五年级数学下册计算竞赛题
- 格式:docx
- 大小:13.90 KB
- 文档页数:3
1、口算。
9×0.4=10×0.01=30.2-3.02= 4.3-0.25=1-0.82=9.6×0.3= 2.6÷0.01=20×25.4=4.8×0.4=5.4+4.62= 9-3.2= (1.5+2.4)×0.2= 3.6×0.6=9.5×0.1=7.2×0.8= 1.7+1.3×0.4= 5.4×0.6= 10×2.5=35×0.05= 8.5×0.5+0.6= 25分米50厘米=()米3角20分=()元2、解方程。
1.5x-10.8 =2.7 0.2x+2x=15.4 38.9-1.5a=5.44、简便计算。
36.54-1.76-4.54 0.85×199 2.5×2.5+4.6×2.5+2.5×2.9 1、口算。
12-3.8=8.1-0.05=0.64×0.4= 2.5×0.5= 0.24×0.3=0.2×0.5= 2.4×0.8= 0.1×0.01= 8.89+0.1= 2.5×3= 4×0.5= 4.4×(5×0.2)= 0.96×0.06= 7×1.3= 7×2.1= 13+0.7×0.7= 0.36×0.3= 0.35×0.7= 24×0.25= 4×1.7×0.25= 250平方米=( )公顷18分=( )小时15秒=( )分2、解方程。
0.5x+2x =27.5 1.5(3.2y+0.6)=10.5 1.2x+3.2×1.7=9.043、简便计算。
7.325-(5.325-1.7) 35×40.2 0.86×15.7-0.86×4.7-0.861、口算。
数学竞赛试卷五年级下册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 一个等腰三角形的底边长为10厘米,腰长为12厘米,那么这个三角形的周长是多少厘米?A. 22厘米B. 32厘米C. 44厘米D. 52厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 一个长方体的长、宽、高分别是8厘米、6厘米、4厘米,那么这个长方体的体积是多少立方厘米?A. 192立方厘米B. 200立方厘米C. 216立方厘米D. 224立方厘米5. 下列哪个分数是最简分数?A. 2/4B. 3/6C. 4/8D. 5/10二、判断题(每题1分,共5分)1. 0是最小的自然数。
()2. 任何两个奇数相加的和都是偶数。
()3. 任何两个偶数相加的和都是偶数。
()4. 一个正方形的周长等于它的面积。
()5. 1是任何非0自然数的因数。
()三、填空题(每题1分,共5分)1. 36的因数有:1、2、3、4、6、12、18、______。
2. 一个等边三角形的周长是18厘米,那么它的边长是______厘米。
3. 0.25小时等于______分钟。
4. 一个长方体的长是10厘米,宽是6厘米,高是4厘米,那么它的体积是______立方厘米。
5. 下列各数中,合数有:4、6、8、9、10、______。
四、简答题(每题2分,共10分)1. 请写出5个质数。
2. 请写出3个偶数。
3. 请写出3个奇数。
4. 请写出2个既是质数又是偶数的数。
5. 请写出2个既是奇数又是合数的数。
五、应用题(每题2分,共10分)1. 一个长方体的长是12厘米,宽是8厘米,高是6厘米,那么这个长方体的表面积是多少平方厘米?2. 一个等腰直角三角形的直角边长为10厘米,那么这个三角形的面积是多少平方厘米?3. 一个数加上它的2倍再加上它的3倍,结果是60,那么这个数是多少?4. 一个数的3倍减去它的2倍,结果是10,那么这个数是多少?5. 一个长方体的长、宽、高分别是10厘米、6厘米、4厘米,那么这个长方体的对角线长度是多少厘米?六、分析题(每题5分,共10分)1. 请分析一个长方体和一个正方体的相同点和不同点。
知识概述1.牛吃草问题类型:⎧⎧⎪⎨⎩⎪⎪⎧⎪⎨⎨⎩⎪⎪⎧⎪⎨⎪⎩⎩草增加简单牛吃草草减少牛的数量增加或减少牛吃草复杂牛吃草有多种动物的牛吃草抽水问题牛吃草变例入口问题牛吃草问题的难点在于草的总量有变化,因此要注意单位“1”的选取。
2.牛吃草问题解题步骤:第1步求出两个总量;第2步总量的差÷时间差=每天长草量=安排去吃新草的牛数;第3步每天长草量×天数=总共长出来的草;第4步草的总量-总共长出来的草=原有的草;第5步原有的草÷吃原有草的牛=能吃多少天。
牛吃草问题牛吃草问题是中环杯、小机灵杯等各大杯赛的常考点,这类问题的解题思路相对比较固定,常以牛吃草、检票、抽水机等题型出现。
只要我们掌握熟练牛吃草问题的解题思路,这类问题可轻松应对。
名师点题有一片牧场,草每天都在均匀地生长,如果在牧场上放养18头牛,那么10天能把草吃完;如果只放养24头牛,那么7天就把草吃完了。
请问:如果放养32头牛,多少天可以把草吃完?【解析】设1头牛1天吃1份草。
18头牛10天吃的总草量:18×10=180;24头牛7天吃的总草量:24×7=168;10-7=3天新长的草24*7=168(份)18*10=180(份)1天新生的草量:(180-168)÷(10-7)=4;草地上原有草量:180-4×10=140;这片草地可供32头牛吃的天数:140÷(32-4)=5(天)答:如果放养32头牛,5天可以把草吃完。
进入冬季后,有一片牧场上的草开始枯萎,因此草会均匀地减少。
现在开始在这片牧场上放牛,如果有38头牛,把草吃完需要25天;如果有30头牛,把草吃完需要30天。
如果有20头牛,这片牧场可以吃多少天?【解析】设1头牛1天吃1份草。
38头牛25天吃的总草量:38×25=950;30头牛30天吃的总草量:30×30=900;1天减少的草量:(950-900)÷(30-25)=10;草地上原有草量:900+10×30=1200;这片草地可供20头牛吃的天数:1200÷(20+10)=40(天)答:如果有20头牛,这片牧场可以吃40天。
小学五年级下学期数学竞赛试题(含答案)一、拓展提优试题1.如果一个自然数的约数的个数是奇数,我们称这个自然数为“希望数”,那么,1000以内最大的“希望数”是.2.小松鼠储藏了一些松果过冬.小松鼠原计划每天吃6个松果,实际每天比原计划多吃2个,结果提前5天吃完了松果.小松鼠一共储藏了个松果.3.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;4.甲、乙两人进行射击比赛,约定每中一发得20分,脱靶一发扣12分,两人各打10分,共得208分,最后甲比乙多得64分,乙打中发.5.如图:平行四边形ABCD中,OE=EF=FD.平行四边形面积是240平方厘米,阴影部分的面积是平方厘米.6.(8分)有一种细胞,每隔1小时死亡2个细胞,余下的每个细胞分裂成2个.若经过5小时后细胞的个数记为164.最开始的时候有个细胞.7.如图中,A、B、C、D为正六边形四边的中点,六边形的面积是16,阴影部分的面积是.8.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.9.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.10.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).11.(8分)有一个特殊的计算器,当输入一个数后,计算器先将这个数乘以3,然后将其结果是数字逆序排列,接着再加2后显示最后的结果,小明输入了一个四位数后,显示结果是2015,那么小明输入的四位数是.12.(8分)小胖把这个月的工资都用来买了一支股票.第一天该股票价格上涨,第二天下跌,第三天上涨,第四天下跌,此时他的股票价值刚好5000元,那么小胖这个月的工资是元.13.如图是一个由26个相同的小正方体堆成的几何体,它的底层由5×4个小正方体构成,如果把它的外表面(包括底面)全部涂成红色,那么当这个几何体被拆开后,有3个面是红色的小正方体有块.14.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.15.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:①有几道题的答案是4?②有几道题的答案不是2也不是3?③第⑤题和第⑥题的答案的平均数是多少?④第①题和第②题的答案的差是多少?⑤第①题和第⑦题的答案的和是多少?⑥第几题是第一个答案为2的?⑦有几种答案只是一道题的答案?那么,7道题的答案的总和是.【参考答案】一、拓展提优试题1.解:根据分析可得:1000以内最大的“希望数”就是1000以内最大的完全平方数,而已知1000以内最大的完全平方数是312=961,根据约数和定理可知,961的约数个数为:2+1=3(个),符合题意,答:1000以内的最大希望数是961.故答案为:961.2.解:(6+2)×[(5×6)÷2]=8×15,=120(个).答:小松鼠一共储藏了120个松果.故答案为:120.3.解:根据分析,AD=BE+EC=5+4=9,AB=1+4=5,S△EFC=×EC×FC=×4×4=8;S△ABE=×AB×BE=×5×5=12.5;S△ADF=×AD×DF=×9×1=4.5;S长方形ABCD=AB×AD=5×9=45,要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.故答案是:20.4.解:假设全打中,乙得了:(208﹣64)÷2=72(分),乙脱靶:(20×10﹣72)÷(20+12),=128÷32,=4(发);打中:10﹣4=6(发);答:乙打中6发.故答案为:6.5.解:因为平行四边形ABCD中,AC和BD是对角线,把平行四边形ABCD 的面积平分4份,平行四边形面积是240平方厘米,所以S△DOC=240÷4=60(平方厘米),又因为△OCE、△ECF、△FCD和△DOC等高,OE=EF=FD,所以S△ECF=S△DOC=×60=20(平方厘米),所以阴影部分的面积是 20平方厘米.故答案为:20.6.解:第5小时开始时有:164÷2+2=84(个)第4小时开始时有:84÷2+2=44(个)第3小时开始时有:44÷2+2=24(个)第2小时开始时有:24÷2+2=14(个)第1小时开始时有:14÷2+2=9(个)答:最开始的时候有 9个细胞.故答案为:9.7.解:如图:连接正方形的一条对角线,延长DA,与最上边正六边形边的延长线交与一点,这样可得两个三角形①、②三角形①和三角形②是全等三角形,它们的面积相等,进而可得出阴影部分两侧的三角形可补到六边形的角上,这样就成了一个长方形,阴影部分的面积等于空白部分的面积,所以阴影部分的面积是正六边形面积的一半16÷2=8答:阴影部分的面积是8.故答案为:8.8.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.9.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12010.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.11.解:依题意可知:经过了乘以3,再逆序排列,再加上2得到的数字是2015.那么要求原来的数字可以逆向思维求解.2015﹣2=2013,再逆序变成3102,再除以3得3102÷3=1034.故答案为:103412.解:5000÷(1﹣)÷(1+)÷(1﹣)÷(1+)=5000××××=5000(元)答:小胖这个月的工资是5000元.故答案为:5000.13.解:依题意可知:第一层的共有4个角满足条件.第二层的4个角是4面红色,去掉所有的角块其余的符合条件.分别是3+2+3+2=10(个);共10+4=14(个);故答案为:1414.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,由题意可得:80+70﹣x+6=2x156﹣x=2x3x=156x=52则2x=2×52=104答:则参加春游的同学共有104人.故答案为:104.15.解:因为每道题的答案都是1、2、3、4的一个,所以①的答案不宜太大,不妨取1,此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,此时7道题的答案如表;它们的和是1+3+3+2+2+4+1=16.。
第十四讲数论相关的计数在前面的学习中,我们学习了解决计数问题的一些基本方法,包括:枚举法、树形图、分类讨论、加法原理和乘法原理、排列与组合等.计数问题是多种多样的,它经常与其他的知识联系在一起,比如几何、数论、数字谜等等.今天让我们来研究一下结合了数论知识的计数问题.例1.恰好能同时被6,7,8,9整除的四位数有多少个?「分析」大家还记得公倍数怎么求吗?练习1、恰好能同时被4,5,6整除的三位数有多少个?例2.用1、2、3、4、5、7这6个数字各一次组成六位数,并且使这个六位数是11的倍数,有多少种不同的方法?「分析」根据11的整除特性,通过分析奇位数字和与偶位数字和,再结合本题的已知条件可以获得解题的线索.练习2、用1,2,3,4各一次组成四位数,使得它是11的倍数,有多少种不同的方法?例3.从1~10这10个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?「分析」(1)两个数的乘积能被3整除,那么这两个数中至少有一个能被3整除.如何选取才能保证选到3的倍数呢?(2)要考虑两个数的和是否能被3整除,只需要考虑每个数除以3的余数的情况,那么怎样的两个数相加才能被3整除呢?练习3、从1~12这12个数中选出2个数,请问:(1)要使这2个数的乘积能被3整除,一共有多少种不同的选法?(2)要使这2个数的和能被3整除,一共有多少种不同的选法?例4.如果称能被8整除或者含有数字8的自然数为“吉利数”,那么在1至200这200个自然数中有多少个“吉利数”?「分析」这道题目可以从两方面入手,8的倍数和含有数字8的数,注意其中重复的情况.练习4、在1至200这200个自然数中,含有数字9或者能被9整除的有多少个?前面几个例题都是计数与整除相结合的题目.而除了整除之外,与数字相关的问题也属于数论的范畴,下面我们来看两道与数字有关的计数问题.例5.有一种“上升数”,这些数的数字从左往右依次增大,将所有的四位“上升数”按从小到大的顺序排成一行:1234,1235,1236,…,6789.请问:此列数中的第100个数是多少?「分析」数字从左往右依次增大的数是“上升数”,那么四位“上升数”一共有多少个呢?显然,不能将前100个“上升数”都写出来,那怎么才能方便的计算出第100个数呢?例6.一个正整数,如果从左到右看和从右到左看都是一样的,那么称这个数为“回文数”.例如:1331,7,202,66都是回文数,而220则不是回文数.请问:六位回文数有多少个?五位回文数又有多少个?五位的回文数中,有多少个是4的倍数?「分析」“回文数”一定是左右对称的,不妨从左往右分析,一旦左面的一个数字确定,右面一定有一个数字和其相同.回文联数学当中有回文数,在文学当中也有回文联.回文联,它是我国对联修辞奇葩(pā)中的一朵.用回文形式写成的对联,既可顺读,也可倒读,不仅它的意思不变,而且颇具趣味.兹举数例如下.其一:河南省境内有一座山名叫鸡公山,山中有两处景观:“斗鸡山”和“龙隐岩”.有人就此作了一副独具慧眼的回文联:斗鸡山上山鸡斗龙隐岩中岩隐龙其二:厦门鼓浪屿鱼脯浦,因地处海中,岛上山峦叠峰,烟雾缭绕,海淼淼水茫茫,远接云天.于是,一副饶有趣味的回文联便应运而生:雾锁山头山锁雾天连水尾水连天其三:清代,北京城里有一家饭馆叫“天然居”,乾隆皇帝曾就此作过一副有名的回文联:客上天然居居然天上客上联是说,客人上“天然居”饭馆去吃饭.下联是上联倒着念,意思是没想到居然像是天上的客人.乾隆皇帝想出这副回文联后,心里挺得意.即把它当成一个联,向大臣们征对下联,大臣们面面相觑,无人言声.只有大学士纪晓岚即席就北京城东的一座有名的大庙——大佛寺,想出了一副回文联:人过大佛寺寺佛大过人上联是说,人们路过大佛寺这座庙.下联是说,庙里的佛像大极了,大得超过了人.纪学士的下联,想得挺不错.这副回文联放到乾隆皇帝的一块,就组成一副如出一口的新回文联了:客上天然居居然天上客人过大佛寺寺佛大过人其四:湛江德邻里有一副反映邻里之间友好关系,鱼水深情的回文联,至今传颂不衰:邻居爱我爱居邻鱼傍水活水傍鱼作业1.1~100中,7的倍数有多少个?除以7余2的数有多少个?2.从1~15中,选出2个数,使它们的和是3的倍数,共有多少种选法?3.用1、2、3、4、5、8、9组成不重复的七位数,其中有多少个能被11整除?4.如果把三位的“上升数”从小到大排列一下,如123、124、…,那么第20个上升数是多少?5.有一类六位数,组成每个数的六个数字互不相同,并且每个数中任意两个相邻的数字组成的两位数都能被3整除.这类六位数共有多少个?俗话说,兴趣是最好的老师。
一、仔细想,认真填(每空1分,共20分)1、===3628214( )÷12=( )(填小数)。
2、已知a 是非零自然数,且7a 是真分数,5a是假分数,那么a 的值可以是( )或( )。
3、426=-a 中,a 的值是( ),3÷a =( )。
4、数对(6,9)表示物体在第( )列,第( )行。
5、a =b+1(a 、b 是不为零的自然数),那么a 、b 的最大公因数是( ),最小公倍数是( )。
6、分母是8的最简真分数有( )个,它们的和是( )。
7、把5千克糖平均分给8个小朋友,每个小朋友分得5千克的( ),分得1千克的( )。
8、一个分数的分子与分母的和是56,约分后得31,原来这个分数是( )。
9、一根木头,锯成4段要付锯板费2.4元,如果锯成12段,要付( )元。
10、+⨯=72373 873⨯+= 二、小法官,我来当。
(每小题2分,共10分)1、b y x =-是方程。
( )2、3.14就是π。
( )3、一个数的倍数一定比它的因数大。
( )4、把一张饼分给4个小朋友,每人分得41。
( ) 三、对号入座,我来选。
(每小题2分,共16分)1、分母是7的真分数有( )个。
A. 6 B. 12C. 无数2、一个最简分数,分子与分母的和是12,这样的分数有( )个。
A. 1B. 2C. 3 3、如果a 是大于2的自然数,那么a a 1-( )是最简分数。
A. 一定B. 不一定C. 一定不 4、下面是方程的是( )。
A. 8917=-B. x -7>4C. 09=x 6、532⨯⨯=a ,52⨯=b ,那么a 、b 的最小公倍数是( )A. 15B. 30C. 607、a 与20的最小公倍数是60,那么a 应是( )A. 5B. 10C. 15四、认真计算,我最行。
(能简算的要简算)(每题4分,共20分)1、248.08.0÷=x2、749471095+++3、)6143(87-+ ( ) ( ) ( ) ( )4、)7492(98+-5、321161814121++++五、解决问题,我最棒!(共34分)1、刘老师买了2副羽毛球拍,付出80元钱,找回4元。
【精选】小学五年级下册数学趣味数学竞赛试题一一、拓展提优试题1.同时掷4个相同的小正方体(小正方体的六个面上分别写有数字1、2、3、4、5、6,则朝上一面的4个数字的和有种.2.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.3.如图,在梯形ABCD中,若AB=8,DC=10,S△AMD=10,S△BCM=15,则梯形ABCD的面积是.4.两个数的最大公约数和最小公倍数分别是3和135,求这两个数的差最小是.5.某数学竞赛有10道题,规定每答对一题得5分,答错或不答扣2分.A、B 两人各自答题,得分之和是58分,A比B多得14分,则A答对道题.6.李双骑车以320米分钟的速度从A地驶向B地,途中因自行车故障推车继续向前步行5分钟到距B地1800米的某地修车,15分钟后以原来骑车速度的1.5倍继续向前驶向B地,到达B地时,比预计时间多用17分钟,则李双推车步行的速度是米/分钟.7.解放军战士在洪水不断冲毁大坝的过程中要修好大坝,若10人需45分钟,20人需要20分钟,则14人修好大坝需分钟.8.对于自然数N,如果1﹣9这九个自然数中至少有六个数可以整除N,则称N是一个“六合数”,则在大于2000的自然数中,最小的“六合数”是.9.将100按“加15,减12,加3,加15,减12,加3,…”的顺序不断重复运算,运算26步后,得到的结果是.(1步指每“加”或“减”一个数)10.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.11.三位偶数A、B、C、D、E满足A<B<C<D<E,若A+B+C+D+E=4306,则A最小.12.某长方体的长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,若这个长方体的体积是665,则它的表面积是.13.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.14.观察下表中的数的规律,可知第8行中,从左向右第5个数是.15.如果2头牛可以换42只羊,3只羊可以换26只兔,2只兔可以换3只鸡,则3头牛可以换多少只鸡?16.用一根34米长的绳子围成一个矩形,且矩形边长都是整数米,共有种不同的围法(边长相同的矩形算同一种围法).17.如图,魔术师在一个转盘上的16个位置写下来了1﹣16共16个数,四名观众甲、乙、丙、丁参与魔术表演.魔术师闭上眼,然后甲从转盘中选一个数,乙、丙、丁按照顺时针方向依次选取下一个数,图示是一种可能的选取方式,魔术师睁开眼,说:“选到偶数的观众请举手.”,这时候,只有甲和丁举手,这时候魔术师就大喝一声:“我知道你们选的数了!”.你认为甲和丁选的数的乘积是.18.A、B两桶水同样重,若从A桶中倒2.5千克水到B桶中,则B桶中水的重量是A桶中水的重量的6倍,那么B桶中原来有水千克.19.松鼠A、B、C共有松果若干,松鼠A原有松果26颗,从中拿出10颗平分给B、C,然后松鼠B拿出自己的18颗松果平均分给A、C,最后松鼠C把自己现有松果的一半平分给A、B,此时3只松鼠的松果数量相同,则松鼠C原有松果颗.20.(8分)6个同学约好周六上午8:00﹣11:30去体育馆打乒乓球,他们租了两个球桌进行单打比赛每段时间都有4 个人打球,另外两人当裁判,如此轮换到最后,发现每人都打了相同的时间,请问:每人打了分钟.21.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.22.如图,7×7的表格中,每格填入一个数字,使得相同的数字所在的方格都连在一起(相连的两个方格必须有公共边),现在已经给出了1,2,3,4,5各两个,那么,表格中所有数的和是.125334215423.(7分)爱尔兰作家刘易斯曾写过一篇反讽寓言,文中描述了一个名为尼亚特泊的野蛮国家.在这个国家里使用西巴巴数字.西巴巴数字的形状与通用的阿拉伯数字相同,但含义相反.如“0”表示“9”,“1”表示“8”,以次类推.他们写数字是从左到右,使用的运算符号也与我们使用的一样.例如,他们用62代表我们所写的37.按照尼亚特泊人的习惯,应怎样写837+742的和是419.【分析】“0”表示“9”,0+9=9,“1”表示“8”,1+8=9,由此可知西巴巴数字,表示的数字与正常数字的和都是9;由此找出837、742表示的数字,然后相加即可.24.用1,2,3,4,5,6,7,8这八个数字组成两个不同的四位数(每个数字只用一次)使他们的差最小,那么这个差是.25.数一数,图中有多少个正方形?26.将等边三角形纸片按图1所示步骤折叠3次(图1中的虚线是三边的中点的连线),然后沿两边的重点的边减去一角(如图2).将剩下的纸片展开、平铺,得到的图形是A27.如图,甲、乙两人按箭头方向从A点同时出发,沿正方形ABCD的边行走,正方形ABCD的边长是100米,甲的速度是乙的速度的1.5倍,两人在E 点第一次相遇,则三角形ADE的面积比三角形BCE的面积大1000平方米.28.星期天早晨,哥哥和弟弟去练习跑步,哥哥每分钟跑110米,弟弟每分钟跑80米,弟弟比哥哥多跑了半小时,结果比哥哥多跑了900米,那么,哥哥跑了米.29.如图,若每个小正方形的边长是2,则图中阴影部分的面积是.30.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)31.如图,在等腰直角三角形ABC中,斜边AB上有一点D,已知CD=5,BD 比AD长2,那么三角形ABC的面积是.32.甲、乙两车从A城市出发驶向距离300千米远的B城市.已知甲车比乙车晚出发1小时,但提前1小时到达B城市.那么,甲车在距离B城市千米处追上乙车.33.已知一个五位回文数等于45与一个四位回文数的乘积(即=45×),那么这个五位回文数最大的可能值是59895.34.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.35.小胖和小亚两人在生日都是在五月份,而且都是星期三.小胖的生日晚,又知两人的生日日期之和是38,小胖的生日是5月日.36.如图,正方形的边长是6厘米,AE=8厘米,求OB=厘米.37.一艘船从甲港到乙港,逆水每小时行24千米,到乙港后又顺水返回甲港,已知顺水航行比逆水航行少用5小时,水流速度为每小时3千米,甲、乙两港相距千米.38.用0、1、2、3、4这五个数字可以组成个不同的三位数.39.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.40.小明带了30元钱去买文具,买了3个笔记本和5支笔,剩余的钱,如果再买2支笔还差0.4元,如果再买2个笔记本则还差2元,那么,笔记本每个 元,笔每支 元.【参考答案】一、拓展提优试题1.解:根据分析可得,朝上一面的4个数字的和最小是:1×4=4,最大是6×4=24,24﹣4+1=21(种)答:朝上一面的4个数字的和有 21种.故答案为:21.2.解:由定义可知:x @1.3=11.05,(x +5)1.3=11.05,x +5=8.5,x =8.5﹣5=3.5故答案为:3.53.解:△ADM 、△BCM 、△ABM 都等高,所以S △ABM :(S △ADM +S △BCM )=8:10=4:5,已知S △AMD =10,S △BCM =15,所以S △ABM 的面积是:(10+15)×=20,梯形ABCD 的面积是:10+15+20=45;答:梯形ABCD 的面积是45.故答案为:45.4.解:因为135÷3=45,45分解成两个互质的数有两种情况即1和45、9与5,所以差最小的是:9和5,所以这两个数分别是:9×3=275×3=1527﹣15=12答:这两个数的差最小是12.故答案为:12.5.解:(58+14)÷2=72÷2=36(分)答错:(5×10﹣36)÷(2+5)=14÷7=2(道)答对:10﹣2=8道.故答案为:8.6.解:1800÷320﹣1800÷(320×1.5)=5.625﹣3.75=1.875(分钟)320×[5﹣(17﹣15+1.875)]÷5=320×[5﹣3.875]÷5=320×1.125÷5=360÷5=72(米/分钟)答:李双推车步行的速度是72米/分钟.故答案为:72.7.解:假设每人每分钟修大坝1份洪水冲毁大坝速度:(10×45﹣20×20)÷(45﹣20)=(450﹣400)÷25=50÷25=2(份)大坝原有的份数45×10﹣2×45=450﹣90=360(份)14人修好大坝需要的时间360÷(14﹣2)=360÷12=30(分钟)答:14人修好大坝需30分钟.故答案为:30.8.解:依题意可知:要满足是六合数.分为是3的倍数和不是3的倍数.如果不是3的倍数那么一定是1,2,4,8,5,7的倍数,那么他们的最小公倍数为:8×5×7=280.那么280的倍数大于2000的最小的数字是2240.如果是3的倍数.同时满足是1,2,3,6的倍数.再满足2个数字即可.大于2000的最小是2004(1,2,3,4,6倍数)不符合题意;2010是(1,2,3,5,6倍数)不符合题意;2016是(1,2,3,4,6,7,8,9倍数)满足题意.2016<2240;故答案为:20169.解:每一个计算周期运算3步,增加:15﹣12+3=6,则26÷3=8…2,所以,100+6×8+15﹣12=100+48+3=151答:得到的结果是 151.故答案为:151.10.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的(2)S△ABC :S△ACD=1:2,根据风筝模型,BG:GD=1:2;(3)S△BGC:S CGD=BG:GD=1:2,故;故AGDH面积=六边形总面积﹣(S△ABC +S△CGD)×2=360﹣(+40)×2=160.故答案是:16011.解:最大的三位偶数是998,要满足A最小且A<B<C<D<E,则E最大是998,D最大是996,C最大是994,B最大是992,4306﹣(998+996+994+992)=4306﹣3980=326,所以此时A最小是326.故答案为:326.12.解:665=19×7×5,因为长、宽、高(长、宽、高均大于1)是三个彼此互质的自然数,所以长、宽、高分别是19、7、5,(19×7+19×5+7×5)×2=(133+95+35)×2=263×2=526,答:它的表面积是526.故答案为:526.13.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,即不能被3整除的数共有18个.故答案为:18.14.解:由图可知,第1行的数为1,第2行的最后一个数为2×2=4,第3行的最后一个数为3×3=9,…所以第7行最后一个数为7×7=49,则第8行第1个数为49+1=50,第5个数为50+4=54,故答案为:54.15.解:42÷2=21(只)21÷3×26=7×26=182(只)182÷2×3=91×3=273(只)273×3=819(只)答:3头牛可以换819只鸡.16.解:设矩形的长为am,宽为bm,且a≥b,根据题意,a+b=17,由于a,b均为整数,因此(a,b)的取值有以下8种:(16,1),(15,2),(14,3),(13,4),(12,5),(11,6),(10,7),(9,8),故答案为8.17.解:依题意可知:2个偶数中间间隔是2个奇数.发现只有数字10,11,9,12是符合条件的数字.乘积为10×12=120.故答案为:12018.解:2.5×2÷(6﹣1)+2.5=5÷5+2.5=1+2.5=3.5(千克)答:B桶中原来有水3.5千克.故答案为:3.5.19.解:10÷2=5(颗)18÷2=9(颗)此时A有:26﹣10+9=25(颗)此时C有:25×4=100(颗)原来C有:100﹣9﹣5=86(颗)答:松鼠C原有松果 86颗.故答案为:86.20.解:6÷2=3(组)11时30分﹣8是=3时30分=210分210×2÷3=420÷3=140(分钟)答:每人打了140分钟.故答案为:140.21.解:根据题干分析可得:3个红球的盒子数是:42﹣27=15(个),所以放3个白球的盒子数也是15(个),则放2白一红的盒子数是:100﹣15﹣15﹣27=43(个),所以白球的总数有:15×3+43×2+27=158(个),答:白球共有158个.故答案为:158.22.解:首先理解题目,找出唯一填法的空格,例如第一行第一个1,与其唯一相邻的空白空格必须为1,以此类推,第二行第一个5也具有唯一相邻空格.逆推得出唯一图形.相加求和为150.故答案为150.23.解:西巴巴数字8表示阿拉伯数字9﹣8=1,西巴巴数字3表示阿拉伯数字9﹣3=6,西巴巴数字7表示阿拉伯数字9﹣7=2,西巴巴数字4表示阿拉伯数字9﹣4=5,西巴巴数字2表示阿拉伯数字9﹣2=7,所以837+742表示的正常算式为:162+257=419.故答案为:419.24.【分析】设这两个数为a,b.,且a<b.千位最小差只能是1.为了让差尽量小,只能使a其它位数最大,b的其它位数最小.所以要尽量使a的百位大于b的百位,a的十位大于b的十位,a的个位大于b的个位.因此分别是8和1,7和2,6和3,剩下的4,5分给千位.据此解答.解:设这两个数为a,b.,且a<b.千位最小差只能是1.根据以上分析,应为:5123﹣4876=247故答案为:247.25.解:通过有规律的数,得出:(1)边长为1的正方形有4×3=12(个);(2)边长为2的正方形有6个;(3)边长为3的正方形有2个.(4)以小正方形的对角线为边的正方形有8个;(5)以对角线的一半为边长的正方形是17个;(6)以3个对角线的一半为边长的正方形有1个.所以图中共有正方形:12+6+2+8+17+1=46(个).答:图中有46个正方形.26.解:找一剪刀与一等边三角形纸片,按题中所示步骤进行操作,最后得到的图形是A,故答案为:A.27.解:由于甲的速度是乙的速度的1.5倍所以两人速度比为:1.5:1=3:2,所以两人在E点相遇时,甲行了:(100×4)×=240(米);乙行了:400﹣240=160(米);则EC=240﹣100×2=40(米),DE=160﹣100=60(米);三角形ADE的面积比三角形BCE的面积大:60×100÷2﹣40×100÷2=3000﹣2000,=1000(平方米).故答案为:1000.28.解:设哥哥跑了X分钟,则有:(X+30)×80﹣110X=900,80x+2400﹣110x=900,2400﹣30x=900,X=50;110×50=5500(米);答:哥哥跑了5500米.故答案为:5500.29.解:根据分析,如图,将阴影部分进行剪切和拼接后得:此时,图中阴影部分的小正方形个数为:18个,每个小正方形的面积为:2×2=4,故阴影部分的面积=18×4=72.故答案是:72.30.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.根据这两个范围可知可能是18、19、20、21的一个数.又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.只剩下18、19这两个数了.一个一个试,18×18×18=5832,18×18×18×18=104976;19×19×19=6859,19×19×19×19=130321;符合要求是18.故答案为:18.31.解:作CE⊥AB于E.∵CA=CB,CE⊥AB,∴CE=AE=BE,∵BD﹣AD=2,∴BE+DE﹣(AE﹣DE)=2,∴DE=1,在Rt△CDE中,CE2=CD2﹣DE2=24,=•AB•CE=CE2=24,∴S△ABC故答案为2432.解:行驶300米,甲车比乙车快2小时;那么甲比乙快1小时,需要都行驶150米;300﹣150=150(千米);故答案为:15033.解:根据分析,得知,=45=5×9既能被5整除,又能被9整除,故a的最大值为5,b=9,45被59□95整除,则□=8,五位数最大为59895故答案为:5989534.解:列举如下:1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.故至少需要选出6个数.故答案为6.35.解:38=7+31=8+30=9+29=10+28=11+27=12+26=13+25=14+24=15+23=16+22,因为二人的生日都是星期三,所以他们的生日相差的天数是7的倍数;经检验,只有26﹣12=14,14是7的倍数,即小亚的生日是5月12日,小胖的生日是5月26日时它们相差14天,符合题意,答:小胖的生日是5月26日.故答案为:26.36.解:6×6÷2=18(平方厘米),18×2÷8=4.5(厘米);答:OB长4.5厘米.故答案为:4.5.37.解:顺水速度为:24+3+3=30(千米/小时);甲、乙两港相距:5÷(+),=5÷,=(千米);答:甲、乙两港相距千米.故答案为:.38.解:4×4×3,=16×3,=48(种);答:这五个数字可以组成 48个不同的三位数.故答案为:48.39.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.故答案为:B.40.解:根据题干分析可得:5个笔记本+5支笔=32元;则1个笔记本+1支笔=6.4(元),3个笔记本+3支笔+4支笔=30.4(元),所以4支笔=30.4﹣3×6.4=11.2(元),所以1支笔的价格是:11.2÷4=2.8(元),则每个笔记本的价钱是:6.4﹣2.8=3.6(元).答:每个笔记本3.6元,每支笔2.8元.故答案为:3.6;2.8.。
五年级数学百题竞赛班别:姓名:成绩:一、口算(60% 一步计算每题0.5分,两步计算每题1分)0.75×100= 5.6÷100= 2.5×4= 10-9.25= 0.06×1.5= 0.3÷0.5= 0.7×0.8= 0.1÷0.01= 2.1÷0.7= 1-0.34= 0.175+0.25= 8×0.125=5.6+3.8= 0.62-0.32= 0.02×0.5= 0.75÷0.25= 16.8÷4= 0.1÷100= 6.3÷0.9= 0.25×8=0.04×2.5= 1×0.01= 0.1+0.01= 0.63÷0.9=4.5×2= 3.6÷3= 0.125×8= 0.53×1000= 72.8×0.01= 1÷125= 1.2÷0.2= 1÷0.01=29÷100= 6.3÷0.7= 6+2.4= 12.5×8=8.9×0= 0.78÷3= 0.35÷0.5= 9.36÷0.9=100÷0.4= 0.81+0.09= 0.4×0.9= 10-5.4=4÷20= 3.5×200= 1.5-0.06= 0.75÷15=2 5 +15=47-27=58+18=255-105=1 6 +16=23-13=910+110=12+15+12=1 3 +23=18+18+38= 1-29-49=47+47=5 8 +14=910-410=14-15==-75765 8 -38=29+59= 1 -56==31430.4×101-0.4= 1.25×0.7×0.8= 0.79+0.79×99=1÷5+1÷5=0.89×101-0.89= 2-0.64-0.36﹦1.1-2.7÷27=12.4×11-12.4= 1.25×3.3×0﹦20-3.7-7.3= 5×0.75÷1.5×0.75= 1-0.1×0.1=6×0.125×8= 1×0.4÷1×0.4= 37.2×99+37.2= 25×4÷0.25×4= 0.9×7+10.7= 9÷5-4÷5﹦6.8-2.4÷3= 0.6÷0.3+0.5= 1.9+5.1÷51=1.8÷0.9×0.5= 12-0.05×4= 1×0.01÷0.1=8.9-(3+0.9)= 2×1.7+2×1.3=二、填空(22%每空0.5分)1)6000毫升=()升=()立方分米=()立方米2) 7.5升=()升()毫升=()毫升3) 1000000立方厘米=()立方分米=()升4) 56000升=()立方分米 =()立方米5) 45000毫升=()升=()立方米6) 720立方分米=()立方米=()立方厘米7) 3350立方厘米=()立方分米=()升8) 16升=()立方分米=()立方厘米9) 1.3立方米=()立方分米=()升10) 1立方分米=()立方米=()升11) 7.7升=()升=()毫升12) 550毫升=()升=()立方厘米13) 1.25升=()毫升=()立方米14) 2立方分米=()升=()毫升15) 1立方米10立方分米=()升16) 220立方分米=()升=()毫升17) 60000毫升=()升=()立方米18) 810000立方厘米=()升19) 3.5升=()立方分米=()立方厘米20)()吨= 2050千克 =()克21) 1.5()=90() 48()=2()三|怎样简便就怎样算(18%每题3分)(1.25-0.125)×8 0.25×3621×(9.3-3.7)-5.6 0.85×1993.2×0.25×12.5 23.4-0.8-13.4-7.2(注:文档可能无法思考全面,请浏览后下载,供参考。
五年级数学竞赛初赛试题及答案小学数学五年级下册奥数试题及答案人教版五年级数学竞赛初赛试题(满分120分)一、计算题(能用简便方法计算的,要用简便算法。
每题4分,共12分。
)2.77×13+255×999+510二、填空题(1~9题每空4分,10~12题每空3分,共54分。
)1.a=8.8+8.98+8.998+8.9998+8.99998,a的整数部分是____。
2.1995的约数共有____。
3.等式“学学×好好+数学=1994”,表示两个两位数的乘积,再加上一个两位数,所得的和是1994。
式中的“学、好、数”3个汉字各代表3个不同数字,其中“数”代表____。
4.如图1,“好、伙、伴、助、手、参、谋”这7个汉字代表1~7这7个数字。
已知3条直线上的3个数相加、2个圆圈上3个数相加所得的5个和都相等。
图中间的“好”代表____。
5.农民叔叔阿根想用20块长2米、宽1.2米的金属网建一个靠墙的长方形鸡窝(如图2)。
为了防止鸡飞出,所建鸡窝高度不得低于2米。
要使所建的鸡窝面积最大,BC的长应是米。
7.小胡和小涂计算甲、乙两个两位数的乘积,小胡看错了甲数的个位数字,计算结果为1274;小涂看错了甲数的十位数字,计算结果为819。
甲数是____。
8.1994年“世界杯”足球赛中,甲、乙、丙、丁4支队分在同一小组。
在小组赛中,这4支队中的每支队都要与另3支队比赛一场。
根据规定:每场比赛获胜的队可得3分;失败的队得0分;如果双方踢平,两队各得1分。
已知:(1)这4支队三场比赛的总得分为4个连续奇数;(2)乙队总得分排在第一;(3)丁队恰有两场同对方踢平,其中有一场是与丙队踢平的。
根据以上条件可以推断:总得分排在第四的是____队。
9.一块空地上堆放了216块砖(如图3),这个砖堆有两面靠墙。
现在把这个砖堆的表面涂满石灰,被涂上石灰的砖共有____块。
10.南方某城市的一家企业有90%的员工是股民,80%的员工是“万元户”,60%的员工是打工仔。
第八讲水管问题在工程问题中还有更复杂的一类问题,称为水管问题.一般来说,一个水池里既有进水管,也有排水管.进水管可以看成是一个“灌水”的工程队,而每根排水管可以看成是一个“帮倒忙”的“排水”工程队,因此水管问题就是既有人做事情,也有人“帮倒忙”的工程问题.水管问题虽然比普通工程问题更复杂一些,但是基本解题思路还是一样,关键在于求水管的工作效率.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -例题1.一个水池有若干相同的进水管和若干相同的排水管,如果单独打开一个进水管,那么24小时可以将空水池灌满;如果单独打开一个排水管,那么36小时可以将满池的水排光.请根据题意,回答下列问题:(1)同时打开2个进水管,多少小时可以将空水池灌满?(2)同时打开3个进水管和1个排水管,多长时间可以将空水池灌满?(3)同时打开1个进水管和2个排水管,多长时间可以将满池的水排光?分析:就像课文中所说,排水管就相当一个“帮倒忙”的工程队,那么在计算效率的时候,就需要将排水管的效率减掉.但注意,如果整个工作要求的是排水,那么进水管反而变成了“帮倒忙”,那就计算效率时,就用排水管的效率减去进水管效率.练习1.一个水池有若干相同的进水管和若干相同的排水管,如果单独打开一个进水管,那么12小时可以将空水池灌满;如果单独打开一个排水管,那么18个小时可以将满池的水排光.那么,同时打开2个进水管和2个排水管,多长时间可以将空水池灌满?如果打开2个进水管和3个排水管呢?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- -- -- -- -在水管问题中,最重要的是考虑多个水管的效率和,注意进水管和排水管提供“相反”的效率,在计算效率的时候,要根据情况将“帮倒忙”的减去.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -- -- -- -- -- -例题2.一水池装有两个相同的进水管和一个排水管.如果开1个进水管,6小时可将空池灌满;如果开1个进水管和1个排水管,12小时可将空池灌满.现在将2个进水管和1个排水管同时打开,请问:多少时间能灌满整个池子的二分之一?分析:题目只给了我们进水管的效率,没有给排水管的效率.那怎么求出排水管的效率呢?练习2.一水池装有两个相同的进水管和一个排水管.如果只开1个排水管,6小时可将一池子水排空;如果开1个进水管和1个排水管,3小时可以将空池灌满.现在将2个进水管和1个排水管同时打开,请问:多少时间能将空池灌满?- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- -- -- -- -和普通的工程问题类似,如果水管开的时间不一样,既可以把工作量按时间做划分,也可以按不同的水管做划分,即找出甲管灌了多少水,乙管排了多少水.但是要注意最后的工作总量应该是进水管与排水管工作量的差.- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -- -- -- -- -- -例题3.蓄水池有甲、乙两个进水管和一个排水管.单开甲管需10小时灌满水池,单开乙管需12小时灌满水池,单开排水管需20小时排空水池.上午8点三个管同时打开,中间排水管因故关闭,结果到下午2点水池被灌满.问:排水管在何时被关闭?分析:从上午8点到下午2点,并不是所有的水管都一直开着.我们可以先把一直开着的水管灌或排的水量求出来,进而求出其他水管的水量.练习3.蓄水池有一根进水管和一根排水管.如果想灌满整池水,单开进水管需10小时,如果想排空整池水,单开排水管需15小时,上午6点将两个管同时打开,中间排水管因故关闭,结果到下午6点水池被灌满.问:排水管在何时被关闭?水箱排水问题是水管问题中最难的一部分,但是我们同样通过比较,可以得到进水和排水的相关效率.例题4.如图所示,一个水箱的中间位置上有一个排水孔A,它排水时的速度保持不变.现以一定的速度从上面向水箱中注水.如果关闭排水孔A,那么10个小时就可以将水箱灌满;如果打开排水孔A,那么需要11个小时才能将水箱灌满.现在,水箱是满的,如果单独打开排水孔A,那么多长时间之后,水箱里的水就只剩下一半?分析:孔以上的部分和孔以下的部分,排水或进水的情况不一样.我们应该把水箱分成两部分,分开考虑.Array练习4.如图所示,一个水箱的中间位置上有一个排水孔A,它排水时的速度保持不变.现以一定的速度从上面向水箱中注水.如果关闭排水孔A,那么8个小时就可以将水箱灌满;如果打开排水孔A,那么需要10个小时才能将水箱灌满.现在,水箱是满的,如果单独打开排水孔A,那么多长时间之后,水箱里的水就只剩下一半?例题5.某水库建有10个泄洪闸,现有水库的水位已经超过安全线,上游河水还在按不变的速度流入.为了防洪,需调节泄洪速度.假设每个闸门泄洪的速度相同,经测算,若打开1个泄洪闸,30小时水位降至安全线;若打开2个泄洪闸,10小时水位降至安全线.现在抗洪指挥部队要求在2.5小时使水位降至安全线以下,至少要同时打开几个闸门?分析:题目中提到了很多“速度”,比如河水流入“速度”,泄洪“速度”……这些速度其实就是工程问题中的哪个量?例题6.如图,有一个敞口的立方体水箱,在其侧面一条高的三等分点处有两个排水孔A和B,它们排水时的速度相同且保持不变.现在以一定的速度从上面往水箱注水.如果打开A孔、关闭B孔,经过20分钟可将水箱注满;如果关闭A孔,打开B孔,经过22分钟可将水箱注满.如果两个孔都打开,那么注满水箱的时间是多少分钟?分析:打开A孔,关闭B孔的时候,A孔以下的部分只有注水在工作,而A孔以上的部分,是注水和一个排水孔同时工作.打开B孔,关闭A孔的时候,B孔以下的部分只有注水在工作,B孔以上的部分是注水和一个排水孔同时工作.比较这两种情况,你能发现其中的不同和联系吗?下水道——城市的良心一场暴雨,北京成了“东方威尼斯”.网友仿旅游指南打趣道:“新燕京七景:陶然碧波,安华逐浪,白石水帘,莲花洞庭,大望垂钓,二环看海,机场观澜.威尼斯几百年做到的事,武汉几天就做到了;武汉几天做到的事,北京几小时就做到了.”不仅北京、武汉,5月间,广州也因暴雨出现过严重内涝.北京水务局回应称,城市建设排水系统滞后于城市发展,是全国普遍存在的问题.现在北京中心城区的排水管网最早还有明代的设施.但是城市管网更新面临诸多问题,老旧管网只能是打补丁,发现一处,补一处.如果被带到一个陌生的国度或城市,如何分辨它是否发达?台湾作家龙应台认为,一场大雨足矣.她说,“最好来一场倾盆大雨,足足下它3个小时.如果你撑着伞溜达了一阵,发觉裤脚虽湿了却不脏,交通虽慢却不堵塞,街道虽滑却不积水,这大概就是个先进国家;如果发现积水盈足,店家的茶壶头梳漂到街心来,小孩在十字路口用锅子捞鱼,这大概就是个发展中国家.它或许有钱建造高楼大厦,却还没有心力来发展下水道;高楼大厦看得见,下水道看不见.”有时候,GDP不算数,文明的差距,只差了一条下水道而已.下面是一些发达国家的下水道照片,或许值得我们借鉴.巴黎的下水道德国慕尼黑的地下储水设施英国谢菲尔德的下水道东京的下水道作业1.一水池装有两根出水管和一根进水管.单开一个出水管40分钟可放完全池水;单开一根进水管,30分钟注满空池,如三管齐开,多少分钟可以将满池水排空?作业2.一个水池有许多相同的进水管和排水管,如果打开一个进水管,那么12小时能将空池灌满,如果打开一个排水管,那么20小时能将满池的水排光,那么,同时打开2个进水管和2个排水管,多少小时能将空池灌满?作业3.一批货物在商店里销售,有一个售货员和一些进货员.售货员30天可以将摆满商品的商店里的全部商品卖出,而1个进货员需要90天才能将空商店摆满商品,现在商店中有一半的商品,售货员每天都卖出相同的商品,有2个进货员不断的给商店进货,几天之后可以卖完商店的商品?作业4.一个水池,底部安有一个常开的排水管,上部安有若干个同样粗细的进水管.当打开4个进水管时,需要5小时才能注满水池;当打开2个进水管时,需要15小时才能注满水池.现在需要在2小时内将水池注满,那么最少要打开几个进水管?作业5.如图所示,一个水箱上有A、B两个排水孔,两个排水孔都位于水箱侧面一条高的四等分点上.现在,以一定的速度从水箱上方向水箱内灌水.如果打开A孔、关闭B 孔,那么需要26分钟能将水箱灌满;如果打开B孔、关闭A孔,那么需要30分钟能将水箱灌满.那么将两个排水孔同时打开,需要多少分钟才能将水箱灌满?AB学习与生活的苦,每一个人必须选择一个。