最新重庆大学-数学实验-7拟合
- 格式:doc
- 大小:178.00 KB
- 文档页数:7
数学实验_重庆大学中国大学mooc课后章节答案期末考试题库2023年1.无向图中边的端点地位是平等的、边是无序点对。
而有向图中边的端点的地位不平等,边是有序点对,不可以交换。
参考答案:正确2.人口数量与下列因素都有关,人口基数、出生率、死亡率、年龄结构、性别比例、医疗水平、工农业生产水平、环境、生育政策等等。
参考答案:正确3.一元5次代数方程在复数范围内有多少个根?参考答案:54.任何贪心算法都能求出最优解。
参考答案:错误5.二维插值函数z=interp2(x0,y0,z0,x,y,’method’)中,method的缺省值是()参考答案:linear6.在当前文件夹和搜索路径中都有文件ex1.m,在命令行窗口输入ex1时,则执行的文件是当前文件夹中的ex1.m参考答案:正确7.下列关于Dijkstra算法的哪些说法正确参考答案:Dijkstra算法是求加权图G中从某固定起点到其余各点最短路径的有效算法;_Dijkstra算法的时间复杂度为O(n2),其中n为顶点数;_Dijkstra算法可用于求解无向图、有向图和混合图的最短路径问题;8.如果x=1: 2 : 10,则x(1)和x(5)分别是( )参考答案:1,99.人口是按指数规律无限增长的。
参考答案:错误10.在包汤圆问题的整个建模过程,包括了如下几个步骤(1)找出问题涉及的主要因素(变量),重新梳理问题使之更明确(2)作出简化、合理的假设(3)用数学的语言来描述问题(4)用几何的知识解决问题(5)模型应用参考答案:正确11.下面程序所解的微分方程组,对应的方程和初始条件为:(1)函数M文件weif.m:function xdot=weif(t, x)xdot=[3*x(1)+x(3);2*x(1)+6;-3*x(2)^2+2*x(3)];(2)脚本M文件main.m:x0=[1,2,3] ;[t,x]=ode23(‘weif’,[0,1],x0),plot(t,x’),figure(2),plot3(x( :,1),x( :,2),x( :,3)参考答案:___12.某公司投资2000万元建成一条生产线。
实验报告一·实验指导书解读本次实验是通过两个变量的多组记录数据利用最小二乘法寻求两个变量之间的函数关系!两个变量之间的函数关系要紧有两种:一是线性关系(一次函数);二是非线性关系(非一次的其它一元函数)。
因此本实验做两件事:一是线性拟合(练习1);二是非线性拟合(练习2、3、4)。
练习2是用多项式函数拟合,练习3是用指数函数、对数函数、双曲函数、三角函数、分式有理多项式函数等初等函数拟合,练习4是用分段函数(非初等函数)拟合。
二、实验打算1.用线性函数拟合程序线性拟合曲线ft1可由如下mathematica程序求出:lianxi1biao= { {100,45} , {110,51} , { 120,54} , {130,61} , {140,66} , {150,70} , {160,74} , {170,78} , {180,85} , {190,89} }ft1=Fit[lianxi1biao,{1,x},x]gp = Plot [ ft1 , {x,100,190} , PlotStyle -> { RGBColor[1,0,0]} ]fp = ListPlot [ lianxi1biao,PlotStyle->{PointSize[],RGBColor[0,0,1]} ]Show[fp,gp]a= ;b= ;f[x_]=a*x+b;dareta=Sum[(lianxi1biao[[i,2]]-f[lianxi1biao[[i,1]]])^2,{i,1,10}]修改、补充程序:要说明拟合成效,要紧从形(大多数散点是不是在拟合曲线上或周围)与量(残差是不是小)!计算残差的程序:假设对两个变量的多组记录数据已有程序biao={{x1,y1},{x2,y2},…,{xn,yn}}而且通过Fit取得线性拟合函数y=ax+b咱们能够先概念函数(程序)f[x_]:=a*x+b再给出计算残差的程序dareta=Sum[(biao[[i ,2]]-f[biao[[i ,1]]])^2,{i ,1, n}]程序说明:biao[[i]]是提取表biao的第i行,即{xi,yi}biao[[i ,1]] 是提取表biao的第i行的第一个数, 即xibiao[[i ,2]] 是提取表biao的第i行的第一个数, 即yibiao[[i ,2]]-f[biao[[i ,1]]] 即yi-(a*xi+b)实验思路1、先对练习1的十组数据线性拟合,并从形与量看拟合成效;2、对练习1的十组数据中的九组数据线性拟合,并从形与量看拟合成效;3、对练习1的十组数据中的八组数据线性拟合,并从形与量看拟合成效;4、对练习1的十组数据中的七组数据线性拟合,并从形与量看拟合成效;5、对练习1的十组数据中的六组数据线性拟合,并从形与量看拟合成效。
重庆大学数学实验实验报告. . .. . .资.料重庆大学学生实验报告实验课程名称数学实验开课实验室学院年级专业班学生姓名学号开课时间至学年第学期总成绩教师签名数学与统计学院制开课学院、实验室:数学与统计DS1421 实验时间: 2021 年 3 月23 日课程名称数学实验实验项目名称MATLAB方程求解实验项目类型验证演示综合设计其他指导教师肖剑成绩实验目的[1] 复习求解方程及方程组的基本原理和方法;[2] 掌握迭代算法;[3] 熟悉MATLAB软件编程环境;掌握MATLAB编程语句(特别是循环、条件、控制等语句);[4] 通过范例展现求解实际问题的初步建模过程;通过该实验的学习,复习和归纳方程求解或方程组求解的各种数值解法(简单迭代法、二分法、牛顿法、割线法等),初步了解数学建模过程。
这对于学生深入理解数学概念,掌握数学的思维方法,熟悉处理大量的工程计算问题的方法具有十分重要的意义。
一、实验内容1.方程求解和方程组的各种数值解法练习2.直接使用MATLAB命令对方程和方程组进行求解练习3.针对实际问题,试建立数学模型,并求解。
二、实验过程(一般应包括实验原理或问题分析^p ,算法设计、程序、计算、图表等,实验结果及分析^p )基础实验用图形放大法求解方程 sin = 1.并观察该方程有多少个根。
程序:=-50:0.01:50y=.sin-1plot(,y)line([-50,50],[0,0])结果:有无穷个根图像放大:=-8:0.01:-6y=.sin-1plot(,y)line([-8,-6],[0,0])求得一个解为—6.44分析^p :将方程5 +53- 2 + 1 = 0 改写成各种等价的形式进行迭代,观察迭代是否收敛,并给出解释。
①迭代函数为,算法设计为:1=0;2=(1^5+51^3+1)/2;while abs(1-2)>10^(-5)1=2;2=(1^5+51^3+1)/2;end1输出结果为:1 = Inf因此=j迭代不收敛,则不直接使用j迭代,用加速迭代函数,算法设计为:1=0;2=(-41^5-^3+1)/(-51^4-151^2+2);while abs(1-2)>10^(-5)1=2;2=(-41^5-^3+1)/(-51^4-151^2+2);end1输出结果为:1 = -0.7685②迭代函数为,算法设计为:1=1;2=((21-1^5-1)/5)^(1/3);while abs(1-2)>10^(-5)1=2;2=((21-1^5-1)/5)^(1/3);end1输出结果为:1 = Inf - Infi因此=j迭代不收敛,则不直接使用j迭代,用加速迭代函数,算法设计为:1=0;2=((0.41-0.21^5-0.2)^(1/3)-1/15(0.41-0.21^5-0.2)^(-2/3)(21-51^5))/(1-(1/15(0.41-0.21^5-0.2)^(-2/3)(2-51^4)));while abs(1-2)>10^(-5)1=2;2=((0.41-0.21^5-0.2)^(1/3)-1/15(0.41-0.21^5-0.2)^(-2/3)(21-51^5))/(1-(1/15(0.41-0.21^5-0.2)^(-2/3)(2-51^4)));end1输出结果为:1 = 0.4004 + 0.2860i③迭代函数为,算法设计为:1=0;2=(21-51^3-1)^(1/5);for k=1:1001=2;2=(21-51^3-1)^(1/5);end1输出结果为:1 = 2.0162 - 0.8223i若用加速迭代函数,算法设计为:1=0;2=((21-51^3-1)^(1/5)-1/5(21-51^3-1)^(-4/5)(21-151^3))/(1-1/5(21-51^3-1)^(-4/5)(2-151^2));for k=1:1001=2; 2=((21-51^3-1)^(1/5)-1/5(21-51^3-1)^(-4/5)(21-151^3))/(1-1/5(21-51^3-1)^(-4/5)(2-151^2));end1输出结果为:1 = -0.1483 + 0.7585i④迭代函数为,算法设计为:1=1;2=0.2(2/1-1/1^2-1^3);for k=1:1001=2;2=0.2(2/1-1/1^2-1^3);end1输出结果为1 = NaN因此=j迭代不收敛,则不直接使用j迭代,用加速迭代函数,算法设计为:1=1;2=((2/1-1/1^2-1^3)-(-2/1^2+2/1^3-31^2))/(5-(-2/1^2+2/1^3-31^2)); for k=1:1001=2;2=((2/1-1/1^2-1^3)-(-2/1^2+2/1^3-31^2))/(5-(-2/1^2+2/1^3-31^2)); end1输出结果为:1 = 3.836⑤迭代函数为,算法设计为:1=1;2=2/1^3-5/1-1/1^4;for k=1:1001=2;2=2/1^3-5/1-1/1^4;end1输出结果为:1= 1.8933若用加速迭代函数,算法设计为:1=1;2=((2/1^3-5/1-1/1^4)-(-6/^4+5/^2+4/^5))/(1-(-6/^4+5/^2+4/^5)); for k=1:1001=2;2=((2/1^3-5/1-1/1^4)-(-6/^4+5/^2+4/^5))/(1-(-6/^4+5/^2+4/^5));end1输出结果为:1 = 1.1133.求解下列方程组(1)① 用solve对方程组求解程序:[,y]=solve(#;2-y-ep(-)#;,#;-+2y-ep(-y)#;)结果:=.1036y =.1036② 用fsolve对方程组求解:建立M文件,程序:function f=qhsf(1)=2(1)-(2)-ep(-(1));f(2)=-(1)+2(2)-ep(-(2));输入fsolve(#;qhs#;,[1,1])结果:ans =0.5671 0.5671(2)① 用solve对方程组求解程序:[1,2,3]=solve(#;1^2-52^2+73^2+12#;,#;312+13-111#;,#;223+401#;) double(1)double(3)结果:ans =1.0e+020.0100-0.0031-3.8701 + 0.3270i -3.8701 - 0.3270i ans =5.00001.5492-1.5492 2.9579-0.3123 -50.8065i -0.3123 +50.8065i ans =1.0e+02-0.04000.02130 - 0.0131i0.1194 + 1.5242i0.1194 - 1.5242i② 用fsolve对方程组求解:程序:function f=qhstf(1)=(1)^2-5(2)^2+7(3)^2+12;f(2)=3(1)(2)+(1)(3)-11(1);f(3)=2(2)(3)+40(1);外部调用fsolve(#;qhst#;,[1,1])结果:Optimization terminated: first-order optimality is less than options.TolFun.y =0.0000 1.5492 0.0000直接使用MATLAB命令:solve和fsolve对方程组求解。
《数学实验》第一次上机实验1. 设有分块矩阵⎥⎦⎤⎢⎣⎡=⨯⨯⨯⨯22322333S O R E A ,其中E,R,O,S 分别为单位阵、随机阵、零阵和对角阵,试通过数值计算验证⎥⎦⎤⎢⎣⎡+=22S 0RS R E A 。
程序及结果:E=eye(3); %创建单位矩阵E% R=rand(3,2); %创建随机矩阵R% O=zeros(2,3); %创建0矩阵% S=diag(1:2); %创建对角矩阵% A=[E,R;O,S]; %创建A 矩阵%B=[E,(R+R*S);zeros(2,3),S^2] %计算等号右边的值%A^2 %计算等号左边的值%运行结果:B =1.00 0 0 1.632.74 0 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.00 ans =1.00 0 0 1.632.740 1.00 0 1.81 1.90 0 0 1.00 0.25 0.29 0 0 0 1.00 0 0 0 0 0 4.002.某零售店有9种商品的单件进价(元)、售价(元)及一周的销量如表1.1,问哪种商品的利润最大,哪种商品的利润最小;按收入由小到大,列出所有商品及其收入;求这一周该10种商品的总收入和总利润。
表1.11)程序:a=[7.15 8.25 3.20 10.30 6.68 12.03 16.85 17.51 9.30]; b=[11.10 15.00 6.00 16.25 9.90 18.25 20.80 24.15 15.50]; c=[568 1205 753 580 395 2104 1538 810 694];s=sum((b-a).*c)i=b.*cmax((b-a).*c)min((b-a).*c)[m,n]=sort(b.*c)2)运行结果:s =4.6052e+004i =1.0e+004 *0.6305 1.8075 0.4518 0.9425 0.3911 3.8398 3.1990 1.95621.0757ans =1.3087e+004ans =1.2719e+003m =1.0e+004 *0.3911 0.4518 0.6305 0.9425 1.0757 1.8075 1.9562 3.1990 3.8398n =5 3 1 4 9 2 8 7 63. 近景图将x的取值范围局限于较小的区间内可以画出函数的近景图,用于显示函数的局部特性。
实验数据与曲线拟合1. 曲线拟合1. 曲线拟合的定义2. 简单线性数据拟合的例子2. 最小二乘法曲线拟合1. 最小二乘法原理2. 高斯消元法求解方程组3. 最小二乘法解决速度与加速度实验3. 三次样条曲线拟合1. 插值函数2. 样条函数的定义3. 边界条件4. 推导三次样条函数5. 追赶法求解方程组6. 三次样条曲线拟合算法实现7. 三次样条曲线拟合的效果4. 12.1 曲线拟合5. 12.1.1 曲线拟合的定义6. 曲线拟合(Curve Fitting)的数学定义是指用连续曲线近似地刻画或比拟平面上一组离散点所表示的坐标之间的函数关系,是一种用解析表达式逼近离散数据的方法。
曲线拟合通俗的说法就是“拉曲线”,也就是将现有数据透过数学方法来代入一条数学方程式的表示方法。
科学和工程遇到的很多问题,往往只能通过诸如采样、实验等方法获得若干离散的数据,根据这些数据,如果能够找到一个连续的函数(也就是曲线)或者更加密集的离散方程,使得实验数据与方程的曲线能够在最大程度上近似吻合,就可以根据曲线方程对数据进行数学计算,对实验结果进行理论分析,甚至对某些不具备测量条件的位置的结果进行估算。
7. 12.1.2 简单线性数据拟合的例子8. 回想一下中学物理课的“速度与加速度”实验:假设某物体正在做加速运动,加速度未知,某实验人员从时间t0 = 3秒时刻开始,以1秒时间间隔对这个物体连续进行了12次测速,得到一组速度和时间的离散数据,请根据实验结果推算该物体的加速度。
9. 表 12 – 1 物体速度和时间的测量关系表10. 在选择了合适的坐标刻度之后,我们就可以在坐标纸上画出这些点。
如图12–1所示,排除偏差明显偏大的测量值后,可以看出测量结果呈现典型的线性特征。
沿着该线性特征画一条直线,使尽量多的测量点能够位于直线上,或与直线的偏差尽量小,这条直线就是我们根据测量结果拟合的速度与时间的函数关系。
最后在坐标纸上测量出直线的斜率K,K就是被测物体的加速度,经过测量,我们实验测到的物体加速度值是1.48米/秒2。
实验报告
实验项目名称拟合实验所属课程名称数学建模实验类型综合性实验实验日期
班级
学号
姓名
成绩
【实验目的】
1、直观了解拟合基本内容。
2、掌握用数学软件求解拟合问题。
【实验原理】
1. 曲线拟合问题最常用的解法——线性最小二乘法的基本思路 第一步:先选定一组函数 r 1(x), r 2(x), …,r m (x), m<n, 令
f(x)=a 1r 1(x)+a 2r 2(x)+ …+a m r m (x) (1) 其中 a 1,a 2, …,a m 为待定系数.
第二步: 确定a 1,a 2, …,a m 的准则(最小二乘准则): 使n 个点(x i ,y i ) 与曲线 y=f(x) 的距离
i 的平方和最小 .
22
1211
2
1
1
(,,
)[()][()](2)
n
n
m i i i i i n
m
k k i i i k J a a a f x y a r x y δ======-=-∑∑∑∑
MATLAB 函数: p=polyfit(x,y,n) [p,s]= polyfit(x,y,n)
多项式曲线求值函数:polyval( ) 调用格式: y=polyval(p,x)
p 为幂次从高到低的多项式系数向量p 。
s 用于生成预测值的误差估计。
数据拟合与曲线拟合实验报告【数据拟合与曲线拟合实验报告】1. 实验介绍数据拟合与曲线拟合是数学和统计学中非常重要的概念和方法。
在科学研究、工程技术和数据分析中,我们经常会遇到需要从一组数据中找到代表性曲线或函数的情况,而数据拟合和曲线拟合正是为了解决这一问题而存在的。
2. 数据拟合的基本原理数据拟合的基本思想是利用已知的一组数据点,通过某种数学模型或函数,找到一个能够较好地描述这组数据的曲线或函数。
常见的数据拟合方法包括最小二乘法、最小二乘多项式拟合、指数拟合等。
在进行数据拟合时,我们需要考虑拟合的精度、稳定性、可行性等因素。
3. 曲线拟合的实验步骤为了更好地理解数据拟合与曲线拟合的原理与方法,我们进行了一组曲线拟合的实验。
实验步骤如下:- 收集一组要进行拟合的数据点;- 选择合适的拟合函数或模型;- 利用最小二乘法或其他拟合方法,计算拟合曲线的参数;- 对拟合结果进行评估和分析;- 重复实验,比较不同的拟合方法和模型。
4. 数据拟合与曲线拟合的实验结果通过实验,我们掌握了数据拟合和曲线拟合的基本原理与方法。
在实验中,我们发现最小二乘法是一种简单而有效的数据拟合方法,能够较好地逼近实际数据点。
我们还尝试了多项式拟合、指数拟合等不同的拟合方法,发现不同的拟合方法对数据拟合的效果有着不同的影响。
5. 经验总结与个人观点通过这次实验,我们对数据拟合和曲线拟合有了更深入的理解。
数据拟合是科学研究和实践工作中不可或缺的一部分,它能够帮助我们从一堆杂乱的数据中提炼出有用的信息和规律。
曲线拟合的精度和稳定性对研究和实践的结果都有着重要的影响,因此在选择拟合方法时需要慎重考虑。
6. 总结在数据拟合与曲线拟合的实验中,我们深入探讨了数据拟合和曲线拟合的基本原理与方法,并通过实验实际操作,加深了对这一概念的理解。
数据拟合与曲线拟合的重要性不言而喻,它们在科学研究、工程技术和信息处理中发挥着重要的作用,对我们的日常学习和工作都具有重要的指导意义。
《数学实验》实验指导书龚劬重庆大学数学实验教学示范中心目录预备实验——桥梁分析 (3)实验1 MATLAB软件入门 (8)实验2 方程模型及其求解算法 (25)实验3 收敛与混沌——迭代 (30)实验4 微分方程模型、求解及稳定性分析 (33)实验5 插值方法 (36)实验6 数据拟合及参数辨识方法 (39)实验7 回归分析模型、求解及检验 (42)实验8 连续系统与离散系统的计算机模拟 (45)实验9 线性规划模型、求解及灵敏度分析 (47)实验10 非线性规划与多目标规划模型及其求解 (51)实验11 如何表示二元关系—图的模型及矩阵表示 (54)实验12 改进技术的最佳实施问题——综合实验 (57)实验13 人口增长模型及其数量预测——综合实验 (59)实验14 River-bay系统水污染问题_____综合实验 (61)实验15 炮弹发射角的确定———综合实验 (63)实验16 探究实验 (64)实验17 开采沙子——综合实验 (65)实验18 海水中提取淡水——综合实验 (69)实验19 警惕氯仿污染——综合实验 (73)实验20 机动车尾气排放——综合实验 (83)实验21 计算机断层扫描图像——综合实验 (91)预备实验——桥梁分析教学目的和要求:通过桥梁分析问题,使学生:1.了解线性代数在土木工程中的应用;2.了解如何通过做一些使问题简化的假设,建立实际问题的数学模型;3.体会学好线性代数知识的重要性;4.激发学习线性代数的兴趣。
知识点:线性方程组向量分解必备技能:1. 力的平衡分析;2. 向量分解;3. 求解线性方程组。
主要内容1.应用场景2.问题分析3.建立数学模型4.实验任务1.应用场景解方程组在许多领域都有应用。
下面给出一个在土木工程中的应用例子,虽然加入了一些幽默元素,但类似的情形土木工程师会经常遇到。
图1:一个危险的情况一位货运司机正驾着卡车为一个数学家聚会运送物资,但他的卡车超载了。