大学物理78章作业解
- 格式:doc
- 大小:86.50 KB
- 文档页数:3
第一章 质点运动学课 后 作 业1、一质点沿x 轴运动,其加速度a 与位置坐标x 的关系为 a =2+6 x 2 (SI)如果质点在原点处的速度为零,试求其在任意位置处的速度.解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v 2分 ()x x xd 62d 020⎰⎰+=v v v2分()2 213xx +=v 1分2、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式.解: =a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2 3分v d =x /d t 2=t 2 t tx tx x d 2d 02⎰⎰=x 2= t 3 /3+x 0 (SI) 2分3、一质点沿半径为R 的圆周运动.质点所经过的弧长与时间的关系为221ct bt S += 其中b 、c 是大于零的常量,求从0=t 开始到切向加速度与法向加速度大小相等时所经历的时间.解: ct b t S +==d /d v 1分c t a t ==d /d v 1分 ()R ct b a n /2+= 1分根据题意: a t = a n 1分即 ()R ct b c /2+=解得 cbc R t -= 1分4、如图所示,质点P 在水平面内沿一半径为R =2 m 的圆轨道转动.转动的角速度ω与时间t 的函数关系为2kt =ω (k 为常量).已知s t 2=时,质点P 的速度值为32 m/s .试求1=t s 时,质点P 的速度与加速度的大小.解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω 1分 24t =ω, 24Rt R ==ωvs t 1=时, v = 4Rt 2 = 8 m/s 1分 2s /168/m Rt dt d a t ===v 1分 22s /32/m R a n ==v 1分()8.352/122=+=nt a a a m/s 2 1分5、一敞顶电梯以恒定速率v =10 m/s 上升.当电梯离地面h =10 m 时,一小孩竖直向上抛出一球.球相对于电梯初速率200=v m/s .试问: (1) 从地面算起,球能达到的最大高度为多大? (2) 抛出后经过多长时间再回到电梯上?解:(1) 球相对地面的初速度=+='v v v 030 m/s 1分抛出后上升高度 9.4522='=gh v m/s 1分 离地面高度 H = (45.9+10) m =55.9 m 1分 (2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 1分08.420==gt vs 1分6、在离水面高h 米的岸上,有人用绳子拉船靠岸,船在离岸S 处,如图所示.当人以0υ(m ·1-s )的速率收绳时,试求船运动的速度和加速度的大小.解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得tss t l l d d 2d d 2=题1-4图根据速度的定义,并注意到l ,s 是随t 减少的,∴ t sv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s l t l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度3202220202002)(d d d d d d sv h s v s l s v slv s v v s t sl t l st v a =+-=+-=-==船船教师评语教师签字月 日第二章 运动与力课 后 作 业hMlμ1、 一人在平地上拉一个质量为M 的木箱匀速前进,如图. 木箱与地面间的摩擦系数μ=0.6.设此人前进时,肩上绳的支撑点距地面高度为h =1.5 m ,不计箱高,问绳长l 为多长时最省力?解:设绳子与水平方向的夹角为θ,则l h /sin =θ. 木箱受力如图所示,匀速前进时, 拉力为F , 有F cos θ-f =0 2分F sin θ+N -Mg =0 f =μN得 θμθμsin cos +=MgF 2分令 0)sin (cos )cos sin (d d 2=++--=θμθθμθμθMg F ∴ 6.0tg ==μθ,637530'''︒=θ 2分且 0d d 22>θF∴ l =h / sin θ=2.92 m 时,最省力.m 1m 22、一质量为60 kg 的人,站在质量为30 kg 的底板上,用绳和滑轮连接如图.设滑轮、绳的质量及轴处的摩擦可以忽略不计,绳子不可伸长.欲使人和底板能以1 m/s 2的加速度上升,人对绳子的拉力T 2多大?人对底板的压力多大? (取g =10 m/s 2)解:人受力如图(1) 图2分 a m g m N T 112=-+ 1分g M P ϖϖ=θF ϖN ϖ f ϖ底板受力如图(2) 图2分 a m g m N T T 2221=-'-+ 2分212T T = 1分 N N ='由以上四式可解得 a m m g m g m T )(421212+=--∴ 5.2474/))((212=++=a g m m T N 1分5.412)(21=-+=='T a g m N N N 1分3、一条轻绳跨过一轻滑轮(滑轮与轴间摩擦可忽略),在绳的一端挂一质量为m 1的物体,在另一侧有一质量为m 2的环,求当环相对于绳以恒定的加速度a 2沿绳向下滑动时,物体和环相对地面的加速度各是多少?环与绳间的摩擦力多大?m 1m 22a ϖ解:因绳子质量不计,所以环受到的摩擦力在数值上等于绳子张力T .设m 2相对地面的加速度为2a ',取向上为正;m 1相对地面的加速度为a 1(即绳子的加速度),取向下为正. 1分111a m T g m =- 2分222a m g m T '=- 2分 212a a a -=' 2分 解得 2122211)(m m a m g m m a ++-= 1分21212)2(m m m m a g T +-= 1分2121212)(m m a m g m m a +--=' 1分4、一条质量分布均匀的绳子,质量为M 、长度为L ,一端拴在竖直转轴OO ′上,并以恒定角速度ω在水平面上旋转.设转动过程中绳子始终伸直不打弯,且忽略重力,求距转轴为r 处绳中的张力T ( r ).解:取距转轴为r 处,长为d r 的小段绳子,其质量为 ( M /L ) d r . (取元,画元的受力图) 2分由于绳子作圆周运动,所以小段绳子有径向加速度,由牛顿定律得: T ( r )-T ( r + d r ) = ( M / L ) d r r ω2令 T ( r )-T (r + d r ) = - d T ( r )得 d T =-( M ω2 / L ) r d r 4分 由于绳子的末端是自由端 T (L ) = 01分有r r L M T Lrr T d )/(d 2)(⎰⎰-=ω ∴ )2/()()(222L r L M r T -=ω 3分O第三章 动量与角动量课 后 作 业hAvϖ1、如图,用传送带A 输送煤粉,料斗口在A 上方高h =0.5 m 处,煤粉自料斗口自由落在A 上.设料斗口连续卸煤的流量为q m =40 kg/s ,A 以v =2.0 m/s 的水平速度匀速向右移动.求装煤的过程中,煤粉对A 的作用力的大小和方向.(不计相对传送带静止的煤粉质重)解:煤粉自料斗口下落,接触传送带前具有竖直向下的速度gh 20=v 1分设煤粉与A 相互作用的∆t 时间内,落于传送带上的煤粉质量为t q m m ∆=∆ 1分设A 对煤粉的平均作用力为f ϖ,由动量定理写分量式:0-∆=∆v m t f x 1分)(00v m t f y ∆--=∆ 1分 将 t q m m ∆=∆代入得 v m x q f =, 0v m y q f =∴ 14922=+=y x f f f N 2分f ϖ与x 轴正向夹角为α = arctg (f x / f y ) = 57.4° 1分由牛顿第三定律煤粉对A 的作用力f ′= f = 149 N ,方向与图中f ϖ相反.2分30°F2、质量为1 kg 的物体,它与水平桌面间的摩擦系数μ = 0.2 .现对物体施以F = 10t (SI)的力,(t 表示时刻),力的方向保持一定,如图所示.如t = 0时物体静止,则t = 3 s 时它的速度大小v 为多少?解:由题给条件可知物体与桌面间的正压力mg F N +︒=30sin 1分物体要有加速度必须 N F μ≥︒30cos 2分 即 mg t μμ≥-)3(5, 0s 256.0t t =≥ 1分物体开始运动后,所受冲量为 ⎰-︒=tt t N F I 0d )30cos (μ)(96.1)(83.3022t t t t ---= t = 3 s, I = 28.8 N s 2分则此时物体的动量的大小为 I m =v速度的大小为 8.28==mIv m/s 2分3、一炮弹发射后在其运行轨道上的最高点h =19.6 m 处炸裂成质量相等的两块.其中一块在爆炸后1秒钟落到爆炸点正下方的地面上.设此处与发射点的距离S 1=1000 m ,问另一块落地点与发射地点间的距离是多少?(空气阻力不计,g =9.8 m/s 2) 解:因第一块爆炸后落在其正下方的地面上,说明它的速度方向是沿竖直方向的.利用 2t g t h '+'=211v , 式中t '为第一块在爆炸后落到地面的时间. 可解得v 1=14.7 m/s ,竖直向下.取y 轴正向向上, 有v 1y =-14.7 m/s 2分 设炮弹到最高点时(v y =0),经历的时间为t ,则有S 1 = v x t ① h=221gt ② 由①、②得 t =2 s , v x =500 m/s 2分 以2v ϖ表示爆炸后第二块的速度,则爆炸时的动量守恒关系如图所示.x v v m m x =221③0==+y y m m m v v v 1y 22121 ④解出 v 2x =2v x =1000 m/s , v 2y =-v 1y =14.7 m/s 3分 再由斜抛公式 x 2= S 1 +v 2x t 2 ⑤y 2=h +v 2y t 2-22gt 21 ⑥落地时 y 2 =0,可得 t 2 =4 s , t 2=-1 s (舍去) 故 x 2=5000 m 3分Mmv ϖϖ4、质量为M =1.5 kg 的物体,用一根长为l =1.25 m 的细绳悬挂在天花板上.今有一质量为m =10 g 的子弹以v 0=500 m/s 的水平速度射穿物体,刚穿出物体时子弹的速度大小v =30 m/s ,设穿透时间极短.求:(1) 子弹刚穿出时绳中张力的大小; (2) 子弹在穿透过程中所受的冲量.解:(1) 因穿透时间极短,故可认为物体未离开平衡位置.因此,作用于子弹、物体系统上的外力均在竖直方向,故系统在水平方向动量守恒.令子弹穿出时物体的水平速度为v '有 m v 0 = m v +M v 'v ' = m (v 0 - v )/M =3.13 m/s 2分 T =Mg+M v 2/l =26.5 N 2分(2) s N 7.40⋅-=-=∆v v m m t f (设0v ρ方向为正方向) 2分负号表示冲量方向与0v ϖ方向相反. 2分第四章 功和能课 后 作 业1、一质量为m 的质点在Oxy 平面上运动,其位置矢量为j t b i t a r ρρρωωsin cos +=(SI) 式中a 、b 、ω是正值常量,且a >b . (1)求质点在A 点(a ,0)时和B 点(0,b )时的动能;(2)求质点所受的合外力F ρ以及当质点从A 点运动到B 点的过程中F ρ的分力x F ρ和y F ρ分别作的功.解:(1)位矢 j t b i t a r ρρρωωsin cos += (SI) 可写为 t a x ωcos = , t b y ωsin =t a t x x ωωsin d d -==v , t b ty ωωcos d dy-==v在A 点(a ,0) ,1cos =t ω,0sin =t ωE KA =2222212121ωmb m m y x =+v v 2分在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v 2分(2) j ma i ma F y x ρρρ+==j t mb i t ma ρρωωωωsin cos 22-- 2分由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω 2分⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω 2分2、劲度系数为k 的轻弹簧,一端固定,另一端与桌面上的质量为m 的小球B 相连接.用外力推动小球,将弹簧压缩一段距离L 后放开.假定小球所受的滑动摩擦力大小为F 且恒定不变,滑动摩擦系数与静摩擦系数可视为相等.试求L 必须满足什么条件时,才能使小球在放开后就开始运动,而且一旦停止下来就一直保持静止状态.kL OB解:取弹簧的自然长度处为坐标原点O ,建立如图所示的坐标系.在t =0时,静止于x =-L 的小球开始运动的条件是kL >F ① 2分小球运动到x 处静止的条件,由功能原理得222121)(kL kx x L F -=+- ② 2分由② 解出 kFL x 2-=使小球继续保持静止的条件为 F k FL k x k ≤-=2 ③ 2分 所求L 应同时满足①、③式,故其范围为 k F <L kF3≤ 2分3、一链条总长为l ,质量为m ,放在桌面上,并使其部分下垂,下垂一段的长度为a .设链条与桌面之间的滑动摩擦系数为μ.令链条由静止开始运动,则 (1)到链条刚离开桌面的过程中,摩擦力对链条作了多少功?al -a(2)链条刚离开桌面时的速率是多少?解:(1)建立如图坐标.某一时刻桌面上全链条长为y ,则摩擦力大小为g lymf μ= 1分 摩擦力的功 ⎰⎰--==00d d a l a l f y gy lmy f W μ 2分=022a l y l mg -μ =2)(2a l lmg--μ 2分(2)以链条为对象,应用质点的动能定理 ∑W =2022121v v m m -其中 ∑W = W P +W f ,v 0 = 0 1分W P =⎰l a x P d =la l mg x x l mg l a 2)(d 22-=⎰ 2分x OxB L Bx由上问知 la l mg W f 2)(2--=μ所以222221)(22)(v m a l l mg l a l mg =---μ 得 []21222)()(a l a l lg ---=μv 2分αh0v ϖ4、一物体与斜面间的摩擦系数μ = 0.20,斜面固定,倾角α = 45°.现给予物体以初速率v 0 = 10 m/s ,使它沿斜面向上滑,如图所示.求: 物体能够上升的最大高度h ;该物体达到最高点后,沿斜面返回到原出发点时的速率v .解:(1)根据功能原理,有 mgh m fs -=2021v 2分ααμαμsin cos sin mgh Nh fs ==mgh m mgh -==2021ctg v αμ 2分)ctg 1(220αμ+=g h v =4.5 m 2分(2)根据功能原理有 fs m mgh =-221v 1分αμctg 212mgh mgh m -=v 1分[]21)ctg 1(2αμ-=gh v =8.16 m/s 2分第五章刚体的转动课后作业1、一轻绳跨过两个质量均为m、半径均为r的均匀圆盘状定滑轮,绳的两端分别挂着质量为m和2m的重物,如图所示.绳与滑轮间无相对滑动,滑轮轴光滑.两个定滑轮的转动惯量均为221mr.将由两个定滑轮以及质量为m和2m 的重物组成的系统从静止释放,求两滑轮之间绳内的张力.解:受力分析如图所示.2分2mg-T1=2ma1分T2-mg=ma1分T1 r-T r=β221mr1分T r-T2 r=β221mr1分a=rβ2分解上述5个联立方程得:T=11mg / 82分2、一轻绳绕过一定滑轮,滑轮轴光滑,滑轮的半径为R,质量为M / 4,均匀分布在其边缘上.绳子的A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为21M的重物,如图.设人从静止开始相对于绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度?(已知滑轮对通过滑轮中心且垂直于轮面的轴的转动惯量J=MR2 / 4 )解:受力分析如图所示.a设重物的对地加速度为a ,向上.则绳的A 端对地有加速度a 向下,人相对于绳虽为匀速向上,但相对于地其加速度仍为a 向下. 2分 根据牛顿第二定律可得:对人: Mg -T 2=Ma ① 2分对重物: T 1-21Mg =21Ma ② 2分根据转动定律,对滑轮有(T 2-T 1)R =J β=MR 2β / 4 ③ 2分因绳与滑轮无相对滑动, a =βR ④ 1分 ①、②、③、④四式联立解得 a =2g / 7 1分3、一质量为m 的物体悬于一条轻绳的一端,绳另一端绕在一轮轴的轴上,如图所示.轴水平且垂直于轮轴面,其半径为r ,整个装置架在光滑的固定轴承之上.当物体从静止释放后,在时间t 内下降了一段距离S .试求整个轮轴的转动惯量(用m 、r 、t 和S 表示).解:设绳子对物体(或绳子对轮轴)的拉力为T ,则根据牛顿运动定律和转动定律得:mg T =ma ① 2分 T r =J β ② 2分 由运动学关系有: a = r β ③ 2分 由①、②、③式解得: J =m ( g -a ) r 2 / a ④ 又根据已知条件 v 0=0∴ S =221at , a =2S / t 2 ⑤ 2分将⑤式代入④式得:J =mr 2(Sgt 22-1) 2分Am 1 ,l1v ϖ2v ϖ俯视图4、有一质量为m 1、长为l 的均匀细棒,静止平放在滑动摩擦系数为μ的水平桌面上,它可绕通过其端点O 且与桌面垂直的固定光滑轴转动.另有一水平运动的质量为m 2的小滑块,从侧面垂直于棒与棒的另一端A 相碰撞,设碰撞时间极短.已知小滑块在碰撞前后的速度分别为1v ϖ和2v ϖ,如图所示.求碰撞后从细棒开始转动到停止转动的过程所需的时间.(已知棒绕O 点的转动惯量2131l m J =)解:对棒和滑块系统,在碰撞过程中,由于碰撞时间极短,所以棒所受的摩擦力 矩<<滑块的冲力矩.故可认为合外力矩为零,因而系统的角动量守恒,即1分m 2v 1l =-m 2v 2l +ω2131l m ① 3分碰后棒在转动过程中所受的摩擦力矩为gl m x x l m g M l f 10121d μμ-=⋅-=⎰ ② 2分由角动量定理 ω210310l m dt M tf -=⎰ ③ 2分由①、②和③解得 g m m t 12122μv v += 2分第六章 狭义相对论基础课 后 作 业1、一体积为V 0,质量为m 0的立方体沿其一棱的方向相对于观察者A 以速度v 运动.求:观察者A 测得其密度是多少?解:设立方体的长、宽、高分别以x 0,y 0,z 0表示,观察者A 测得立方体的长、宽、高分别为 221cx x v -=,0y y =,0z z =. 相应体积为 2201c V xyz V v -== 3分观察者A测得立方体的质量 2201c m m v -=故相应密度为 V m /=ρ22022011/c V c m v v --=)1(2200cV m v -=2分2、在O 参考系中,有一个静止的正方形,其面积为 100 cm 2.观测者O '以 0.8c 的匀速度沿正方形的对角线运动.求O '所测得的该图形的面积.解:令O 系中测得正方形边长为a ,沿对角线取x 轴正方向(如图),则边长在坐标轴上投影的大小为a a x 221=,a a y 221= 面积可表示为: x y a a S ⋅=2 2分在以速度v 相对于O 系沿x 正方向运动的O '系中2)/(1c a a x x v -=' =0.6×a 221 a a a yy 221==' 在O '系中测得的图形为菱形,其面积亦可表示为606.022=='⋅'='a a a S x y cm 23分aaO y x3、一艘宇宙飞船的船身固有长度为L 0 =90 m ,相对于地面以=v 0.8 c (c 为真空中光速)的匀速度在地面观测站的上空飞过.(1) 观测站测得飞船的船身通过观测站的时间间隔是多少? (2) 宇航员测得船身通过观测站的时间间隔是多少?解:(1) 观测站测得飞船船身的长度为 =-=20)/(1c L L v 54 m 则 ∆t 1 = L /v =2.25×10-7 s 3分 (2) 宇航员测得飞船船身的长度为L 0,则 ∆t 2 = L 0/v =3.75×10-7 s 2分4、半人马星座α星是距离太阳系最近的恒星,它距离地球S = 4.3×1016 m .设有一宇宙飞船自地球飞到半人马星座α星,若宇宙飞船相对于地球的速度为v = 0.999 c ,按地球上的时钟计算要用多少年时间?如以飞船上的时钟计算,所需时间又为多少年?解:以地球上的时钟计算: 5.4≈=∆vSt 年 2分以飞船上的时钟计算: ≈-='∆∆221ct t v 0.20 年 3分5、在惯性系S 中,有两事件发生于同一地点,且第二事件比第一事件晚发生∆t =2s ;而在另一惯性系S '中,观测第二事件比第一事件晚发生∆t '=3s .那么在S '系中发生两事件的地点之间的距离是多少?解:令S '系与S 系的相对速度为v ,有2)/(1c tt v -='∆∆, 22)/(1)/(c t t v -='∆∆则 2/12))/(1(t t c '-⋅=∆∆v ( = 2.24×108 m ·s -1 ) 4分 那么,在S '系中测得两事件之间距离为: 2/122)(t t c t x ∆∆∆∆-'='⋅='v = 6.72×108 m 4分6、要使电子的速度从v 1 =1.2×108 m/s 增加到v 2 =2.4×108 m/s 必须对它作多少功? (电子静止质量m e =9.11×10-31 kg)解:根据功能原理,要作的功 W = ∆E根据相对论能量公式 ∆E = m 2c 2- m 1c 22分根据相对论质量公式 2/12202])/(1/[c m m v -=2/12101])/(1/[c m m v -= 1分∴ )1111(22122220cc c m W v v ---==4.72×10-14 J =2.95×105 eV 2分教师评语 教师签字 月 日第七章 振动课 后 作 业1、一个轻弹簧在60 N 的拉力作用下可伸长30 cm .现将一物体悬挂在弹簧的下端并在它上面放一小物体,它们的总质量为 4 kg .待其静止后再把物体向下拉10 cm ,然后释放.问:(1) 此小物体是停在振动物体上面还是离开它?(2) 如果使放在振动物体上的小物体与振动物体分离,则振幅A 需满足何条件?二者在何位置开始分离?解:(1) 小物体受力如图.设小物体随振动物体的加速度为a ,按牛顿第二定律有(取向下为正) ma N mg =- 1分)(a g m N -=当N = 0,即a = g 时,小物体开始脱离振动物体,已知 1分A = 10 cm ,N/m 3.060=k有 50/==m k ω rad ·s -1 2分 系统最大加速度为 52max ==A a ω m ·s -2 1分 此值小于g ,故小物体不会离开. 1分(2) 如使a > g ,小物体能脱离振动物体,开始分离的位置由N = 0求得 x a g 2ω-== 2分 6.19/2-=-=ωg x cm 1分 即在平衡位置上方19.6 cm 处开始分离,由g A a >=2max ω,可得2/ωg A >=19.6 cm . 1分 2、一质点在x 轴上作简谐振动,选取该质点向右运动通过A 点时作为计时起点( t = 0 ),经过2秒后质点第一次经过B 点,再经过2秒后质点第二次经过B 点,若已知该质点在A 、B 两点具有相同的速率,且AB = 10 cm 求:(1) 质点的振动方程;(2) 质点在A 点处的速率.解: T = 8 s , ν = (1/8) s -1, ω = 2πν = (π /4) s -1 3分(1) 以AB 的中点为坐标原点,x 轴指向右方. t = 0时, 5-=x cm φcos A = t = 2 s 时, 5=x cm φφωsin )2cos(A A -=+=由上二式解得 tg φ = 1 因为在A 点质点的速度大于零,所以φ = -3π/4或5π/4(如图) 2分 25cos /==φx A cm 1分∴ 振动方程 )434cos(10252π-π⨯=-t x (SI) 1分(2) 速率 )434sin(41025d d 2π-π⨯π-==-t t x v (SI) 2分 当t = 0 时,质点在A 点 221093.3)43sin(10425d d --⨯=π-⨯π-==t x v m/s 1分3、一质量为m 的质点在力F = -π2x 的作用下沿x 轴运动.求其运动的周期.解:将F = -π2x 与F = -kx 比较,知质点作简谐振动,k = π2. 3分 又 m m k π==ω 4分 m T 22=π=ω3分4、一物体同时参与两个同方向的简谐振动: )212cos(04.01π+π=t x (SI), )2cos(03.02π+π=t x (SI)求此物体的振动方程.解:设合成运动(简谐振动)的振动方程为 )cos(φω+=t A x 则 )cos(2122122212φφ-++=A A A A A ① 2分 以 A 1 = 4 cm ,A 2 = 3 cm ,π=π-π=-212112φφ代入①式,得5cm 3422=+=A cm 3分 又 22112211cos cos sin sin arctg φφφφφA A A A ++= ②≈127°≈2.22 rad 3分 ∴ )22.22cos(05.0+π=t x (SI) 2分5、在竖直悬挂的轻弹簧下端系一质量为 100 g 的物体,当物体处于平衡状态时,再对物体加一拉力使弹簧伸长,然后从静止状态将物体释放.已知物体在32 s 内完成48次振动,振幅为5 cm .(1) 上述的外加拉力是多大?(2) 当物体在平衡位置以下1 cm 处时,此振动系统的动能和势能各是多少?解一:(1) 取平衡位置为原点,向下为x 正方向.设物体在平衡位置时弹簧的伸长量为∆l ,则有l k mg ∆=, 加拉力F 后弹簧又伸长x 0,则0)(0=+-+∆x l k mg F 解得 F = kx 0 2分 由题意,t = 0时v 0 = 0;x = x 0则 0202)/(x x A =+=ωv 2分 又由题给物体振动周期4832=T s, 可得角频率 Tπ=2ω, 2ωm k = ∴ 444.0)/4(22=π==A T m kA F N 1分 (2) 平衡位置以下1 cm 处: )()/2(2222x A T -π=v 2分221007.121-⨯==v m E K J 2分2222)/4(2121x T m kx E p π== = 4.44×10-4 J 1分解二:(1) 从静止释放,显然拉长量等于振幅A (5 cm ),kA F = 2分2224νωπ==m m k ,ν = 1.5 Hz 2分 ∴ F = 0.444 N 1分(2) 总能量 221011.12121-⨯===FA kA E J 2分当x = 1 cm 时,x = A /5,E p 占总能量的1/25,E K 占24/25. 2分 ∴ 21007.1)25/24(-⨯==E E K J ,41044.425/-⨯==E E p J 1分6、如图,有一水平弹簧振子,弹簧的劲度系数k = 24 N/m ,重物的质量m = 6 kg ,重物静止在平衡位置上.设以一水平恒力F = 10 N 向左作用于物体(不计摩擦),使之由平衡位置向左运动了0.05 m 时撤去力F .当重物运动到左方最远位置时开始计时,求物体的运动方程.Fx m解:设物体的运动方程为 )cos(φω+=t A x .恒外力所做的功即为弹簧振子的能量: F ×0.05 = 0.5 J . 2分 当物体运动到左方最远位置时,弹簧的最大弹性势能为0.5 J ,即:5.0212=kA J , ∴ A = 0.204 m . 2分A 即振幅. 4/2==m k ω (rad/s)2ω = 2 rad/s . 2分 按题目所述时刻计时,初相为φ = π.∴ 物体运动方程为 2分)2cos(204.0π+=t x (SI). 2分第八章 波动课 后 作 业1、一平面简谐波沿x 轴正向传播,波的振幅A = 10 cm ,波的角频率ω = 7π rad/s.当t = 1.0 s 时,x = 10 cm 处的a 质点正通过其平衡位置向y 轴负方向运动,而x = 20 cm 处的b 质点正通过y = 5.0 cm 点向y 轴正方向运动.设该波波长λ >10 cm ,求该平面波的表达式.解:设平面简谐波的波长为λ,坐标原点处质点振动初相为φ,则该列平面简谐波的表达式可写成 )/27cos(1.0φλ+π-π=x t y (SI) 2分 t = 1 s 时 0])/1.0(27cos[1.0=+π-π=φλy 因此时a 质点向y 轴负方向运动,故π=+π-π21)/1.0(27φλ ① 2分而此时,b 质点正通过y = 0.05 m 处向y 轴正方向运动,应有05.0])/2.0(27cos[1.0=+π-π=φλy且 π-=+π-π31)/2.0(27φλ ② 2分由①、②两式联立得 λ = 0.24 m 1分 3/17π-=φ 1分 ∴ 该平面简谐波的表达式为]31712.07cos[1.0π-π-π=x t y (SI) 2分或 ]3112.07cos[1.0π+π-π=x t y (SI)(m) -2、图示一平面简谐波在t = 0 时刻的波形图,求 (1) 该波的波动表达式; (2) P 处质点的振动方程.解:(1) O 处质点,t = 0 时0cos 0==φA y , 0sin 0>-=φωA v所以 π-=21φ 2分又 ==u T /λ (0.40/ 0.08) s= 5 s 2分故波动表达式为 ]2)4.05(2cos[04.0π--π=x t y (SI) 4分(2) P 处质点的振动方程为]2)4.02.05(2cos[04.0π--π=t y P )234.0cos(04.0π-π=t (SI) 2分3、沿x 轴负方向传播的平面简谐波在t = 2 s 时刻的波形曲线如图所示,设波速u = 0.5 m/s . 求:原点O 的振动方程.解:由图,λ = 2 m , 又 ∵u = 0.5 m/s ,∴ ν = 1 /4 Hz , 3分T = 4 s .题图中t = 2 s =T 21.t = 0时,波形比题图中的波形倒退λ21,见图. 2分此时O 点位移y 0 = 0(过平衡位置)且朝y 轴负方向运动,∴ π=21φ 2分∴ )2121cos(5.0π+π=t y (SI) 3分4、一平面简谐波沿Ox 轴正方向传播,波的表达式为 )/(2cos λνx t A y -π=, 而另一平面简谐波沿Ox 轴负方向传播,波的表达式为 )/(2cos 2λνx t A y +π= 求:(1) x = λ /4 处介质质点的合振动方程; (2) x = λ /4 处介质质点的速度表达式.解:(1) x = λ /4处)212cos(1π-π=t A y ν , )212cos(22π+π=t A y ν 2分∵ y 1,y 2反相 ∴ 合振动振幅 A A A A s =-=2 , 且合振动的初相φ 和y 2的初相一样为π21. 4分合振动方程 )212cos(π+π=t A y ν 1分(2) x = λ /4处质点的速度 )212sin(2/d d π+ππ-== v t A t y νν)2cos(2π+ππ=t A νν 3分5、设入射波的表达式为 )(2cos 1Ttx A y +π=λ,在x = 0处发生反射,反射点为一固定端.设反射时无能量损失,求(1) 反射波的表达式; (2) 合成的驻波的表达式; (3) 波腹和波节的位置.解:(1) 反射点是固定端,所以反射有相位突变π,且反射波振幅为A ,因此反 射波的表达式为 ])//(2cos[2π+-π=T t x A y λ 3分 (2) 驻波的表达式是 21y y y +=)21/2cos()21/2cos(2π-ππ+π=T t x A λ 3分(3) 波腹位置: π=π+πn x 21/2λ, 2分λ)21(21-=n x , n = 1, 2, 3, 4,…波节位置: π+π=π+π2121/2n x λ 2分λn x 21= , n = 1, 2, 3, 4,…6、如图所示,一平面简谐波沿x 轴正方向传播,BC 为波密媒质的反射面.波由P 点反射,OP = 3λ /4,DP = λ /6.在t = 0时,O 处质点的合振动是经过平衡位置向负方向运动.求D 点处入射波与反射波的合振动方程.(设入射波和反射波的振幅皆为A ,频率为ν.)解:选O 点为坐标原点,设入射波表达式为 ])/(2cos[1φλν+-π=x t A y 2分 则反射波的表达式是 ])(2cos[2ππ++-+-=φλνxOP OP t A y 2分合成波表达式(驻波)为 )2cos()/2cos(2φνλ+ππ=t x A y 2分 在t = 0时,x = 0处的质点y 0 = 0, 0)/(0<∂∂t y ,故得 π=21φ 2分因此,D 点处的合成振动方程是)22cos()6/4/32cos(2π+π-π=t A y νλλλt A νπ=2sin 3 2分第九章 温度和气体动理论课 后 作 业1、黄绿光的波长是5000οA (1οA =10 -10 m).理想气体在标准状态下,以黄绿光的波长为边长的立方体内有多少个分子?(玻尔兹曼常量k =1.38×10- 23J ·K -1)解:理想气体在标准状态下,分子数密度为n = p / (kT )=2.69×1025 个/ m 3 3分 以5000οA 为边长的立方体内应有分子数为N = nV =3.36×106个. 2分2、已知某理想气体分子的方均根速率为 400 m ·s -1.当其压强为1 atm 时,求气体的密度.解: 223131v v ρ==nm p∴ 90.1/32==v p ρ kg/m 3 5分3、一瓶氢气和一瓶氧气温度相同.若氢气分子的平均平动动能为 w = 6.21×10-21 J .试求:(1) 氧气分子的平均平动动能和方均根速率. (2) 氧气的温度.(阿伏伽德罗常量N A =6.022×1023 mol -1,玻尔兹曼常量k =1.38×10-23 J ·K -1)解:(1) ∵ T 相等, ∴氧气分子平均平动动能=氢气分子平均平动动能w=6.21×10-21 J .且 ()()483/22/12/12==m w vm/s 3分(2) ()k w T 3/2==300 K . 2分4、某理想气体的定压摩尔热容为29.1 J ·mol -1·K -1.求它在温度为273 K 时分子平均转动动能. (玻尔兹曼常量k =1.38×10-23 J ·K -1 )解: R R iR i C P +=+=222, ∴ ()5122=⎪⎭⎫⎝⎛-=-=R C R R C i P P , 2分可见是双原子分子,只有两个转动自由度.211077.32/2-⨯===kT kT r ε J 3分5、一超声波源发射超声波的功率为10 W .假设它工作10 s ,并且全部波动能量都被1 mol 氧气吸收而用于增加其内能,则氧气的温度升高了多少? (氧气分子视为刚性分子,普适气体常量R =8.31 J ·mol -1·K -1 )解: A = Pt = T iR v ∆21, 2分∴ ∆T = 2Pt /(v iR )=4.81 K . 3分6、1 kg 某种理想气体,分子平动动能总和是1.86×106 J ,已知每个分子的质量是3.34×10-27 kg ,试求气体的温度. (玻尔兹曼常量 k =1.38×10-23 J ·K -1)解: N = M / m =0.30×1027 个 1分 ==N E w K / 6.2×10-21 J 1分kwT 32== 300 K 3分教师评语 教师签字 月 日第十章 热力学第一定律课 后 作 业1、一定量的单原子分子理想气体,从初态A 出发,沿图示直线过程变到另一状态B ,又经过等容、等压两过程回到状态A . (1) 求A →B ,B →C ,C →A 各过程中系统对外所作的功W ,内能的增量∆E 以及所吸收的热量Q .(2) 整个循环过程中系统对外所作的总功以及从外界吸收的总热量(过程吸热的代数和).1 2 3 12 OV (10-3 m 3) p (105 Pa) A BC解:(1) A →B : ))((211A B A B V V p p W -+==200 J . ΔE 1=ν C V (T B -T A )=3(p B V B -p A V A ) /2=750 JQ =W 1+ΔE 1=950 J . 3分B →C : W 2 =0ΔE 2 =ν C V (T C -T B )=3( p C V C -p B V B ) /2 =-600 J .Q 2 =W 2+ΔE 2=-600 J . 2分 C →A : W 3 = p A (V A -V C )=-100 J .150)(23)(3-=-=-=∆C C A A C A V V p V p T T C E ν J .Q 3 =W 3+ΔE 3=-250 J 3分 (2) W = W 1 +W 2 +W 3=100 J . Q = Q 1 +Q 2 +Q 3 =100 J 2分2、1 mol 双原子分子理想气体从状态A (p 1,V 1)沿p -V 图所示直线变化到状态B (p 2,V 2),试求: 气体的内能增量.气体对外界所作的功. 气体吸收的热量.此过程的摩尔热容.解:(1) )(25)(112212V p V p T T C E V -=-=∆ 2分(2) ))((211221V V p p W -+=, W 为梯形面积,根据相似三角形有p 1V 2= p 2V 1,则)(211122V p V p W -=. 3分 (3) Q =ΔE +W =3( p 2V 2-p 1V 1 ). 2分(4) 以上计算对于A →B 过程中任一微小状态变化均成立,故过程中ΔQ =3Δ(pV ). 由状态方程得 Δ(pV ) =R ΔT ,故 ΔQ =3R ΔT ,摩尔热容 C =ΔQ /ΔT =3R . 3分B A O V p 1p 2pV 1V 2(摩尔热容C =T Q ∆∆/,其中Q ∆表示1 mol 物质在过程中升高温度T ∆时所吸收的热量.)3、一定量的理想气体,由状态a 经b 到达c .(如图, abc 为一直线)求此过程中 0 1 2 3 123a b c V (L)p (atm)气体对外作的功;气体内能的增量;气体吸收的热量.(1 atm =1.013×105 Pa)解:(1) 气体对外作的功等于线段c a 下所围的面积W =(1/2)×(1+3)×1.013×105×2×10-3 J =405.2 J 3分(2) 由图看出 P a V a =P c V c ∴T a =T c 2分内能增量 0=∆E . 2分(3) 由热力学第一定律得Q =E ∆ +W =405.2 J . 3分4、如图所示,abcda 为1 mol 单原子分子理想气体的循环过程,求:p (×105 Pa)10-3 m 3)(1) 气体循环一次,在吸热过程中从外界共吸收的热量;(2) 气体循环一次对外做的净功;(3) 证明 在abcd 四态, 气体的温度有T a T c =T b T d .解:(1) 过程ab 与bc 为吸热过程,吸热总和为 Q 1=C V (T b -T a )+C p (T c -T b ))(25)(23b b c c a a b b V p V p V p V p -+-= =800 J 4分(2) 循环过程对外所作总功为图中矩形面积W = p b (V c -V b )-p d (V d -V a ) =100 J 2分(3) T a =p a V a /R ,T c = p c V c /R , T b = p b V b /R ,T d = p d V d /R ,T a T c = (p a V a p c V c )/R 2=(12×104)/R 2T b T d = (p b V b p d V d )/R 2=(12×104)/R 2∴ T a T c =T b T d 4分5、一定量的理想气体经历如图所示的循环过程,A →B 和C →D 是等压过程,B→C 和D →A 是绝热过程.已知:T C = 300 K ,T B = 400 K . 试求:此循环的效率.(提示:循环效率的定义式η =1-Q 2 /Q 1,Q 1为循环中气体吸收的热量,Q 2为循环中气体放出的热量) A BC DO Vp解: 121Q Q -=η Q 1 = ν C p (T B -T A ) , Q 2 = ν C p (T C -T D ))/1()/1(12B A B C D C A B D C T T T T T T T T T T Q Q --=--= 4分 根据绝热过程方程得到:γγγγ----=D D AA T p T p 11, γγγγ----=C CB B T p T p 11 ∵ p A = p B , pC = pD ,∴ T A / T B = T D / T C 4分故 %251112=-=-=BC T T Q Q η 2分6、一卡诺热机(可逆的),当高温热源的温度为 127℃、低温热源温度为27℃时,其每次循环对外作净功8000 J .今维持低温热源的温度不变,提高高温热源温度,使其每次循环对外作净功 10000 J .若两个卡诺循环都工作在相同的两条绝热线之间,试求:(1) 第二个循环的热机效率;(2) 第二个循环的高温热源的温度.解:(1) 1211211T T T Q Q Q Q W -=-==η 2111T T T WQ -= 且 1212T T Q Q = ∴ Q 2 = T 2 Q 1 /T 1即 212122112T T T W T T T T T Q -=⋅-==24000 J 4分 由于第二循环吸热 221Q W Q W Q +'='+'=' ( ∵ 22Q Q =') 3分 =''='1/Q W η29.4% 1分 (2) ='-='η121T T 425 K 2分(范文素材和资料部分来自网络,供参考。
大学物理活页作业答案(全套)马文蔚(二)引言概述:在本文中,我们将提供马文蔚的《大学物理活页作业答案(全套)》第二部分的答案。
该答案集包含了大学物理课程中的各种难题和练习题的解答,将帮助学生更好地理解和掌握物理知识。
下面将分为五个大点,详细阐述每个大点下的小点内容。
1. 力学:- 物体的运动:包括匀速直线运动、加速直线运动、自由落体等运动形式的求解方法;- 牛顿运动定律:分析力的作用、摩擦力、弹力等的计算方法;- 循环运动:旋转、圆周运动等相关知识;- 力的合成与分解:应用向量运算解决力的合成与分解问题;- 动量与能量:动量守恒定律、机械能守恒定律等的应用。
2. 热学:- 温度与热量:温标、热量的单位、热量传递等的概念和计算;- 热力学第一定律:内能和热功的关系,热机效率的计算;- 热传导:导热系数、传热方程等内容;- 热膨胀:线膨胀、面膨胀和体膨胀等相关知识;- 气体定律:理想气体状态方程、等温过程和绝热过程的分析。
3. 光学:- 光的传播:光速、光线传播的规律等;- 光的折射与反射:折射定律、反射定律的应用;- 光的干涉与衍射:双缝干涉、单缝衍射等基本原理;- 光的色散与光谱:光的色散现象、光谱的特性和应用;- 光学仪器:透镜、显微镜、望远镜等光学仪器的工作原理和使用方法。
4. 电磁学:- 静电场:库仑定律、电场强度的计算等;- 电场的能量:电场能的计算、电场的静电势和电势差的概念;- 电流和电阻:电流的计算、欧姆定律的应用;- 磁场:磁感应强度、电流在磁场中受力等基本概念;- 电磁感应:法拉第电磁感应定律、应用于电感和互感等。
5. 物理实验:- 实验仪器与测量:常用物理实验仪器的常规使用方法;- 实验技巧和数据处理:实验数据的处理与分析方法;- 实验设计和报告:实验设计的基本原则、报告撰写的要点;- 实验安全与管理:实验过程中的安全措施和实验室规章制度;- 物理实验的应用与发展:物理实验在科学研究和工程技术中的应用和发展。
作业1-1 填空题(1)一质点,以m s 1 2的匀速率作半径为5m 的圆周运动,则该质点在5s 内,位移的大小是;经过的路程[ 答案:10m;5 π m](2)一质点沿x 方向运动,其加速度随时间的变化关系为a=3+2t (SI) ,如果初始时刻质点的速度v0 为5m·s-1,则当t 为3s 时,质点的速度v= 。
[ 答案:23m· s-1 ]1-2 选择题2 一质点作直线运动,某时刻的瞬时速度v 2m/ s ,瞬时加速度a 2m/s2,则一秒钟后质点的速度(A) 等于零(B) 等于-2m/s(C) 等于2m/s (D) 不能确定。
[ 答案:D]平均速度大小和平均速率大小分别为[ 答案: D]1- 4 下面几个质点运动学方程,哪个是匀 变速直线运动?32 (1)x=4t-3 ;(2)x=-4t 3+3t 2+6;(3) 22 x=-2t 2+8t+4 ;( 4) x=2/t 2-4/t 。
给出这个匀变速直线运动在 t=3s 时的 速度和加速度,并说明该时刻运动是加速 的还是减速的。
(x 单位为 m , t 单位为2 R 2 R (A) t ,t(B) 2R (C) 0,00,t2R (D)t ,0[ 答案: (3) 一运动质点在某瞬时位于矢径 的端点处,其速度大小为dr(A ) dtB]r(x, y)(B)dr dtd|r|(C) dt(D) (dx )2 (dy )2dt dts)解:匀变速直线运动即加速度为不等于零的常数时的运动。
加速度又是位移对时间的两阶导数。
于是可得 (3)为匀变速直线运动。
其速度和加速度表达式分别为v dx4t 8dt d2xa2 4dt2t=3s 时的速度和加速度分别为v=-4m/s ,a=-4m/s 2。
因加速度为正所以是加速的。
1-7 一质点在xOy 平面上运动,运动方程为 x=3t +5, y=1t 2+3t -4.2式中t 以s 计,x, y 以m计.(1) 以时间t 为变量,写出质点位置矢量的表示式;(2) 求出t=1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;(3) 计算t =0 s时刻到t =4s 时刻内的平均速度;(4) 求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6) 求出质点加速度矢量的表示式,计算 t = 4s 时质点的加速度 ( 请把位置矢量、 位移、平均速度、瞬时速度、平均加速度、 瞬时加速度都表示成直角坐标系中的矢量 式).r 1 8i 0.5j mr 2 11i 4j m解:(1)r (3t 5)i (1t 23t 4) j(2) 将 t 1, t 2 代入上式即有213i 4.5j m(3)r5i 4j,r 4 17i16j4012i 20j3i (4)tdr 1v 3i (t 3) j m s 15jdt 则 (5)v4v 0 3iv a t3i 7j3j,v 43i 7jv 4 v 04j1j 4(6)a dv1j m s 2dt这说明该点只有 y 方向的加速度, 且为恒量。
大学物理八九章部分习题解答-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第8章 磁场8-10一均匀密绕直螺线管的半径为 ,单位长度上有 匝线圈,每匝线圈中的电流为 ,用毕奥—萨伐尔定律求此螺线管轴线上的磁场。
分析:由于线圈密绕,因此可以近似地把螺线管看成一系列圆电流的紧密排列,且每一匝圆电流在轴线上任一点的磁场均沿轴向。
解: 取通过螺线管的轴线并与电流形成右旋的方向(即磁场的方向)为x 轴正向,如习题8-10图解(a )所示。
在螺线管上任取一段微元dx ,则通过它的电流为dI nIdx =,把它看成一个圆线圈,它在轴线上O 点产生的磁感应强度dB 为2022322()R nIdxdB R x μ=+ 由叠加原理可得,整个螺线管在O 点产生的磁感应强度B 的大小为212022322()x Lx R nIdxB dB R x μ==+⎰⎰0212212221221[]2()()nIx x R x R x μ=-++ 由图可知12122212221212cos os ()()x x R x R x ββ==++ c ,代入上式并整理可得 021(cos cos )2nIB μββ=-式中12ββ和分别为x 轴正向与从O 点引向螺线管两端的矢径r 之间的夹角。
讨论:(1)若螺线管的长度远远大于其直径,即螺线管可视为无限长时,20β=,1βπ=,则有nI B 0μ=上式说明,无限长密绕长直螺线管内部轴线上各点磁感应强度为常矢量。
理论和实验均证明:在整个无限长螺线管内部空间里,上述结论也适用。
即无限长螺线管内部空间里的磁场为均匀磁场,其磁感应强度B 的大小为0nI μ,方向与轴线平行;(2)若点O 位于半无限长载流螺线管一端,即12πβ=,20β=或12πβ=,2βπ=时,无论哪一种情况均有nI B 021μ=------(8-19) 习题8-10图解可见半无限长螺线管端面中心轴线上磁感应强度的大小为管内的一半; 综上所述,密绕长直螺线管轴线上各处磁感应强度分布见习题8-10图解(b )所示,从图中也可看出,长直螺线管内中部的磁场可以看成是均匀的。
大学物理练习册参考答案大学物理练习册是大学物理的重要教材之一,它的主要作用是为大学物理课程提供题目和习题,使学生能够更好地掌握和理解物理知识。
本文将为大家提供几个大学物理练习册的参考答案,供大家参考。
第一题:有一块长度为20cm,宽度为10cm,厚度为2cm的矩形金属板,重量为3N。
请问这块金属板的密度是多少?答案:首先我们需要知道密度的定义,密度是单位体积内物质的质量。
因此,我们可以根据这个公式计算出这块金属板的密度:密度=质量/体积其中,这块金属板的质量为3N,体积为20cm × 10cm × 2cm = 400cm³。
把质量和体积带入公式中,可以得到这块金属板的密度为:密度=3N/400cm³=0.0075N/cm³因此,这块金属板的密度为0.0075N/cm³。
第二题:有一个长度为4m的绳子,一个人沿着绳子向上爬,绳子的质量是忽略不计的。
如果人的体重为600N,他在绳子上爬行的过程中,绳子的张力是多少?答案:在求解这个问题之前,我们需要知道牛顿第二定律的公式:力=质量× 加速度根据牛顿第二定律,可以得到人在绳子上爬行时绳子所受的力等于绳子的张力减去重力。
因此,我们可以得到以下公式:绳子的张力=人的重力+绳子的重力其中,人的重力为600N,绳子的重力可以根据绳子的长度和重力加速度计算得出。
在地球上,物体的重力加速度大约为9.8m/s²。
因此,绳子的重力可以用下面的公式计算:绳子的重力=绳子的质量× 重力加速度因为绳子的质量可以根据绳子的长度和线密度计算得出,我们可以得到以下公式:绳子的质量=绳子的长度× 线密度假设绳子的线密度为ρ,绳子的质量可以表示为:绳子的质量=ρ × 面积× 长度根据绳子的面积和长度,可以得到:面积=长度× 直径/4因此,绳子的质量可以通过以下公式计算得出:绳子的质量=ρ × 直径² × 长度/16把绳子的质量和重力加速度带入公式中,可以得到绳子的重力为:绳子的重力=ρ × 直径² × 长度/16 × 重力加速度把人的重力和绳子的重力带入公式中,可以得到绳子的张力为:绳子的张力=人的重力+绳子的重力=600N+ρ × 直径² × 长度/16 × 重力加速度因此,如果已知绳子的线密度、直径、长度和重力加速度,就可以计算出绳子在负责人上爬行时所受的张力。
1.质点运动学单元练习(一)答案1.B 2.D 3.D 4.B5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。
)6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r -+=)(21m ji r+= )(242m ji r-=)(3212m ji r r r-=-=∆)/(32s m ji t r v -=∆∆=(2))(22SI j t i dtrd v -== )(2SI jdtvd a -==)/(422s m j i v-= )/(222--=s m ja8.解:t A tdt A adt v tot oωω-=ωω-==⎰⎰sin cos 2t A tdt A A vdt A x tot oω=ωω-=+=⎰⎰cos sin9.解:(1)设太阳光线对地转动的角速度为ωs rad /1027.73600*62/5-⨯=π=ωs m th dt ds v /1094.1cos 32-⨯=ωω==(2)当旗杆与投影等长时,4/π=ωth s t 0.31008.144=⨯=ωπ=10.解: ky yv v t y y v t dv a -====d d d d d d d -k =y v d v / d y⎰⎰+=-=-C v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C --= )(2222y y k v v o o -+=ωths2.质点运动学单元练习(二)答案1.D 2.A 3.B 4.C5.14-⋅==s m t dt ds v ;24-⋅==s m dtdva t ;2228-⋅==s m t Rv a n ;2284-⋅+=s m e t e a nt6.s rad o /0.2=ω;s rad /0.4=α;2/8.0s rad r a t =α=;22/20s m r a n =ω=7.解:(1)由速度和加速度的定义)(22SI ji t dt rd v +==;)(2SI idtvd a ==(2)由切向加速度和法向加速度的定义)(124422SI t t t dt d a t +=+=)(12222SI t a a a t n +=-=(3)())(122/322SI t a v n+==ρ8.解:火箭竖直向上的速度为gt v v o y -︒=45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin =︒=9.解:s m uv /6.3430tan =︒=10.解:l h v u ≤;u hl v ≥3.牛顿定律单元练习答案1.C 2.C 3.A 4.kg Mg T 5.36721==;2/98.02.0s m MT a == 5.x k v x 22=;x x xv k dtdxk dt dv v 222== 221mk dt dv mf x x == 6.解:(1)ma F F N T =θ-θsin cosmg F F N T =θ+θcos sinθ-θ=θ+θ=sin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o ≥ωμ2 Rgo μ≥ω 8.解:由牛顿运动定律可得dtdv t 1040120=+ 分离变量积分()⎰⎰+=tovdt t dv 4120.6 )/(6462s m t t v ++=()⎰⎰++=toxdt t t dx 64620.5 )(562223m t t t x +++=9.解:由牛顿运动定律可得dtdv mmg kv =+- 分离变量积分⎰⎰-=+t o vv o dt m k mg kv kdv o t m k mg kv mg o -=⎪⎪⎭⎫ ⎝⎛+ln ⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛+-=mg kv k m mg kv mgk m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程 a v m f mg 2cos =-θ,t vm mg d d sin =θ,以及 ta v d d θ=,θd d v a t =,积分并代入初条件得 )cos 1(22θ-=ag v ,)2cos 3(cos 2-=-=θθmg av m mg f .4.动量守恒和能量守恒定律单元练习(一)答案1.A ; 2.A ; 3.B ; 4.C ; 5.相同 6.2111m m t F v +∆=;2212m t F v v ∆+=7.解:(1)t dt dxv x 10==;10==dtdv a x x N ma F 20==;m x x x 4013=-=∆J x F W 800=∆=(2)s N Fdt I ⋅==⎰40318.解:()1'v m m mv +=()221221'2121o kx v m m mv ++= ()''m m k mm vx +=9.解: 物体m 落下h 后的速度为 gh v 2=当绳子完全拉直时,有 ()'2v M m gh m +=gh mM m v 2'+=gh mM mMMv I I T 22'22+===10.解:设船移动距离x ,人、船系统总动量不变为零0=+mv Mu等式乘以d t 后积分,得0=+⎰⎰totomvdt Mudt0)(=-+l x m Mx m mM mlx 47.0=+=5.动量守恒和能量守恒定律单元练习(二)答案1.C 2.D 3.D 4.C 5.18J ;6m/s 6.5/37.解:摩擦力mg f μ=由功能原理 2121210)(kx x x f -=+- 解得 )(22121x x mg kx +=μ.8.解:根据牛顿运动定律 Rv m F mg N 2cos =-θ由能量守恒定律mgh mv =221质点脱离球面时 RhR F N -=θ=cos ;0 解得:3R h =9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m +=+ ①212211m m v m v m v ++=(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p +-+=② 联立①、②得 )/()(212122121m m m m E p +-=v v10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)(=--MV V u m ①mgR MV V u m =+-2221)(21 ② 解得: )(2m M M gRmV +=;MgRm M u )(2+=(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可看成惯性系,以M 为参考系 R mu mg N /2=-M mg m M mg R mu mg N /)(2/2++=+= mg MmM M mg m M Mmg N 23)(2+=++=6.刚体转动单元练习(一)答案1.B 2.C 3.C 4.C5.v = 1.23 m/s ;a n = 9.6 m/s 2;α = –0.545 rad/ s 2;N = 9.73转。
上海交大版大学物理参考答案公司内部档案编码:[OPPTR-OPPT28-OPPTL98-版权归原着所有 本答案仅供参考习题99-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。
容器与大气相通排出一部分气体后,气压下降了。
若温度不变,求排出气体的质量。
解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。
由于温度不变,∴00PV PV =,有:001.783PVV L P ==⨯, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =⨯-=,这部分气体在1.78atm 下体积为:''V =0'0.7831.78PV L P ⨯= 则排除的气体的质量为:0.783'' 1.3 1.71.78g Lm V g L ρ⨯∆==⨯= 。
根据题意pV RT ν=,可得:mpV RT M=,1V p RT p M m ρ==9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。
如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴O H HOm mM M =,代入数据有: 1.6O m kg = 。
9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。
用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。
要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少则体积和压强相同,如图。
由:mol mpV RT M =,有:2222(30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:30282103028T K ⨯==+ 。
习题1414-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I I B R R μθμπ==,方向:;直导线在O 点的磁感应强度:000203[sin 60sin(60)]4cos602IIB R R μμππ=--=,方向:⊗;∴总场强:031)23IB Rμ=-,方向⊗。
14-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B aR x μ=++, 右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x ,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:当0x =时,0d Bd x =,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:当0x =时,202x d B d x ==222072223[()]2a R I R a R μ-+,可见,当a R >时,2020x d Bd x =>,O 点的磁感应强度B 有极小值,当a R <时,2020x d B d x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d B d x ==,说明磁感应强度B在O 点附近的磁场是相当均匀的,可看成匀强磁场。
习题11-1.已知质点位矢随时间变化的函数形式为(cos sin )r =R ωt i ωt j + 其中ω为常量.求:1质点的轨道;2速度和速率;解:1 由(cos sin )r =R ωt i ωt j +,知:cos x R t ω= ,sin y R t ω=消去t 可得轨道方程:222x y R +=∴质点的轨道为圆心在0,0处,半径为R 的圆; 2由d rv dt=,有速度:sin Rcos v R t i t j ωωωω=-+ 而v v =,有速率:1222[(sin )(cos )]v R t R t R ωωωωω=-+=;1-2.已知质点位矢随时间变化的函数形式为24(32)r t i t j =++,式中r 的单位为m ,t 的单位为s ;求:1质点的轨道;2从0=t 到1=t 秒的位移;30=t 和1=t 秒两时刻的速度;解:1由24(32)r t i t j =++,可知24x t = ,32y t =+消去t 得轨道方程为:x =2(3)y -,∴质点的轨道为抛物线; 2由d rv dt=,有速度:82v t i j =+ 从0=t 到1=t 秒的位移为:1100(82)42r v d t t i j d t i j ∆==+=+⎰⎰30=t 和1=t 秒两时刻的速度为:(0)2v j =,(1)82v i j =+ ; 1-3.已知质点位矢随时间变化的函数形式为22r t i t j =+,式中r 的单位为m ,t 的单位为s .求:1任一时刻的速度和加速度;2任一时刻的切向加速度和法向加速度; 解:1由d r v dt =,有:22v t i j =+,d va dt=,有:2a i =; 2而v v =,有速率:12222[(2)2]21v t t =+=+∴t dv a dt=221t t =+,利用222t n a a a =+有: 22221n t a a a t =-=+;1-4.一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间;解法一:以地面为参照系,坐标如图,设同一时间内螺钉下落的距离为1y ,升降机上升的高度为2y ,运动方程分别为21012y v t gt =- 122012y v t at =+ 212y y d += 3注意到1y 为负值,有11y y =- 联立求解,有:2dt g a=+;解法二:以升降机为非惯性参照系,则重力加速度修正为'g g a =+,利用21'2d g t =,有:22'ddt g g a==+; 1-5.一质量为m 的小球在高度h 处以初速度0v 水平抛出,求:1小球的运动方程;2小球在落地之前的轨迹方程;3落地前瞬时小球的d r d t ,d v d t ,d vd t; 解:1如图,可建立平抛运动学方程:0x v t = ,212y h g t =- ,∴201()2r v t i h g t j =+-;2联立上面两式,消去t 得小球轨迹方程:2202gx y h v =-+为抛物线方程;3∵201()2r v t i h g t j =+-,∴0d r v i g t j d t =-, 即:0v v i g t j =-,d vg j d t=- 在落地瞬时,有:2ht g=,∴02d r v i gh j d t =- 又∵ v =2222()xyv v v gt +=+-,∴2122220022[()]g gh g t dvdt v gh v gt ==++ ; 1-6.路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走;试证明人影的顶端作匀速运动,并求其速度2v .证明:设人向路灯行走,t 时刻人影中头的坐标为1x ,足的坐标为2, 由相似三角形关系可得:12211x x h x h -=, ∴11212h x x h h =- 两边对时间求导有:11212d x h d x d t h h d t =- ,考虑到:21d x v d t=, 知人影中头的速度:21112d x hv v d t h h ==-影常数;1-7.一质点沿直线运动,其运动方程为2242t t x -+=m,在 t 从0秒到3秒的时间间隔内,则质点走过的路程为多少解:由于是求质点通过的路程,所以可考虑在0~3s 的时间间隔内,质点速度为0的位置:t dtdxv 44-==若0=v 解得 s t 1=, m x x x 1021=∆+∆=∆;1-8.一弹性球直落在一斜面上,下落高度cm 20=h ,斜面对水平的倾角 30=θ,问它第二次碰到斜面的xy 0v h O O1x 2x 1h 2h位置距原来的下落点多远假设小球碰斜面前后速度数值相等,碰撞时人射角等于反射角;解:小球落地时速度为gh v 20=,建立沿斜面的直角坐标系,以小球第一次落地点为坐标原点如图示,00060cos v v x =→ 200060cos 2160cos t g t v x += 1 00060sin v v y =→ 200060sin 2160sin t g t v y -= 2第二次落地时:0=y ,代入2式得:g vt 02=,所以:2002002122cos 60cos 604802v gh x v t g t h cm g g ⋅=+====; 1-9.地球的自转角速度最大增加到若干倍时,赤道上的物体仍能保持在地球上而不致离开地球已知现在赤道上物体的向心加速度约为2s /cm 4.3,设赤道上重力加速度为2m/s 80.9;解:由向心力公式:2F m R ω=向,赤道上的物体仍能保持在地球必须满足:F mg =向,而现在赤道上物体的向心力为:'F ma =向∴016.9817ωω====≈ 1-10.已知子弹的轨迹为抛物线,初速为0v ,并且0v 与水平面的夹角为θ;试分别求出抛物线顶点及落地点的曲率半径;解:1抛物线顶点处子弹的速度0cos x v v θ=,顶点处切向加速度为0,法向加速度为g ;因此有:22011(cos )v vg θρρ==, 2201cos v gθρ=; 2在落地点时子弹的0v ,由抛物线对称性,知法向加速度方向与竖直方向成θ角,则:cos n a g θ=,有:202cos v g θρ= 则: 22cos v g ρθ=;1-11.一飞行火箭的运动学方程为1()ln(1)=+--x ut u t bt b,其中b 是与燃料燃烧速率有关的量,u 为燃气相对火箭的喷射速度;求: 1火箭飞行速度与时间的关系;2火箭的加速度;解:一维运动,直接利用公式:dx v dt =,dva dt=有: 1)1ln(bt u dt dx v --== , 2btub dt dv a -==1 1-12.飞机以s /m 1000=v 的速度沿水平直线飞行,在离地面高m 98=h 时,驾驶员要y把物品投到前方某一地面目标上,问:投放物品时,驾驶员看目标的视线和竖直线应成什么角度此时目标距飞机下方地点多远 解:设此时飞机距目标水平距离为x 有:t v x 0=┄①,221gt h =┄② 联立方程解得:m x 447≈,∴05.77arctan ≈=hx θ;1-13.一物体和探测气球从同一高度竖直向上运动,物体初速为s /m 0.490=v ,而气球以速度s /m 6.19=v 匀速上升,问气球中的观察者在第二秒末、第三秒末、第四秒末测得物体的速度各多少解:物体在任意时刻的速度表达式为:gt v v y -=0故气球中的观察者测得物体的速度v v v y -=∆代入时间t 可以得到第二秒末物体速度:29.8m v s ∆=,向上 第三秒末物体速度:30v ∆=第四秒末物体速度:49.8m v s ∆=-向下;思考题11-1.质点作曲线运动,其瞬时速度为v ,瞬时速率为v ,平均速度为v ,平均速率为v ,则它们之间的下列四种关系中哪一种是正确的A v v ==v v ,;B v v =≠v v ,;C v v ≠=v v ,;D v v ≠≠v v ,答:C1-2.沿直线运动的物体,其速度大小与时间成反比,则其加速度的大小与速度大小的关系是:A 与速度大小成正比;B 与速度大小平方成正比;C 与速度大小成反比;D 与速度大小平方成反比; 答:B1-3.如图所示为A,B 两个质点在同一直线上运动的-v t 图像,由图可知 A 两个质点一定从同一位置出发 B 两个质点都始终作匀加速运动 C 在2s t 末两个质点相遇D 在20s t 时间内质点B 可能领先质点A 答:D 1-4.质点的t x ~关系如图,图中a ,b ,c 三条线表示三个速度不同的运动.问它们属于什么类型的运动哪一个速度大哪一个速度小答:匀速直线运动;a b c v v v >>; 1-5.如图所示,两船A 和B 相距R ,分别以速度A v 和B v 匀速直线行驶,它们会不会相碰若不相碰,求两船相靠最近的距离.图中α和β为已知;答:方法一:如图,以A 船为参考系,在该参考系中船A 是静止的,而船B 的速度A v v v B -=';v '是船B 相对于船A 的速度,从船B 作一条平行于v '方向的直线BC,它不与船A 相交,这表明两船不会相碰.由A 作BC 垂线AC,其长度min r 就是两船相靠最近的距离 θsin min R r =作FDv v v A B '-=αβθsin sin sin )cos(222βα+++='B A B A v v v v v R v v v v v v r B A B A A B )cos(2sin sin 22min βααβ+++-=t 0)(=dt t dr Rv v v v v v r B A BA AB )cos(2sin sin 22min βααβ+++-=0d r d t =0d r d t ≠0d v d t =0d v d t ≠0d a d t =0d ad t==+x y v v i v j 0d d =⎰⎰ttxv t v t 0d d =⎰⎰ttyv t v td d =⎰⎰ttx v t v td d =⎰⎰tty v t v t 1t 111d ,d ,d t t t xyv t v t v t⎰⎰⎰A B⎰⎰⎰BABABAr d ,d ,d r r tv t xd 1⎰tvt yd 10⎰1d t v t⎰1t ⎰B Ar d d B A⎰r ⎰BAdr 16kg xOy6N x f =7N y f =0t =0x y ==2m /s x v =-0y v =2s t =x x f a m =x a 263m /168s ==27m /16y y f a s m -==2003522m /84x x x v v a dt s =+=-+⨯=-⎰200772m /168y y y v v a dt s -=+=⨯=-⎰2s 57m /s 48v i j =--22011()22x y r v t a t i a t j=++1317(224)()428216i j -=-⨯+⨯⨯+⨯2kg 2424=-F i t j 034=+v i jn F d v F m d t =24242d v i t j dt -=⋅0201(424)2v t v d v i t j dt =-⎰⎰3024v v t i t j =+-034v i j =+s t 1=15v i =t v v e =15v i =s t 1=s t 1=ij 2424F i t j =-s t 1=424424t n F i j e e =-=-24n F N=-45A a g=1m 2m μFmax 212222f mg f Fa m m m m m μ==<=+12()F m m g μ<+maxF max 12()F m m g μ=+12()F m m g μ<+θ)(θμtg <a θμμθtan 1tan 1+-=a g θμμθtan 1tan 2-+=a gtan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-'x 'y 'x sin cos 0mg ma f θθ-±='y cos sin 0N mg ma θθ--=f N μ=sin cos (cos sin )0mg ma mg ma θθμθθ-±+=sin cos tan cos sin 1tan a g g θμθθμθμθμθ±±==a tan tan 1tan 1tan g a g θμθμμθμθ-+≤≤+-m 0v k f kv =-dv f mdt=•m AR B dv kv m dt -=dv k dt v m =-000t v dv k dt v m =-⎰⎰t m ke v v -=00v =dv dv dx dt dx dt =dx v dt =mdx dvk=-00max 0v m mx dv v k k=-=⎰2m 1m θ2m 1m 2'a 1m 1a 2m 2m g 1N 21m a 1m 1m g 1N 2N 2m 21222cos sin 'm a m g m a θθ+=1212sin cos N m a m g θθ+=1m 111sin N m a θ=11212sin cos sin m a m a m g θθθ+=21212sin cos sin m a g m m θθθ=+122212()sin 'sin m m a g m m θθ+=+2'a 122212sin cos 'sin x x m a a a g m m θθθ=-=-+111sin m a N θ==g m m m m θθ22121sin cos +R μ0=t 0v 2v N m R =f Nμ=dtdvmf =-2dv v dt Rμ=-0201vt v dv dt v R μ-=⎰⎰t μv R R v v 00+=20R m =0.6F i =F R -R2020B A r r r i j∆=-=-+A F r =⋅∆0.6(2020)12A i i j =⋅-+=-0.5kg A F r=⋅∆250.5r t i j =+24(4)(2)60r r r i →∆=-=220.5105d rF m i i d t==⋅=560300A i i J =⋅=m2()F at i bt j =+t P F v =⋅P F v =⋅2232325111111()()()2323ati bt j at i bt j a t b t m m =+⋅+=+2(52.838.4)F x x i =--F x N m m 522.01=x m 34.12=x ()()F x F x i =f A 2v N G mR-=R G N mv )(21212-=2102f mgR A mv +=-11()(3)22f A N G R mgR N mg R =--=-1ρl 2ρAB B1212ρρρ<<max v H G F =浮hsg lsg 12ρρ=l h 12ρρ=212mgh mv A =+浮22max21012h slv sglh gsydy ρρρ=-⎰2max 1v gl ρρ=H 'H l h =+2110'l lsgH ysgdy lsgh ρρρ=+⎰2110()l lsgH ysgdy lsg H l ρρρ=+-⎰1122()lH ρρρ=-L m A A B A m B m k l B 0x A B A A B A B A22011()22A B m m v k x +=0x m m k v B A +=x l =A 221122A A m v kx =0AA A Bm x x m m =+m3e Gm m F r r =-e e ,R m e e 211e e P R R eE F dr Gm m dr Gm m r R ∞∞=⋅=-⋅=-⎰⎰I T I τ12v v =I mv =∆0I =cos T mgθ=2mgπωm Oxy cos sin r a t i b t j ωω=+0=t ωπ/2=t P mv =d r v dt ==2m 1m θθ1N2m 2m g21m a 1m θ1m g 2N 1N θy xOB AFθωl mg Tsin cosa t ib t jωωωω-+()(sin cos )P t m a t i b t jωωω=--2()(0)0I mv P P m b j m b j πωωω=∆=-=-= 2.0kg1.0m20g 0v 600m v 30m 01mv mv M v =+01 5.7mv mv v M-==/m s21v T Mg M l -=2184.6v T Mg M Nl=+=00.0257011.4I mv mv N s =-=-⨯=-⋅m /skg 102.122⋅⨯-236.410kg m/s -⨯⋅kg 108.526-⨯2222221.20.6410P P P -=+=+⨯核电子中微子0.64tan 1.2P P α==中微子电子028.1α=221.410/P kgm s -=⨯核9.151=-=απθ2180.17102k P E J m -==⨯核核m 2c x c x 112212c m x m x x m m +=+12m m m ==12c x x =2223,42c c c mx mx x x x m +== 30=α 1.0M kg =30x cm =0.01m kg=200/v m s =25/k N m =22111sin 22Mv kx Mgx α+=10.83/v m s ⇒=1cos Mv mv m M v α'-=+()0.89/v m s '⇒=-θM L 0cos M r F mg v t kθ=⨯=-200cos 2t mg v L r mv M dt t k θ=⨯==-⎰1v 2v 1122r mv r mv =122v v =0P MmE G r=-R Mm G mv R Mm G mv 421221022021-=-mg R Mm G =20321Rg v =62Rg v =ρρ220v m Mm G =R 38=ρ22v Rg =0E =24sin A mv R mv R θ=⋅22v Rg =030θ⇒=m r m 2m 2/2mr m2m ma T mg 222=-ma mg T =-12()T T r J β-=βJ r T T =-)(1βr a =2/2J mr =ga 41=mg T 811=l m μ0ωO l m =λdm d x λ=d f dmg gd x μμλ==d M g xd xμλ=20124lM g xd x mgl μλμ==⎰d M J J dt ωβ==000t Mdt Jd ωω-=⎰⎰2011412mglt m l μω-=-03l t g ωμ=0M t J J ωω-=-0ω=2112J ml =03l t g ωμ=2m kg 01.0⋅cm 7kg 5N/m 200=k x maxx 2max max 12k x mg x =max 20.49mg x m k ==222111222k x mv J mg x ω++=v Rω=2222111222k x m R J mg x ωω++=x0d d x ω=21()22d k x m R J mg d x ωω++⋅=0d d x ω=αP 中微子P 电子P 核cx /2c x xyO x y 0v vOz•θT)(245.0m k mg x ==0.245x =22max 2121()2mgx kx v J m r -=+max 1.31v =m 2l 31l 32m 0v m 021v 22004221()9933l l v l v l ω+=+032v l ω=mg N =αsin 212cos N N α=α1N 1F kx m gμ=+2kx m g μ=11A m a kx m g μ=+121A m m a g m μ+=22B m a kx m g μ=-0B a =F GF G F 2321μ+≤1322F F μ<33μ>Rv m mg N 2sin +=θA B F s F A F r =⋅∆F s k m m mg k x =k mg x =212mg x k x =kmgx 2=αx v x 120αI 21I m v m v =-21v v =αm Δ1v 2v m Δm Δf 'f 'm 1e 212e 222121r m Gm mv r m Gm mv -=-1122sin sin θθmv mv =2e 2rm Gm r mv =当两小孩质量相等时,M =0;则系统角动量守恒,两人的实际的速度相同,将同时到达滑轮处,与谁在用力,谁不在用力无关;选择C; 2-13.一圆盘绕过盘心且与盘面垂直的轴O 以角速度ω按图示方向转动,若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面方向同时作用到盘上,则盘的角速度ω怎样变化 答:增大2-14.一个人站在有光滑固定转轴的转动平台上,双臂伸直水平地举起二哑铃,在该人把此二哑铃水平收缩到胸前的过程中,人、哑铃与转动平台组成的系统的: A 机械能守恒,角动量守恒;B 机械能守恒,角动量不守恒; C 机械能不守恒,角动量守恒;D 机械能不守恒,角动量不守恒; 答:C习题33-1.原长为m 5.0的弹簧,上端固定,下端挂一质量为kg 1.0的物体,当物体静止时,弹簧长为m 6.0.现将物体上推,使弹簧缩回到原长,然后放手,以放手时开始计时,取竖直向下为正向,写出振动式;g 取解:振动方程:cos()x A t ωϕ=+,在本题中,kx mg =,所以9.8k =; ∴ 9.8980.1k m ω===; 取竖直向下为x 正向,弹簧伸长为时为物体的平衡位置,所以如果使弹簧的初状态为原长,那么:A =,mg 1N 2N α1mv 2mv I风风'f //'f 'f ⊥当t =0时,x =-A ,那么就可以知道物体的初相位为π;所以:0.1cos x π=+)即:)x =-;3-2.有一单摆,摆长m 0.1=l ,小球质量g 10=m ,0=t 时,小球正好经过rad 06.0-=θ处,并以角速度0.2rad/s θ=向平衡位置运动;设小球的运动可看作简谐振动,试求:1角频率、频率、周期;2用余弦函数形式写出小球的振动式;g 取解:振动方程:cos()x A t ωϕ=+ 我们只要按照题意找到对应的各项就行了;1角频率: 3.13/rad s ω===,频率:0.5Hz ν=== ,周期:22T s ===;2振动方程可表示为:cos3.13A t θϕ=+(),∴ 3.13sin 3.13A t θϕ=-+() 根据初始条件,0t =时:cos Aθϕ=,0(12sin 0(34 3.13A θϕ>=-<,象限),象限)可解得:2008.810227133 2.32A m ϕ-=⨯==-=-,,所以得到振动方程:28.810cos3.13 2.32t m θ-=⨯-() ; 3-3.一质点沿x 轴作简谐振动,振幅为cm 12,周期为s 2;当0=t 时,位移为cm 6,且向x 轴正方向运动;求:1振动表达式;2s 5.0=t 时,质点的位置、速度和加速度;3如果在某时刻质点位于cm 6-=x ,且向x 轴负方向运动,求从该位置回到平衡位置所需要的时间;解:1由题已知 A =,T =2 s ,∴ 2Tπωπ==又∵t =0时,06x cm =,00v >,由旋转矢量图,可知:3πϕ=-故振动方程为:0.12cos3x t m ππ=-(); 2将t = s 代入得:0.12cos 0.12cos 0.10436x t m πππ=-==(),0.12sin 0.12cos 0.188/36v t m s ππππ=--==-(),2220.12cos 0.12cos 1.03/36a t m s πππππ=--=-=-(),方向指向坐标原点,即沿x 轴负向;3由题知,某时刻质点位于6cm 2Ax =-=-, 且向x 轴负方向运动,如图示,质点从P 位置回到平衡位置Q 处需要走32ππϕ∆=+,建立比例式:2tTϕπ∆∆=,有:56t s ∆= ;3-4.两质点作同方向、同频率的简谐振动,振幅相等;当质点1在 2/1A x =处,且x向左运动时,另一个质点2在 2/2A x -= 处,且向右运动;求这两个质点的位相差; 解:由旋转矢量图可知:当质点1在 2/1A x =处,且向左运动时,相位为3π,而质点2在 2/2A x -= 处,且向右运动,相位为43π;所以它们的相位差为π;3-5.当简谐振动的位移为振幅的一半时,其动能和势能各占总能量的多少物体在什么位置时其动能和势能各占总能量的一半解:由212P E k x =,212k E mv =,有:221cos ()2P E k A t ωϕ=+,2222211sin ()sin ()22k E m A t k A t ωωϕωϕ=+=+, 1当2Ax =时,由cos()x A t ωϕ=+,有:1cos()2t ωϕ+=,3sin()t ωϕ+=,∴14P E E =,34k E E =; 2当12P k E E E ==时,有:22cos ()sin ()t t ωϕωϕ+=+ ∴cos()2t ωϕ+=20.7072x A A ==±; 3-6.两个同方向的简谐振动曲线如图所示1求合振动的振幅;2求合振动的振动表达式; 解:通过旋转矢量图做最为简单; 由图可知,两个振动同频率,且1A 初相:12πϕ=,2A 初相:22πϕ=-,表明两者处于反相状态,反相21(21)k ϕϕϕπ∆=-=±+,012k =,,,∵12A A <,∴合成振动的振幅:21A A A =- ;合成振动的相位:22πϕϕ==- ;合成振动的方程:)()(22cos 12ππ--=t T A A x ;3-7.两个同方向,同频率的简谐振动,其合振动的振幅为cm 20,与第一个振动的位相差为6π;若第一个振动的振幅为cm 310;则1第二个振动的振幅为多少2两简谐振动的位相差为多少解:如图,可利用余弦定理:由图知 ︒-+=30cos 2122122A A A A A = m ∴A 2=0.1 m ,再利用正弦定理:02sin sin 30AA θ=,有: 2sin 12A A θ==,∴2πθ=;说明A 1与A 2间夹角为π/2,即两振动的位相差为π/2 ; 3-8. 质点分别参与下列三组互相垂直的谐振动:1 4cos 864cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩ ;2 4cos 8654cos 86x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=- ⎪⎪⎝⎭⎩;3 4cos 8624cos 83x t y t ππππ⎧⎛⎫=+ ⎪⎪⎪⎝⎭⎨⎛⎫⎪=+ ⎪⎪⎝⎭⎩;试判别质点运动的轨迹;解:质点参与的运动是频率相同,振幅相同的垂直运动的叠加;对于cos()x x A t ωϕ=+,4cos()y y t ωϕ=+的叠加,可推得:1将6x πϕ=,6y πϕ=-代入有:2222cos 16sin 33x y x y ππ+-=,则方程化为:2212x y x y +-=,轨迹为一般的椭圆;2将6x πϕ=,56y πϕ=-代入有:2222cos 16sin x y x y ππ+-=则方程化为:2220x y x y +-=,即0x y +=,轨迹为一直线;3将6x πϕ=,23y πϕ=代入有:2222cos 16sin 22x y x y ππ+-=则方程化为:2224x y +=,轨迹为圆心在原点,半径为4m 的圆;3-9.沿一平面简谐波的波线上,有相距2.0m 的两质点A 与B ,B 点振动相位比A 点落后6π,已知振动周期为2.0s ,求波长和波速;解:根据题意,对于A 、B 两点,m x 2612=∆=-=∆,πϕϕϕ,而相位和波长之间满足关系:πλπλϕϕϕ221212xx x ∆-=--=-=∆,代入数据,可得:波长λ=24m;又∵T =2s ,所以波速12/u m s Tλ==;3-10.已知一平面波沿x 轴正向传播,距坐标原点O 为1x 处P 点的振动式为)cos(ϕω+=t A y ,波速为u ,求:1平面波的波动式;2若波沿x 轴负向传播,波动式又如何 解:1设平面波的波动式为0cos[]xy A t uωϕ=-+(),则P 点的振动式为:10cos[]P x y A t uωϕ=-+(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=-+;2若波沿x 轴负向传播,同理,设平面波的波动式为:0cos[]xy A t u ωϕ=++(),则P 点的振动式为:10cos[]P x y A t uωϕ=++(),与题设P 点的振动式cos()P y A t ωϕ=+比较, 有:10xuωϕϕ=-+,∴平面波的波动式为:1cos[()]x x y A t u ωϕ-=++;3-11.一平面简谐波在空间传播,如图所示,已知A 点的振动规律为cos(2)y A t πνϕ=+,试写出: 1该平面简谐波的表达式;2B 点的振动表达式B 点位于A 点右方d 处; 解:1仿照上题的思路,根据题意,设以O 点为原点平面简谐波的表达式为:0cos[2]xy A t u πνϕ=++(),则A 点的振动式:0cos[2]A ly A t uπνϕ-=++()题设A 点的振动式cos(2)y A t πνϕ=+比较,有:02lu πνϕϕ=+, ∴该平面简谐波的表达式为:]2cos[ϕπν+++=)(uxu l t A y2B 点的振动表达式可直接将坐标x d l =-,代入波动方程:3-12.已知一沿x 正方向传播的平面余弦波,s 31=t 时的波形如图所示,且周期T 为s 2;1写出O 点的振动表达式;2写出该波的波动表达式; 3写出A 点的振动表达式; 4写出A 点离O 点的距离;解:由图可知:0.1A m =,0.4m λ=,而2T s =,则:/0.2/u T m s λ==,2T πωπ==,25k ππλ==,∴波动方程为:00.1cos(5)y t x ππϕ=-+O 点的振动方程可写成:00.1cos()O y t πϕ=+由图形可知:s 31=t 时:0.05O y =,有:00.050.1cos()3πϕ=+考虑到此时0O d y d t <,∴03πϕ=,53π舍去 那么:1O 点的振动表达式:0.1cos()3O y t ππ=+;2波动方程为:0.1cos(5)3y t x πππ=-+;3设A 点的振动表达式为:0.1cos()A A y t πϕ=+由图形可知:s 31=t 时:0A y =,有:cos()03A πϕ+=考虑到此时0A d y d t >,∴56A πϕ=-或76A πϕ=∴A 点的振动表达式:50.1cos()6A y t ππ=-,或70.1cos()6A y t ππ=+;4将A 点的坐标代入波动方程,可得到A 的振动方程为:0.1cos(5)3A A y t x πππ=-+,与3求得的A 点的振动表达式比较,有:5563A t t x πππππ-=-+,所以:m x A 233.0307== ; 3-13.一平面简谐波以速度m/s 8.0=u 沿x 轴负方向传播;已知原点的振动曲线如图所示;试写出:1原点的振动表达式; 2波动表达式;3同一时刻相距m 1的两点之间的位相差; 解:这是一个振动 图像由图可知A =0.5cm ,设原点处的振动方程为:30510cos()O y t ωϕ-=⨯+;1当0t =时,30 2.510O t y -==⨯,考虑到:00O t d y d t=>,有:03πϕ=-,当1t =时,10O t y ==,考虑到:10O t d y d t =<,有:32ππω-=,56πω=,∴原点的振动表达式:35510cos()63O y t ππ-=⨯-;2沿x 轴负方向传播,设波动表达式:35510cos()63y t k x ππ-=⨯+-而512460.825k u ωππ==⨯=,∴3524510cos()6253y t x πππ-=⨯+-; 3位相差:252 3.2724x k x rad ϕππλ∆∆==∆== ; 3-14.一正弦形式空气波沿直径为cm 14的圆柱形管行进,波的平均强度为39.010-⨯/()J s m ⋅,频率为Hz 300,波速为m/s 300;问波中的平均能量密度和最大能量密度各是多少每两个相邻同相面间的波段中含有多少能量解:1已知波的平均强度为:39.010I -=⨯/()J s m ⋅,由I w u =⋅ 有:53max 2610/w w J m -==⨯;2由W w V =⋅,∴221144uW w d w d πλπν=⋅=5327310/(0.14)1 4.62104J m m m J π--=⨯⨯⋅⋅=⨯ ;3-15.一弹性波在媒质中传播的速度310/u m s =,振幅41.010A m -=⨯,频率310Hz ν=;若该媒质的密度为3800/kg m ,求:1该波的平均能流密度;21分钟内垂直通过面积24m 100.4-⨯=S 的总能量; 解:1由:2212I u A ρω=,有:34232110800102102I π-=⨯⨯⨯⨯()()521.5810/W m =⨯; 21分钟为60秒,通过面积24m 100.4-⨯=S 的总能量为:W I S t =5431.581041060 3.7910J -=⨯⨯⨯⨯=⨯ ;3-16.设1S 与2S 为两个相干波源,相距41波长,1S 比2S 的位相超前2π;若两波在在1S 、2S 连线方向上的强度相同且不随距离变化,问1S 、2S 连线上在1S 外侧各点的合成波的强度如何又在2S 外侧各点的强度如何解:1如图,1S 、2S 连线上在1S 外侧,∵212122()24r r πππλϕϕϕπλλ∆=---=--⋅=-, ∴两波反相,合成波强度为0; 2如图,1S 、2S 连线上在2S 外侧,∵212122('')()024r r πππλϕϕϕλλ∆=---=---=, ∴两波同相,合成波的振幅为2A ,合成波的强度为:220(2)44I A A I === ;3-17.图中所示为声音干涉仪,用以演示声波的干涉;S 为声源,D 为声音探测器,如耳或话筒;路径SB D 的长度可以变化,但路径SAD 是固定的;干涉仪内有空气,且知声音强度在B 的第一位置时为极小值100单位,而渐增至B 距第一位置为cm65.1的第二位置时,有极大值900单位;求:1声源发出的声波频率;2抵达探测器的两波的振幅之比;解:根据驻波的定义,相邻两波节腹间距:2x λ∆=,相邻波节与波腹的间距:4x λ∆=,可得:4 6.6x cm λ=∆=;1声音的速度在空气中约为340m/s ,所以:234051516.610u Hz νλ-===⨯()。
物理教育学知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.新时代教师要有理想信念、有道德情操、有扎实学识、有()。
参考答案:仁爱之心2.物理教育学课程内容是什么?参考答案:null第二章测试1.国家课程标准是教材编写、教学、评估和考试命题的依据,是()和评价课程的基础。
参考答案:国家管理2.在新的评价观念指导下,构建()、发展性的评价体系,注重形成性评价和终结性评价结合,发展性评价与甄别性评价结合。
参考答案:多元性3.包括“模型建构”这个要素的核心素养是哪个?()参考答案:科学思维4.义务教育阶段课程总目标注重()参考答案:科学探究的教育作用5.下列哪个选项不是科学探究的要素?( )参考答案:向老师请教6.物理学的内容和中学物理课程内容有什么区别?参考答案:null7.物理学科核心素养包括哪些?参考答案:null8.概述普通高中物理教学理念参考答案:null9.简述什么是科学思维参考答案:null10.义务教育阶段课程总目标是什么?参考答案:null11.普通高中物理课程内容结构是什么?参考答案:null第三章测试1.学习动机在物理学习中有什么作用()参考答案:引发和发动学生学习物理的活动;指引物理学习活动向一定的目标进行;维持和增加学习物理的力量。
2.物理学习中,学生可以产生哪些兴趣?并结合实例进行说明参考答案:null3.中学生学习物理知识的记忆特点参考答案:null4.结合实例说明注意的基本特征参考答案:null5.说明如何让学生的注意从无意注意发展到有意注意?参考答案:null6.记忆是学习的()参考答案:再现、保持、再认7.指心理活动有选择地反映一些现象而离开其余对象的是“注意”的()性。
参考答案:指向性8.兴趣是指一个人为求认识掌握某种事物、经常参与该活动的()参考答案:意识倾向9.把失败的结果归因于外部因素时,则有助于维护个人的()参考答案:尊严10.任何能力活动都是依靠彼此不相关的许多能力因素共同起作用的,这句话是谁的观点()参考答案:塞斯顿11.中学生感觉、知觉特点是什么?参考答案:null12.什么是无意注意,什么是有意注意?参考答案:null13.如何激发学生的兴趣和意志力?参考答案:null第四章测试1.请解释为什么各学者提出的教学原则都不相同?参考答案:null2.赫尔巴特把教学过程分为了哪四个阶段?参考答案:null3.杜威提出的思维的五个步骤是什么?参考答案:null4.论述物理教学中存在着哪些矛盾?参考答案:null5.物理教学中应该依据哪些教学原则?参考答案:null6.教学原则不包括哪种性质?()参考答案:个体性7.赫尔巴特四段教学第三阶段是?()参考答案:系统阶段8.教学过程的基本特点不包括()参考答案:客观性9.布鲁纳提出什么样的教学原则?参考答案:null10.物理教学原则有哪些?参考答案:null11.不是布鲁纳提出的教学原则是()参考答案:以人为本12.以下不是杜威的教学思想中思维的五个步骤的是()参考答案:利用科学探究的方法解决问题13.下列不是教学过程中的基本矛盾的是()参考答案:学生的能动性和教学不适应的矛盾14.以下不是理论联系实际原则的是()参考答案:联系实际就是多举例子第五章测试1.讲解法的基本要求有哪些?参考答案:null2.学生在教师指导下,为解决某个问题与他人相互研讨、切磋琢磨、相互学习的一种学习方法是()。
1、质点运动学单元练习(一)答案1.B2.D3.D4.B5.3、0m;5、0m(提示:首先分析质点得运动规律,在t <2、0s 时质点沿x 轴正方向运动;在t =2、0s 时质点得速率为零;,在t >2、0s 时质点沿x 轴反方向运动;由位移与路程得定义可以求得答案。
)6.135m(提示:质点作变加速运动,可由加速度对时间t 得两次积分求得质点运动方程。
)7.解:(1))()2(22SI jt i t r)(21m ji r)(242m ji r)(3212m ji r r r)/(32s m ji t r v(2))(22SI j t i dtrd v )(2SI jdt vd a)/(422s m j i v)/(222 s m ja8.解:t A tdt A adt v totosin cos 2t A tdt A A vdt A x totocos sin9.解:(1)设太阳光线对地转动得角速度为ωs rad /1027.73600*62/5s m th dt ds v /1094.1cos 32(2)当旗杆与投影等长时,4/ th s t 0.31008.14410.解: ky yv v t y y v t dv ad d d d d d d -k y v d v / d yC v ky v v y ky 222121,d d 已知y =y o ,v =v o 则20202121ky v C )(2222y y k v v o o2、质点运动学单元练习(二)答案1.D2.A3.B4.C5.14 s m t dt ds v ;24s m dtdva t ;2228 s m t Rv a n ;2284 s m e t e a nt6.s rad o /0.2 ;s rad /0.4 ;2/8.0s rad r a t ;22/20s m r a n7.解:(1)由速度与加速度得定义)(22SI ji t dt rd v ;)(2SI idtv d a(2)由切向加速度与法向加速度得定义)(124422SI t t t dt d a t)(12222SI t a a a t n(3))(122/322SI t a v n8.解:火箭竖直向上得速度为gt v v o y 45sin 火箭达到最高点时垂直方向速度为零,解得s m gtv o /8345sin9.解:s m uv /6.3430tan10.解:l h v u ;u hl v 3、牛顿定律单元练习答案1.C2.C3.A4.kg Mg T5.36721;2/98.02.0s m MT a5.x k v x 22 ;x x xv k dt dxk dt dv v 222 221mk dt dv mf x x 6.解:(1)ma F F N T sin cosmg F F N T cos sinsin cos ;cos sin ma mg F ma mg F N T(2)F N =0时;a =g cot θ7.解:mg R m o 2Rg o8.解:由牛顿运动定律可得dtdv t 1040120 分离变量积分t o vdt t dv 4120.6 )/(6462s m t tvtoxdt t tdx 64620.5 )(562223m t t t x9.解:由牛顿运动定律可得dtdv mmg kv 分离变量积分t o vv o dt m k mg kv kdv ot m kmg kv mg olnmg kv k m mg kv mg k m t o o 1ln ln10.解:设f 沿半径指向外为正,则对小珠可列方程a v m f mg 2cos ,t vm mg d d sin ,以及 ta v d d, d d v a t ,积分并代入初条件得 )cos 1(22 ag v ,)2cos 3(cos 2mg av m mg f .4、动量守恒与能量守恒定律单元练习(一)答案1.A;2.A;3.B;4.C;5.相同6.2111m m t F v;2212m t F v v 7.解:(1)t dt dxv x 10;10 dtdv a x x N ma F 20 ;m x x x 4013J x F W 800(2)s N Fdt I40318.解: 1'v m m mv221221'2121o kx v m m mv''m m k mm vx9.解: 物体m 落下h 后得速度为 gh v 2当绳子完全拉直时,有 '2v M m gh mgh mM m v 2'gh mM mMMv I I T 22'2210.解:设船移动距离x ,人、船系统总动量不变为零0 mv Mu等式乘以d t 后积分,得totomvdt Mudt0)( l x m Mx m mM mlx 47.05、动量守恒与能量守恒定律单元练习(二)答案1.C2.D3.D4.C5.18J;6m/s6.5/37.解:摩擦力mg f由功能原理 2121210)(kx x x f解得 )(22121x x mg kx 、8.解:根据牛顿运动定律 Rv m F mg N 2cos由能量守恒定律mgh mv 221质点脱离球面时 RhR F Ncos ;0 解得:3R h9.解:(1)在碰撞过程中,两球速度相等时两小球间距离最小 v v v )(212211m m m m ①212211m m v m v m v(2) 两球速度相等时两小球间距离最小,形变最大,最大形变势能等于总动能之差22122221)(212121v v v m m m m E p② 联立①、②得 )/()(212122121m m m m E pv v 10.解:(1)由题给条件m 、M 系统水平方向动量守恒,m 、M 、地系统机械能守恒.0)( MV V u m ① mgR MV V u m 2221)(21 ② 解得: )(2m M M gRmV ;MgRm M u )(2(2) 当m 到达B 点时,M 以V 运动,且对地加速度为零,可瞧成惯性系,以M 为参考系 R mu mg N /2M mg m M mg R mu mg N /)(2/2mg MmM M mg m M Mmg N 23)(26、刚体转动单元练习(一)答案1.B2.C3.C4.C5.v = 1、23 m/s;a n = 9、6 m/s 2;α = –0、545 rad/ s 2;N = 9、73转。
大学物理活页作业答案(全套)马文蔚(一)引言概述:本文提供了马文蔚编写的大学物理活页作业答案(一)的全套内容。
这份答案包含了大学物理课程中一系列活动练习的详细解答,旨在帮助学生巩固和加深对物理知识的理解。
下面将从五个大点展开讨论,每个大点下包含了5-9个具体小点的解答。
一、力和运动1. 描述力的性质和单位2. 计算力的合成和分解3. 分析力的平衡和不平衡状态4. 探讨惯性和摩擦力的作用5. 研究稳定和不稳定的力系统二、能量和动能1. 解释和计算势能和动能2. 探讨能量转化和守恒定律3. 分析弹性势能和弹性系数的关系4. 计算动能和功的关系5. 研究动能定理和机械能守恒的应用三、物体的平衡1. 描述物体的平衡状态2. 计算物体受力平衡的条件3. 探讨平衡力和摩擦力的作用4. 研究力矩和转动平衡的关系5. 分析平衡问题的实际应用四、电磁场的基本原理1. 解释电荷和电场的概念2. 探讨电场线和电势的特性3. 分析电场中带电粒子的运动4. 计算电场的强度和电势差5. 研究电势能和电场能的关系五、电磁感应和电磁波1. 描述磁感线和磁场的性质2. 解释法拉第电磁感应定律3. 计算感应电动势和感应磁场的大小4. 探讨电磁波的产生和传播5. 分析电磁波和电磁辐射的应用总结:本文提供了马文蔚编写的大学物理活页作业答案(一)的全套内容。
这份答案涵盖了大学物理课程中涉及的力和运动、能量和动能、物体的平衡、电磁场的基本原理以及电磁感应和电磁波等五个大点的重要知识点。
希望这份答案能够对学生们的学习和理解提供有益的帮助。
天津大学《物理化学》第四版习题及解答目录第一章气体的pVT性质 (2)第二章热力学第一定律 (6)第三章热力学第二定律 (24)第四章多组分系统热力学 (52)第五章化学平衡 (67)第六章相平衡 (78)第七章电化学 (87)第八章量子力学基础 (110)第九章统计热力学初步 (113)第十一章化学动力学 (120)第一章气体的pVT性质1.1 物质的体膨胀系数与等温压缩率的定义如下试推出理想气体的,与压力、温度的关系。
解:根据理想气体方程1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到100 °C,另一个球则维持0 °C,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:因此,1.9 如图所示,一带隔板的容器内,两侧分别有同温同压的氢气与氮气,二者均可视为理想气体。
(1)保持容器内温度恒定时抽去隔板,且隔板本身的体积可忽略不计,试求两种气体混合后的压力。
(2)隔板抽取前后,H2及N2的摩尔体积是否相同?(3)隔板抽取后,混合气体中H2及N2的分压立之比以及它们的分体积各为若干?解:(1)等温混合后即在上述条件下混合,系统的压力认为。
(2)混合气体中某组分的摩尔体积怎样定义?(3)根据分体积的定义对于分压1.11 室温下一高压釜内有常压的空气,为进行实验时确保安全,采用同样温度的纯氮进行置换,步骤如下:向釜内通氮气直到4倍于空气的压力,尔后将釜内混合气体排出直至恢复常压。
重复三次。
求釜内最后排气至恢复常压时其中气体含氧的摩尔分数。
解:分析:每次通氮气后至排气恢复至常压p,混合气体的摩尔分数不变。
设第一次充氮气前,系统中氧的摩尔分数为,充氮气后,系统中氧的摩尔分数为,则,。
重复上面的过程,第n次充氮气后,系统的摩尔分数为,因此。
1.13 今有0 °C,40.530 kPa的N2气体,分别用理想气体状态方程及van der Waals方程计算其摩尔体积。
7-3.在体积为2.0×10-3m 3 的容器中,有内能为 6.75×102J 的刚性双原子分子理想气体。
求:
(1)气体的压强;(2)设分子总数为 5.4×1022 个,则分子的平均平动动能及气体的温度。
[解] (1)理想气体的内能 kT i N E 2
⋅
= (1) 理想气体的压强 kT V
N nkT p == (2) 由(1)、(2)两式可得 532
1035.110
251075.6252⨯=⨯⨯⨯⨯==-V E p Pa (2)由 kT i N E 2
⋅= 则 362104.51038.151075.625222232=⨯⨯⨯⨯⨯⨯==-kN E T K 又 2123105.73621038.12
323--⨯=⨯⨯⨯==kT w J 7-4.容器内储有氧气,其压强为 p = 1.01×10 5 Pa ,温度为 t = 27℃。
试求:
(1)单位体积内的分子数;
(2)分子的平均平动动能。
解:(1)由nkT p = (2)J 1021.63001038.12
3232123--⨯=⨯⨯⨯==kT w 7-5.容器内某理想气体的温度T =273K ,压强p =1.00 ×10-3atm ,密度为31.25g m ρ-=⋅,求:(1)气体的摩尔质量;(2)气体分子运动的方均根速率;(3)气体分子的平均平动动能和转动动能;(4)单位体积内气体分子的总平动动能;(5)0.3mol 该气体的内能。
[解] (1)由 RT pV ν=
所以 4931025.110013.11000.133335
32
=⨯⨯⨯⨯⨯===--ρp m kT v m (2) 气体的摩尔质量
所以该气体是2N 或CO
(3)气体分子的平均平动动能
气体分子的转动动能
(4)单位体积内气体分子的总平动动能
(5)该气体的内能
8-3.一定量的理想气体,其体积和压强依照V
=a 的规律变化,其中a 为已知常数。
试求:
(1)气体从体积V 1膨胀到V 2所作的功;
(2)体积为V 1时的温度T 1与体积为V 2时的温度T 2之比。
解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰21
222112121V V a dv v a pdv A v v v V (2)由状态方程 RT M m PV =
得 8-4. 0.02kg 的氦气(视为理想气体),温度由17℃升为27℃,假设在升温过程中 (1)体积保持不变;(2)压强保持不变;(3)不与外界交换热量。
试分别求出气体内能的改变,吸收的热量,外界对气体所作的功。
解:氦气为单原子分子理想气体,i =3
(1)定容过程,V=常量,A=0
据Q=ΔE+ A 可知 J T T C M
E Q V 623)(m 12m =-==,∆ (2)定压过程,P=常量,
ΔE 与(1)同
外界对气体所做的功为:A '=-A=-417J
(3)Q=0,ΔE 与(1)同
气体对外界做功:623J A E =-∆=-
外界对气体所做的功为:A’=-A=623J.
8-7. 1mol 单原子分子理想气体的循环过程如图8-7的T —V 图所示,其中c 点的温度为T c =600K ,试求:
(1)ab 、bc 、ca 各个过程系统吸收的热量;
(2)经一循环系统所做的净功;(3)循环的效率。
(注:循环效率=A /Q 1,A 为循环过程系统对外作的净功,Q 1为循环过程系统从外界吸收的热量,ln2=0.693)
解:(1)由图可知,ab 过程中V 和T 成正比,因此为等压过程,bc 为等容过程,ca 为等温过程。
根据图所示和理想气体的状态方程,可得各转折点的状态参量(P ,V ,T )分别为:a 点: 2252831600210m 600K 249310Pa 210
.,,.a a a RT V T P V ν--⨯=⨯====⨯⨯, b 点:225110m 300K 249310Pa ,,.a a b a
V T P P -=⨯===⨯ c 点:225c 110m 600K 2498610Pa ,,.a c a V T P P -=⨯===⨯
设在ab 、bc 、ca 三个过程中所吸收的热量分别为123,,Q Q Q
(2)根据热力学第一定律,在整个循环过程中有
(3)次循环的效率为
8-8. 热容比=1.40的理想气体,进行如习题8-8图所示的ABCA 循
环,状态A 的温度为300K 。
试求:
(1)状态B 和C 的温度; (2)各过程中气体吸收的热量、气体所作
的功和气体内能的增量。
解:根据题意和图有,对A 点: 32m 400a T =300A A A V P P K ==,,,因此摩尔数为
4002=032mol 831300
..A A A P V RT ν⨯==⨯ 对B 点:310066m 100a T ===225032083..B B B PV V P P K R ν⨯==⨯,,
对C 点:32m 100a T =T =75C C C C B B V V P P K V ==,,
习题8-8图
(2)AB 过程:2=14.i i
γ+=,可得5i =, ()15=032183175500J 22
..i E R T ν∆∆=⨯⨯⨯-=-,()1400+1004==1000J 2AB A S ⨯=下 BC 过程:
()25=03218311501000J 22
..i E R T ν∆∆=⨯⨯⨯-=-;2-=-1004=-400J BC A S =⨯下; CA 过程:35=03218312251500J 22..i E R T ν∆∆=⨯⨯⨯=;30A =;。