
- 文档页数:4
第三章回顾与思考1..熟练掌握本章的知识网络结构及相互关系,在现实情境中灵活地运用不同的方式确定物体的位置2.会建立适当的直角坐标系,在此坐标系中会根据坐标描出点的位置,由点的位置写出它的坐标.3.通过描点、连线、看图以及由点找坐标等过程,发展学生的数形结合意识,合作交流意识.教学重、难点:理解平面直角坐标系的有关概念,根据点的位置写出点的坐标,由点的坐标描出点的位置,建立适当的直角坐标系,写出图形各顶点坐标,掌握图形变换与点的坐标的变化之间的相互关系.教法及学法指导:复习本单元知识,将以由浅入深的练习为主线,通过精选典型例题指导学生练习,充分暴露学生的思维过程,发现学生在学习过程中的问题和疑惑,一方面巩固基础知识,一方面解决新问题,促进学生在该知识点的发展,帮助学生形成完整的知识结构,达到复习的目的.教学时首先对本章知识进行一个简单的测试以便教师了解学生的掌握知识的情况,然后再侧重于解题方法的指导,思路灵活多样,充分调动学生的积极性,引导学生从问题出发再通过典型的例题讲解进一步巩固所学知识,增强学生对知识的综合应用能力.发扬学生的自主探究、合作交流的意识,培养学生自学能力及参与意识.课前准备:多媒体课件,三角板等教具准备教学过程:一、复习回顾,梳理知识几个概念:1、平面内,确定点的位置一般需要______个数据:如确定座位用______、_____ 表示,确定战舰位置用_____+_____表示,地图上的城市用_______、_______表示,方格纸上的点用_______向、______向位置表示等.2、在平面内,两条______ 且______的_____组成平面直角坐标系。
通常,两条数轴分别置于______位置与_____位置,取向_____与向_____ 的方向分别为两条数轴的正方向,水平的数轴叫做_____ 轴或_____ 轴,铅直的数轴叫做_____ 轴或_____ 轴,两条数轴的交点O称为直角坐标系的_____ 。
第四章2019-2020学年八年级数学上册《第四章回顾与思考》教案北师大版教学目标:1、在思考与回顾的过程中,使学生进一步领会特殊于一般分类、转化和构造基本图形等一些重要的数学思想方法。
2、培养学生的应用意识3、在复习的过程中,丰富学生从事数学活动的经验和体验。
重点:突出本章的重点、难点内容难点及突破方法:灵活应用所学有关知识解决实际问题教学用具:多媒体课件教学方法:先学后教,当堂训练教学过程:一、创设情境,引入新课这段时间我们学习了“四边形性质的探索”,四边形的性质有哪些呢?这一章还有那些内容呢?今天就来对此进行回顾。
二、新课1、出示“学习目标”2、出示“自学指导”(一)先学1、根据下面的问题串,总结回顾本章内容,看问题。
A.平行四边形、矩形、菱形、正方形、梯形、等腰梯形各有哪些性质?他们彼此之间有什么关系。
B.在平行四边形、矩形、菱形、正方形、梯形、等腰梯形中,哪些图形具有轴对称性?哪些图形是中心对称图形?大家分组总结,回顾思考,弄清它们之间的彼此关系?(二)后教1、收集学生之间讨论的结果,制成如下表格2、通过归纳,理清它们彼此间的关系。
3、如何制定一个四边形是平行四边形、矩形、菱形、正方形、等腰梯形呢?(通过讨论归纳回顾以上图形的判定方法)平行四边形:两组对边分别平行两组对边分别相等一组对边平行且相等两条对角线互相平分两组对角分别相等矩形:有三个角是直角是平行四边形且有一个直角是平行四边形,并且两条对角线互相垂直正方形:是矩形,并且有一组邻边相等是菱形,并且有一个角是直角等腰梯形:是梯形,两腰相等是梯形,同一底上两个角相等4、回顾了特殊四边形的性质及判定后,想一想:一般的四边形有什么性质?多边形的内角和与边数有什么关系?内角和随着边数的增加有哪些变化呢?外角和呢?(三)当堂练习1、如图,AD=DB,AE=EC,FG∥AB , AG∥BC,利用平移或旋转的方法研究图中的线段DE 、BF、 FC 之间的位置关系和数量关系。
新北师大版数学八年级上册目录XXX版八年级数学上册目录第一章---勾股定理1.探索勾股定理
2.能得到直角三角形吗
3.蚂蚁怎样走最近
回顾与思考复题
第二章实数
1.数不够用了
2.平方根
3.立方根
4.公园有多宽
5.用计算器开方
6.实数
7.二次根式
回顾与思考复题
第三章位置与坐标
1.确定位置
2.平面直角坐标系
3.坐标与轴对称
回顾与思考复题
第四章一次函数
1.函数
2.一次函数
3.一次函数的图象
4.确定一次函数的表达式5.一次函数图象的应用
回顾与思考复题
第五章---二元一次方程组1.谁的包裹多
2.解二元一次方程组
3.鸡兔同笼
4.增收节支
5.里程碑上的数
6.二元一次方程(组)与一次函数
7.三元一次方程组
回忆与思考温题
第六章---数据的分析
1.平均数
2.中位数与众数
3.从统计图估计数据的代表4.数据的波动
回忆与思考温题
第七章---证实(一)
1.你能肯定吗
2.定义与命题
3.直线平行的判定
4.平行线的性质
5.三角形内角和定理
回顾与思考复题
综合与实践
1.计算器功能探索。
第七章平行线的证明回顾与思考教学目标1.复习本章的知识点,了解各知识点之间的关系,巩固所学的知识,并能用这些知识解决一些问题。
2.经历知识的总结过程,回顾知识点,发展形成知识结构的能力。
教学重点进一步理解和掌握本章的公理及定理,掌握证明的步骤与格式,在证明过程中发展初步的演绎推理能力。
教学难点掌握证明的方法及应用定理解决问题。
教学方法自主反思,归纳总结.教学教具直尺,三角板,量角器教学过程本节课设计了五个教学环节:知识回顾——做一做——想一想——试一试——反馈练习.第一环节知识回顾活动内容:1.什么是定义?什么是命题?命题由哪两部分组成?举例说明!2.平行线的性质定理与判定定理分别是什么?3.三角形内角和定理是什么?4.与三角形的外角相关有哪些性质?5.证明题的基本步骤是什么?活动目的:通过学生的回顾与思考,使学生对平行线的性质定理与判定定理,三角形内角和定理及三角形的外角的性质有一个更深层次的认识,为下一步的简易的逻辑推理作好知识准备. 注意事项:由于学生对于上述概念都有较长时间的学习,但知识点是零散的,因此有必要在学生头脑中形成一个清晰的知识网络,如:}⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎩⎨⎧⇒⎩⎨⎧⇒⇒⇒⇒⇒⇒结论题设部分条件结构反例假命题公理外角推论内角和定理三角形性质判定平行线应用证明推论定理真命题分类命题证明)()(第二环节 做一做 活动内容:1.下列语句是命题的有( )(1)两点之间线段最短;(2)向雷锋同志学习;(3)对顶角相等;(4)花儿在春天开放;(4)对应角相等的两个三角形是全等三角形;2.下列命题,哪些是真命题?哪些是假命题?如果是真命题,请写出条件与结论,如果是假命题,请举出反例.(1)同角的补角相等;(2)同位角相等,两直线平行;(3)若|a |=|b |,则a =b .3. 如图,AD 、BE 、CF 为△ABC 的三条角平分线,则:∠1+∠2+∠3=________.4. 用两个全等的等腰直角三角尺拼成四边形,则此四边形一定是_____。
§4.5回顾与思考
一、教学目标
1、本章知识的网络结构
2、重点内容的归纳
(1)函数的概念。
(2)一次函数的概念
一次函数与正比例函数的关系。
(3)一次函数的不同表示方式。
(4)一次函数,正比例函数的图象各有什么特征。
(5)确定一次函数表达式。
(6)一次函数图象的应用。
二、能力目标
1、熟练掌握本章的知识网络结构
2、经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力。
3、经历一次函数的图象及其性质的探索过程,在合作与交流中发展学生的合作意识和能力。
4、经历利用一次函数及其图象解决实际问题的过程,发展学生的数学应用能力,经历函数图象信息的识别与应用过程,发展学生的形象思维能力。
5、能根据所给信息确定一次函数表达式,会作一次函数的图象,并利用它们解决简单的实际问题。
三、教学重点
一次函数图象的特征
一次函数图象的应用
四、教学过程
(一)讲授新课
1、本章知识网络结构图:
2、知识点回顾
(1)函数的概念及举例。
(2)一次函数,正比例函数的概念及联系。
(3)函数图象的概念,一次函数图象的特征,怎样作一次函数的图象。
A、一次函数图象的特征(y=kx+b,b≠0)
①一次函数的图象不过原点,和两坐标轴相交,它是一条直线。
②一次函数图象中
当k>0时,y的值随x的增大而增大。
当k<0时,y的值随x的增大而减小。
③作一次函数y=kx+b的图象时,一般找(0,b)和(-b/k,0)两点,作正比例函数y=kx的图象时,一般找(0,0)和(1,k)两点。
(二)例题讲解
1、下面有三个关系式和三个图象,哪一个关系式与哪一个图象能够表示同一个一次函数?
(1)y=1-x2;(2)a+b=3,(3)s=2t
2、已知y是x的一次函数
(1)根据下表写出函数表达式;
(2)补全下表
3、作出函数y=1-x的图象,并回答下列问题。
(1)随着x值的增加,y值的变化情况是________;
(2)图象与图象与y的交点坐标有_______,与x轴的交点坐标是__________;
(3)当x__________时,y≥0。
分析:函数图象如图所示:
(1)因为k<0,所以随着x的增加,y的值逐渐减小;
(2)图象与y轴的交点坐标(0,1),与x轴的交点坐标是(1,0);
(3)当x≤1时,y≥0。
4、如图表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图像(分别为正比例函数和一次函数),两地间的距离是80千米,请你根据图像回答或解答下面的问题:
(1)谁出发较早?早多长时间?谁到乙地较早?早到多长时间?
(2)两人在路上行驶的时间分别是多少?行驶的速度呢?
分析:(1)自行车出发较早,早3个小时;摩托车到乙地较早,早3个小时;(2)行驶的时间:自行车为8小时,摩托车为2小时;速度:自行车为80÷2=4(千米/小时)。
五、课后作业
P 179 复习题A,B。
教后感:在合作与交流中经历函数、一次函数等概念的抽象概括过程,体会函数的模型思想,进一步发展学生的抽象思维能力,发展学生的合作意识和能力熟练掌握本章的知识网络结构。