基于密度方法的聚类精品PPT课件
- 格式:ppt
- 大小:696.00 KB
- 文档页数:3
聚类分析(五)——基于密度的聚类算法OPTICS 1 什么是OPTICS算法在前⾯介绍的DBSCAN算法中,有两个初始参数E(邻域半径)和minPts(E邻域最⼩点数)需要⽤户⼿动设置输⼊,并且聚类的类簇结果对这两个参数的取值⾮常敏感,不同的取值将产⽣不同的聚类结果,其实这也是⼤多数其他需要初始化参数聚类算法的弊端。
为了克服DBSCAN算法这⼀缺点,提出了OPTICS算法(Ordering Points to identify theclustering structure)。
OPTICS并不显⽰的产⽣结果类簇,⽽是为聚类分析⽣成⼀个增⼴的簇排序(⽐如,以可达距离为纵轴,样本点输出次序为横轴的坐标图),这个排序代表了各样本点基于密度的聚类结构。
它包含的信息等价于从⼀个⼴泛的参数设置所获得的基于密度的聚类,换句话说,从这个排序中可以得到基于任何参数E和minPts的DBSCAN算法的聚类结果。
2 OPTICS两个概念核⼼距离:对象p的核⼼距离是指是p成为核⼼对象的最⼩E’。
如果p不是核⼼对象,那么p的核⼼距离没有任何意义。
可达距离:对象q到对象p的可达距离是指p的核⼼距离和p与q之间欧⼏⾥得距离之间的较⼤值。
如果p不是核⼼对象,p和q之间的可达距离没有意义。
例如:假设邻域半径E=2, minPts=3,存在点A(2,3),B(2,4),C(1,4),D(1,3),E(2,2),F(3,2)点A为核⼼对象,在A的E领域中有点{A,B,C,D,E,F},其中A的核⼼距离为E’=1,因为在点A的E’邻域中有点{A,B,D,E}>3;点F到核⼼对象点A的可达距离为,因为A到F的欧⼏⾥得距离,⼤于点A的核⼼距离1.3 算法描述OPTICS算法额外存储了每个对象的核⼼距离和可达距离。
基于OPTICS产⽣的排序信息来提取类簇。
算法描述如下:算法:OPTICS输⼊:样本集D, 邻域半径E, 给定点在E领域内成为核⼼对象的最⼩领域点数MinPts输出:具有可达距离信息的样本点输出排序⽅法:1 创建两个队列,有序队列和结果队列。
常⽤聚类算法(基于密度的聚类算法前⾔:基于密度聚类的经典算法 DBSCAN(Density-Based Spatial Clustering of Application with Noise,具有噪声的基于密度的空间聚类应⽤)是⼀种基于⾼密度连接区域的密度聚类算法。
DBSCAN的基本算法流程如下:从任意对象P 开始根据阈值和参数通过⼴度优先搜索提取从P 密度可达的所有对象,得到⼀个聚类。
若P 是核⼼对象,则可以⼀次标记相应对象为当前类并以此为基础进⾏扩展。
得到⼀个完整的聚类后,再选择⼀个新的对象重复上述过程。
若P是边界对象,则将其标记为噪声并舍弃缺陷:如聚类的结果与参数关系较⼤,导致阈值过⼤容易将同⼀聚类分割,或阈值过⼩容易将不同聚类合并固定的阈值参数对于稀疏程度不同的数据不具适应性,导致密度⼩的区域同⼀聚类易被分割,或密度⼤的区域不同聚类易被合并DBSCAN(Density-Based Spatial Clustering of Applications with Noise)⼀个⽐较有代表性的基于密度的聚类算法。
与层次聚类⽅法不同,它将簇定义为密度相连的点的最⼤集合,能够把具有⾜够⾼密度的区域划分为簇,并可在有“噪声”的空间数据库中发现任意形状的聚类。
基于密度的聚类⽅法是以数据集在空间分布上的稠密度为依据进⾏聚类,⽆需预先设定簇的数量,因此特别适合对于未知内容的数据集进⾏聚类。
⽽代表性算法有:DBSCAN,OPTICS。
以DBSCAN算法举例,DBSCAN⽬的是找到密度相连对象的最⼤集合。
1.DBSCAN算法⾸先名词解释:ε(Eps)邻域:以给定对象为圆⼼,半径为ε的邻域为该对象的ε邻域核⼼对象:若ε邻域⾄少包含MinPts个对象,则称该对象为核⼼对象直接密度可达:如果p在q的ε邻域内,⽽q是⼀个核⼼对象,则说对象p从对象q出发是直接密度可达的密度可达:如果存在⼀个对象链p1 , p2 , … , pn , p1=q, pn=p, 对于pi ∈D(1<= i <=n), pi+1 是从 pi 关于ε和MinPts直接密度可达的,则对象p 是从对象q关于ε和MinPts密度可达的密度相连:对象p和q都是从o关于ε和MinPts密度可达的,那么对象p和q是关于ε和MinPts密度相连的噪声: ⼀个基于密度的簇是基于密度可达性的最⼤的密度相连对象的集合。