第五章--GM系列模型
- 格式:pptx
- 大小:3.26 MB
- 文档页数:81
GM(1,1)预测模型的应用灰色预测是基于GM(1,1)预测模型的预测,按其应用的对象可有四种类型: (1)数列预测。
这类预测是针对系统行为特征值的发展变化所进行的预测。
(2)灾变预测。
这类预测是针对系统行为的特征值超过某个阙值的异常值将在何时出现的预测。
(3)季节灾变预测。
若系统行为的特征有异常值出现或某种事件的发生是在一年中的某个特定的时区,则该预测为季节性灾变预测。
(4)拓扑预测。
这类预测是对一段时间内系统行为特征数据波形的预测。
例1(数列预测):设原始序列)679.3,390.3,337.3,278.3,874.2())5(),4(),3(),2(),1(()0()0()0()0()0()0(==x x x x x X试用GM(1,1)模型对)0(X 进行模拟和预测,并计算模拟精度。
解:第一步:对)0(X 进行一次累加,得)558.16,897.12,489.9,152.6,874.2()1(=X 第二步:对)0(X 作准光滑性检验。
由)1()()()1()0(-=k x k x k ρ得5.029.0)5(,5.036.0)4(,54.0)3(<≈<≈≈ρρρ。
当k>3时准光滑条件满足。
第三步:检验)1(X 是否具有准指数规律。
由)(1)1()()()1()1()1(k k x k x k ρσ+=-=得29.1)5(,36.1)4(,54.1)3()1()1()1(≈≈≈σσσ当k>3时,5.0],5.1,1[)k ()1(<=∈ρσ,准指数规律满足,故可对)1(X 建立GM(1,1)模型。
第四步:对)1(X 作紧邻均值生成,得)718.14,184.11,820.7,513.4()1(=Z于是⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡----=679.3390.3337.3278.3)5()4()3()2(,1718.141184.111820.71513.41)5(1)4(1)3(1)2()0()0()0()0()1()1()1()1(x x x x Y z z z z B 第五步:对参数列T b a ],[ˆ=α进行最小二乘估计。
1111140122 经创1102 董林威 基于GM (1,1)模型的全国铁路货运量预测摘要:本文将灰色系统理论应用于全国铁路货运量预测,建立了全国铁路货运量的GM(1,1)模型,并通过残差检验、关联度检验和后验差检验等方法验证模型的可行性。
该方法预测精度高、计算速度快,非常适用于全国铁路货运量预测。
关键词:灰色预测;GM (1,1);货运量一、 引言铁路货运作为现代综合运输体系中的重要组成部分,在煤、电、油、粮食大宗货物运输等方面发挥着不可替代的作用,因而对国民经济的增长具有重大影响。
铁路货运量是评估中国GDP 增长量的重要指标之一,并与用电量、贷款发放量一起被用于分析宏观经济形势。
这三大指标又称为“克强指数”。
所以说对全国铁路货运量进行预测分析可以间接的对我国的宏观经济的走向进行分析和整体上认识预测。
同时铁路运输是一个庞大复杂的运输系统,充满了很多确定性因素和不确定因素,利用灰色预测方法能够很好的对既含有已知信息又含有不确定信息的系统进行预测,本文利用灰色预测理论建立GM (1,1)模型对全国铁路未来几年的货运量进行预测。
二、 建模实证分析1、灰色预测模型信息完全明确的系统称为白色系统,信息未知的系统称为黑色系统,部分信息明确、部分信息不明确的系统成为灰色系统。
灰色系统理论的研究对象是“部分信息已知、部分信息未知"的“小样本"、“贫信息"不确定性系统,它通过对“部分"已知信息的生产、开发实现对现实世界的确切描述和认识。
灰色预测是基于GM 模型作出的定量预测,有GM(1,1)模型、残差 模型、新陈代谢 模型、灰色Verhulst 模型、离散灰色模型等几种类型。
本文采用使用最广泛的GM(1,1)模型。
2、GM (1,1)模型设(0)(0)(0)(0)(1)(1)(1)(1)((1),(2),,,()),((1),(2),,,())X x x x n X x x x n ==称(0)()()()k Xk ax k b +=为 模型的原始形式。
灰色系统理论与应用学习指南第一章 灰色系统的概念与基本原理一、识记1、灰色系统理论的产生与发展动态;2、灰色系统的基本概念;3、灰色系统的基本原理;4、灰数的概念与分类;5、灰数白化及灰度的概念。
二、理解1、几种不确定性方法的比较;2、区间灰数的运算;3、灰数白化的规则与算法。
4、灰数灰度的公理化定义。
三、思考与练习1、下面那个不是常用的不确定性系统的研究方法 ( )A 概率统计B 模糊数学C 灰色系统D 运筹学2、试简述概率统计、模糊数学和灰色系统理论是三种最常用的不确定性系统研究方法的异同点。
3、试分析灰色系统理论在横断学科群中的地位。
4、请概述灰色系统的概念,并举出两个实际生活中灰色系统的例子。
5、请简要回答灰色系统的六个基本原理。
6、设1⊗∈[3, 4],2⊗∈ [1, 2],试求下列各式的值:12⊗-⊗,12⊗+⊗,11-⊗,12⊗⋅⊗,12⊗⊗7、请简述灰数白化的具体含义?并解释等权白化、等权均值白化、典型白化权函数的定义及其特征。
8、什么是灰度?你对灰度的测度有什么好的建议或想法?第二章序列算子与灰色序列生成一、识记1、冲击扰动序列、算子和缓冲算子概念;2、缓冲算子公理;3、均值生成算子、序列的光滑性概念;4、序列的光滑比和准光滑序列;5、累加生成算子和累减生成算子的概念。
二、理解1、缓冲算子的性质;2、实用缓冲算子的构造;3、强化缓冲算子的设计;4、弱化缓冲算子的设计;5、利用均值生成构造新序列;6、累加与累减生成算子的计算;7、级比生成算子;8、准指数规律。
三、应用1、利用缓冲算子来模拟系统行为数据序列。
2、分别利用不同的算子来模拟。
四、思考与练习1、什么是弱化算子?试举例说明。
2、什么是准光滑序列?3、什么是一次累加生成算子?4、下面哪个不是缓冲算子公理()A 不动点公理B 信息充分利用公理C 唯一性公理D 解析化,规范化公理5、若序列)XD为(),(X,则二阶缓冲序列21015535388,23480,12588A (10155,12588,23480,35388)B(15323,17685,29456,34567)C (22341,34215,31625,43251)D(27260,29547,32411,35388)6、什么是光滑连续函数?7、什么是序列的光滑比及其意义?8、简要说明累加生成的灰指数律.9、计算:河南省长葛县乡镇企业产值数据(1983-1986年)为X = (10155,12588,23480,35388)其增长势头很猛,1983-1986年每年平均递增51.6%,尤其是1984-1986年,每年平均递增67.7%,参与该县发展规划编制工作的各阶层人士(包括领导层、专家层、群众层)普遍认为该县乡镇企业产值今后不可能一直保持这么高的发展速度。
GM模型建立与预测方法1.灰色系统理论简介:灰色系统理论是由中国科学家李文建于1982年提出的,它是一种描述不确定性系统的理论方法。
灰色系统理论将系统划分为有较多信息和有较少信息的两个部分,将有较多信息的部分称为白色信号,将有较少信息的部分称为黑色信号。
2.GM(1,1)模型的建立步骤:(1)原始数据序列的累加生成:将原始数据序列累加得到累加序列,令累加序列为$$X^{(1)}=\sum_{i=1}^n X(i),\quad i=1,2,...,n.$$(2)累加生成序列的一次累减生成:将累加序列的每个相邻数据相减得到累减序列,令累减序列为$$Z^{(1)}=\sum_{i=1}^{n-1} X(i),\quad i=1,2,...,n-1.$$(3)GM(1,1)微分方程的建立:由累减生成序列得到微分方程为$$\hat{X}(k+1)-a\hat{X}(k) = b,$$其中 $\hat{X}(k)$ 表示 $Z^{(1)}$ 的紧邻均值,即$$\hat{X}(k)=\frac{Z^{(1)}(k)+Z^{(1)}(k+1)}{2},\quadk=1,2,...,n-1.$$系数$a$是发展系数,系数$b$可以由初始数值求得。
(4)模型参数的计算:根据微分方程,可以得到模型参数的计算公式:$$a = \frac{\sum_{i=1}^{n-1}(X^{(1)}/X(i))}{n-1},\quad b = X(1)-\frac{a}{1-a}X^{(1)}.$$3.GM(1,1)模型的预测方法:(1)模型参数的计算:根据已有的数据序列,利用上述步骤计算得到模型的参数$a$和$b$。
(2)模型的状态方程和预测方程:状态方程可以表示为$$X^{(1)}(k+1)=aX^{(1)}(k)+b,$$预测方程可以表示为$$\hat{X}(k+1) = X(1)-\frac{b}{a}[1-\exp(-a)]\exp(a(k+1)).$$ (3)模型的残差检验:计算原始序列和预测序列的离差,如果离差不满足预先设定的阈值,说明预测的效果较好;否则需要调整模型参数重新预测。