主、再热蒸汽及旁路系统
- 格式:ppt
- 大小:815.50 KB
- 文档页数:24
主再热蒸汽及旁路系统流程一、主蒸汽系统流程。
1.1 主蒸汽的产生。
咱们先来说说主蒸汽是咋来的哈。
那是在锅炉里,水经过一系列复杂的加热过程,就像小火慢炖似的,一点点升温、升压。
燃料在炉膛里熊熊燃烧,就像一个大火炉,给水提供热量,水变成蒸汽后,压力和温度不断升高,最后就形成了主蒸汽。
这主蒸汽可不得了,就像一个充满力量的小巨人,憋着一股劲儿呢。
1.2 主蒸汽的输送。
这充满能量的主蒸汽啊,从锅炉出来后,就沿着管道开始它的旅程了。
这管道就像小巨人的专用通道,它得把主蒸汽安全、高效地送到汽轮机那里去。
这一路上啊,管道得保证密封性良好,不能让蒸汽偷偷溜走,要是有泄漏那可就像竹篮打水一场空了,能量都浪费了。
二、再热蒸汽系统流程。
2.1 再热蒸汽的形成原因。
为啥要有再热蒸汽呢?这就像人干活累了需要休息一下再接着干一样。
主蒸汽在汽轮机里做了一部分功之后,压力和温度都降低了,就像一个泄了气的皮球。
但是咱不能让它就这么没劲儿下去啊,所以把它再送回锅炉里重新加热,这就形成了再热蒸汽。
这过程就像是给这个“泄了气的皮球”重新打气,让它又充满活力。
2.2 再热蒸汽的循环过程。
再热蒸汽从锅炉再热器出来后,又雄赳赳气昂昂地奔向汽轮机了。
它再次进入汽轮机,就像一个满血复活的战士,继续在汽轮机里做功。
这个循环过程就像是一个接力赛,主蒸汽先跑一段,再热蒸汽接着跑一段,这样就能充分利用蒸汽的能量,不会造成能源的浪费,这就叫物尽其用嘛。
三、旁路系统流程。
3.1 旁路系统的作用。
旁路系统啊,就像是一个备用的小道。
当汽轮机不需要那么多蒸汽的时候,或者是机组启动、停机的时候,旁路系统就发挥作用了。
它就像一个贴心的小助手,能够调节蒸汽的流量,避免蒸汽在不需要的时候硬往汽轮机里挤,不然就会造成汽轮机的负担过重,就像一个人吃撑了难受一样。
3.2 旁路系统的工作方式。
旁路系统有自己的一套管道和阀门呢。
当需要启动旁路的时候,阀门就像忠诚的卫士一样,按照指令打开或者关闭,让蒸汽按照预定的路线走。
主再热蒸汽及旁路系统介绍本机组的主蒸汽系统采用双管一单管—双管布置. 主蒸汽由锅炉过热器出口集箱经两根支管接出,汇流成一根单管通往汽轮机房,在进汽轮机前用一个45°斜三通分为两根管道,分别接至汽轮机高压缸进口的左右侧主汽门。
汽轮机高压缸两侧分别设一个主汽门。
主汽门直接与汽轮机调速汽门蒸汽室相连接.主汽门的主要作用是在汽轮机故障或甩负荷时迅速切断进入汽轮机的主蒸汽. 汽轮机正常停机时,主汽门也用于切断主蒸汽,防止水或主蒸汽管道中其它杂物进入主汽门区域。
一个主汽门对应两个调速汽门。
调速汽门用于调节进入汽轮机的蒸汽流量, 以适应机组负荷变化的需要。
汽轮机进口处的自动主汽门具有可靠的严密性,因此主蒸汽管道上不装设电动隔离门。
这样,既减少了主蒸汽管道上的压损,又提高了可靠性,减少了运行维护费用。
在锅炉过热器的出口左右主蒸汽管上各设有一只弹簧安全阀,为过热器提供超压保护。
该安全阀的整定值低于屏式过热器入口安全阀,以便超压时过热器出口安全阀的开启先于屏式过热器入口安全阀,保证安全阀动作时有足够的蒸汽通过过热器,防止过热器管束超温。
所有安全阀装有消音器。
在过热器出口主汽管上还装有两只电磁泄压阀,作为过热器超压保护的附加措施.设置电磁泄压阀的目的是为了避免弹簧安全阀过于频繁动作,所以电磁泄压阀的整定值低于弹簧安全阀的动作压力.运行人员还可以在控制室内对其进行操作.电磁泄压阀前装设一只隔离阀,以供泄压阀隔离检修。
主蒸汽管道上设有畅通的疏水系统,它有两个作用。
其一是在停机后一段时间内,及时排除管道内的凝结水.另一个更重要的作用是在机组启动期间使蒸汽迅速流经主蒸汽管道,加快暖管升温,提高启动速度。
疏水管的管径应作合适选择,以满足设计的机组启动时间要求。
管径如果太小,会减慢主蒸汽管道的加热速度,延长启动时间,而如果太大,则有可能超过汽轮机的背包式疏水扩容器的承受能力.本机组的冷再热蒸汽系统也采用双管一单管—双管布置。
汽轮机热力系统概述第一节主、再热蒸汽及旁路系统本机组主蒸汽及再热蒸汽系统采用单元制、一次中间再热型式。
通常我们将进入高压缸的蒸汽称为主蒸汽;高压缸排汽称为冷再热蒸汽;冷再热蒸汽经锅炉再热器重新加热后进入中压缸的蒸汽称为热再热蒸汽;从主蒸汽管道经高压旁路控制阀至冷再热蒸汽管道称为高压旁路管道;从热再热蒸汽管道经低压旁路控制阀以及喷水减温器后至凝汽器的管道称为低压旁路管道。
一、主蒸汽系统1、主蒸汽管道主蒸汽管道采用A335P91优质合金钢。
最大蒸汽流量为锅炉B-MCR工况时的最大连续蒸发量1025t/h。
设计蒸汽压力18.2Mpa,设计蒸汽温度546℃,主蒸汽管道计算压力降约为0.6556MPa(MCR工况)。
主蒸汽从锅炉过热器出口联箱,由单根管道接出通往汽机房。
至汽机主汽门前分成两根支管,各自接到汽轮机高压缸左右侧主汽及调节汽阀。
然后再由四根高压主汽管导入高压缸。
在高压缸内作功后的蒸汽通过两个高压排汽止回阀,在出口不远处汇合成单根管道进入锅炉再热器。
这种单管系统的优点〈比较双管系统〉是简化管道布置,并能节省管材投资费用,同时,还有利于消除进汽轮机的主蒸汽和热再热蒸汽由于锅炉可能产生的热偏差,以及由于管道阻力不同产生的压力偏差。
两个主汽门出口与汽轮机调速汽门阀壳相接。
主汽门的主要功用是在汽轮机故障或甩负荷情况下迅速切断进入缸内的主蒸汽,汽轮机正常停机时,主汽门也用于切断主蒸汽,调速汽门通过各自蒸汽导管进汽到汽轮机第一级喷嘴。
调速汽门用于调节进入汽轮机的蒸汽流量,以适应机组负荷变化的要求。
由过热器出口至汽轮机主汽门入口的范围内,在主蒸汽管道上依次设有两只电动对空排汽阀、一只高整定压力的弹簧安全阀、一只低整定压力的弹簧安全阀和一个电磁释放阀、水压试验堵阀。
水压试验堵阀的作用是当过热器水压试验时,隔离主蒸汽管道,防止由于主汽门密封不严而造成汽轮机进水。
由主汽主管上沿汽流方向依次接出的管道有:汽机高压旁路接管及启动初期向汽机汽封系统及汽机夹层加热的供汽管。
主蒸汽、再热蒸汽及旁路系统一、概述主蒸汽系统是指从锅炉过热器联箱出口至汽轮机主汽阀进口的主蒸汽管道、阀门、疏水管等设备、部件组成的工作系统。
主蒸汽管道是指从锅炉过热器出口输送新蒸汽到汽轮机高压主汽门的管道,同时还包括管道上的疏水管道以及锅炉过热器出口的安全阀及排汽管道。
再热蒸汽系统分为冷再热蒸汽及热再热蒸汽系统。
冷再热蒸汽管道是指从汽轮机高压缸排汽口输送低温再热蒸汽到锅炉再热器进口的管道,同时还包括管道上的疏水管道以及锅炉再热器进口的安全阀及排汽管道。
另外还包括与冷再热蒸汽管道相连的几根支管。
旁路装置的选择与汽轮机特性、锅炉型式及结构特性、燃料种类、运行方式、电网对机组的要求等因素有关。
二、旁路系统的作用1、缩短启动时间,改善启动条件,延长汽轮机寿命。
2、溢流作用:即协调机炉间不平衡汽量,溢流负荷瞬变过程中的过剩蒸汽。
由于锅炉的实际降负荷速率比汽机小,剩余蒸汽可通过旁路系统排至凝汽器,使机组能适应频繁启停和快速升降负荷,并将机组压力部件的热应力控制在合适的范围内。
3、保护再热器:在汽轮机启动或甩负荷工况下,经旁路系统把新蒸汽减温减压后送入再热器,防止再热器干烧,起到保护再热器的作用。
4、回收工质、热量和消除噪声污染:在机组突然甩负荷(全部或部分负荷)时,旁路快开,回收工质至凝汽器,改变此时锅炉运行的稳定性,减少甚至避免安全阀动作。
5、旁路系统投入后,待冷再压力达到高辅压力时,用冷再供高辅用汽。
三、旁路装置的选型对于百万千瓦级机组,当前世界上欧、美、日、俄(苏)等不同的技术流派基本都采用超(超)临界技术,为满足机组启动、机炉协调等功能要求,均设置了汽轮机旁路系统。
但由于地域及技术体系的不同,对于旁路系统的配置及运行方式也有很大差别。
在美国,一般都采用小于20%BMCR 的小旁路,仅用于机组启动阶段,锅炉过热器出口配置安全阀。
日本基本上传承了美国的技术体系。
欧洲在旁路系统的应用上,其理念与美(日)体系不同,百万级机组大部分釆用了 100%的高、低压旁路配置,拓展了旁路系统的作用。
600MW机组主蒸汽、再热汽及旁路系统施晶舒庆元一、概述1、水蒸汽的特性物质由液态变为汽态的现象称为汽化,通常汽化有二种方式:蒸发和沸腾。
蒸发是液体表面缓慢的汽化现象,它在任意温度下都会发生。
沸腾是液体表面和内部同时发生的剧烈汽化现象,它相对于一定的压力,只能在一定的温度下发生,该沸腾温度称为沸点。
一般同样条件下,不同的液体沸点是不同的,同种液体,压力越高沸点越高,沸腾时气体与液体共存,两者温度相同,沸腾过程中,温度始终保持沸点。
将装有水的容器密闭起来,保持一定温度,显然,水会汽化,随着水的汽化,水面上部空间的水蒸汽在增多,即蒸汽压力要升高,蒸汽压力升高使蒸汽液化速度加快,而使水汽化速度减慢,到某一时刻,当水汽化速度与水蒸汽液化速度相同时,容器内水量和空间水蒸汽量不再变化。
我们把这时汽、液两相达到平衡时的状态称为饱和状态。
这种平衡状态不是静态的平衡,而是一种动态平衡,即汽化、液化过程仍在进行,只是汽化速度与液化速度相同而已。
处于饱和状态下的水和水蒸汽分别称为饱和水和饱和蒸汽。
此时饱和水和饱和蒸汽的压力和温度是一样的,称为饱和压力和饱和温度。
这种蒸汽和水共存的状态称为湿饱和蒸汽。
如果对容器进行加热,那么水的汽化会加快,水逐渐减少,水蒸汽逐渐增多,直至水全部变为蒸汽,这时的蒸汽称为干饱和蒸汽。
当水温低于饱和温度时,称为过冷水,或未饱和水。
如果对干饱和蒸汽继续进行加热,使蒸汽温度进一步升高,这时的蒸汽称为过热蒸汽,其温度超过饱和温度之值,称为过热度。
临界点(相变点):一个大气压下的水饱和温度为100℃。
随着压力增加,水的饱和温度也随之增加,汽化潜热(从饱和水加热到干饱和蒸汽所需热量)减小,水和汽的密度差也随之减小。
当压力提高到221.2bar时,汽化潜热为零,汽和水的密度差也为零,该压力称之为临界压力。
水在该压力下加到374.15℃时,即全部汽化,此时的饱和水和饱和蒸汽已不再有区别,该温度称之为临界温度。