数字图像处理 0
- 格式:ppt
- 大小:3.48 MB
- 文档页数:39
数字图像处理技术中的模式识别原理一、引言数字图像处理是指通过计算机对数字图像进行各种操作的技术。
数字图像处理已经广泛应用在医学、物理、工程、计算机视觉等领域。
模式识别是数字图像处理中的一个重要技术,用于在图像中寻找和识别特定的模式或对象。
二、模式识别原理模式识别是指通过分析输入数据的特征来识别数据所属的类别。
在数字图像处理中,模式识别的目标是寻找和识别图像中的特定模式或对象。
模式识别可以分为监督学习和非监督学习两种。
监督学习的原理是根据已知类别的训练样本来创建模型,并将模型用于分类新的数据。
监督学习通常需要大量的标注数据和耗时的训练过程。
非监督学习则是通过分析数据的分布和结构来自动发现其中的模式,不需要事先标注数据。
常见的模式识别算法有$k$-均值聚类、支持向量机(SVM)、决策树、定义离散随机变量的概率分布来描述数据的贝叶斯分类等。
三、数字图像处理中的模式识别应用数字图像处理中的模式识别应用广泛,以下举几个例子。
1. 人脸识别人脸识别是模式识别的一个重要应用,其主要思想是将特定的人脸与未知人脸进行比较,判断它们是否属于同一人。
该技术在安全、身份验证和人脸检索等领域有广泛的应用。
2. 医学影像分析医学影像分析是数字图像处理和模式识别的应用之一,其主要应用于在医学影像中自动识别和定位病变。
例如,在CT扫描中自动检测肿瘤或在MRI扫描中检测脑出血等。
3. 目标跟踪目标跟踪是数字图像处理和模式识别的应用之一,其主要用于在视频中跟踪特定的目标。
例如,在安防监控中跟踪犯罪嫌疑人或在自动驾驶中跟踪其他车辆等。
四、总结数字图像处理中的模式识别是一项非常重要的技术。
它广泛应用于医学、物理、工程、计算机视觉等领域,与人工智能和机器学习等领域相互关联。
未来数字图像处理与模式识别将继续在各个领域得到更广泛的应用。
•名词解释(每小题5分,本题共20分)数字图像数字图像是指由被称作像素的小块区域组成的二维矩阵。
将物理图像行列划分后,每个小块区域称为像素(PiXeI)O 数字图像处理指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术.8-连通的定义-对于具有值V的像素P和q ,如果q在集合N&p)中,则称这两个像素是8-连通的。
灰度直方图是指反映•幅图像各灰度级像元出现的频率。
灰度自方图是灰度级的函数,描述的是图像中该灰度级的像素个数。
即:横坐标农示灰度级,纵坐标衣示图像中该灰度级出现的个数。
性质:直方图是•幅图像中各像素灰度值出现次数(或频数)的统计结果,它只反映该图像中不同灰度值出现的次数(或频数),而未反映某•灰度值像素所在位置。
也就是说,它只包含了该图像中某•灰度值的像素出现的概率,而丢失了其所在位置的信息。
用途:用于判断图像量化是否恰当直方图给出了•个简单可见的指示,用来判断•幅图象是否合理的利用了全部被允许的灰度级范圉。
•般•幅图应该利用全部或几乎全部可能的灰度级,否则等于增加了量化间隔。
丢失的信息将不能恢复。
数字图像通常有两种表示形式:位图,矢量图位图和矢量图的比较:1、点位图由像素构成,矢量图由对象构成点位图的基本构图单位是像素,像素包含了色彩信息。
包含不同色彩信息的像素的矩阵组合构成了千变万化的图像。
矢量图形指由代数方程定义的线条或曲线构成的图形。
如:农示-个圆形,矢量图像保存了• 个画圆的命令、圆心的坐标、半径的长度等等。
欲显示该圆,矢量绘图软件则根据圆的坐标、半径等信息,经过方程式计算,将圆“画”在屏幕上。
矢量图像由许多矢量图形元素构成, 这些图形元素称为“对象”。
2、点位图面向像素绘画,矢量图面向对象“构画”两种图像的构成方式不同,其绘画力式也存在差别。
点位图是通过改变像素的色彩实现绘画和画面的修改。
点位图软件捉供了模拟手绘习惯的工具实现绘画。
数字图像处理_图像基本运算图像基本运算1点运算线性点运算是指输⼊图像的灰度级与输出图像呈线性关系。
s=ar+b(r为输⼊灰度值,s为相应点的输出灰度值)。
当a=1,b=0时,新图像与原图像相同;当a=1,b≠0时,新图像是原图像所有像素的灰度值上移或下移,是整个图像在显⽰时更亮或更暗;当a>1时,新图像对⽐度增加;当a<1时,新图像对⽐度降低;当a<0时,暗区域将变亮,亮区域将变暗,点运算完成了图像求补; ⾮线性点运算是指输⼊与输出为⾮线性关系,常见的⾮线性灰度变换为对数变换和幂次变换,对数变换⼀般形式为:s=clog(1+r)其中c为⼀常数,并假设r≥0.此变换使窄带低灰度输⼊图像映射为宽带输出值,相对的是输出灰度的⾼调整。
1 x=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1)3 imshow(x);4 title('原图');5 J=0.3*x+50/255;6 subplot(2,2,2);7 imshow(J);8 title('线性点变换');9 subplot(2,2,3);10 x1=im2double(x);11 H=2*log(1+x1);12 imshow(H)13 title('⾮线性点运算');%对数运算幂次变换⼀般形式:s=cr^γ幂级数γ部分值把窄带暗值映射到宽带输出值下⾯是⾮线性点运算的幂运算1 I=imread('D:/picture/DiaoChan.jpg');2 subplot(2,2,1);3 imshow(I);title('原始图像','fontsize',9);4 subplot(2,2,2);5 imshow(imadjust(I,[],[],0.5));title('Gamma=0.5');7 imshow(imadjust(I,[],[],1));title('Gamma=1');8 subplot(2,2,4);9 imshow(imadjust(I,[],[],1.5));title('Gamma=1.5');2代数运算和逻辑运算加法运算去噪处理1 clear all2 i=imread('lenagray.jpg');3 imshow(i)4 j=imnoise(i,'gaussian',0,0.05);5 [m,n]=size(i);6 k=zeros(m,n);7for l=1:1008 j=imnoise(i,'gaussian',0,0.05);9 j1=im2double(j);10 k=k+j1;11 End12 k=k/100;13 subplot(1,3,1),imshow(i),title('原始图像')14 subplot(1,3,2),imshow(j),title('加噪图像')15 subplot(1,3,3),imshow(k),title(‘求平均后的减法运算提取噪声1 I=imread(‘lena.jpg’);2 J=imnoise (I,‘lena.jpg’,0,0.02);3 K=imsubtract(J,I);4 K1=255-K;5 figure;imshow(I);7 figure;imshow(K1);乘法运算改变图像灰度级1 I=imread('D:/picture/SunShangXiang.jpg')2 I=im2double(I);3 J=immultiply(I,1.2);4 K=immultiply(I,2);5 subplot(1,3,1),imshow(I);subplot(1,3,2),imshow(J);6 subplot(1,3,3);imshow(K);逻辑运算1 A=zeros(128);2 A(40:67,60:100)=1;3 figure(1)4 imshow(A);5 B=zeros(128);6 B(50:80,40:70)=1;7 figure(2)8 imshow(2);9 C=and(A,B);%与10 figure(3);11 imshow(3);12 D=or(A,B);%或13 figure(4);14 imshow(4);15 E=not(A);%⾮16 figure(5);17 imshow(E);3⼏何运算平移运算实现图像的平移1 I=imread('lenagray.jpg');2 subplot(1,2,1);3 imshow(I);4 [M,N]=size(I);g=zeros(M,N);5 a=20;b=20;6for i=1:M7for j=1:N8if((i-a>0)&(i-a<M)&(j-b>0)&(j-b<N)) 9 g(i,j)=I(i-a,j-b);10else11 g(i,j)=0;12 end13 end14 end15 subplot(1,2,2);imshow(uint8(g));⽔平镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(i,N-j+1);7 end8 end9 subplot(122);imshow(uint8(g));垂直镜像变换1 I=imread('lena.jpg');2 subplot(121);imshow(I);3 [M,N]=size(I);g=zeros(M,N);4for i=1:M5for j=1:N6 g(i,j)=I(M-i+1,j);7 end8 end9 subplot(122);imshow(uint8(g));图像的旋转1 x=imread('D:/picture/DiaoChan.jpg');2 imshow(x);3 j=imrotate(x,45,'bilinear');4 k=imrotate(x,45,'bilinear','crop');5 subplot(1,3,1),imshow(x);6 title(‘原图')7 subplot(1,3,2),imshow(j);8 title(‘旋转图(显⽰全部)')9 subplot(1,3,3),imshow(k);10 title(‘旋转图(截取局部)')⼏种插值法⽐较1 i=imread('lena.jpg');2 j1=imresize(i,10,'nearest');3 j2=imresize(i,10,'bilinear');4 j3=imresize(i,10,'bicubic');5 subplot(1,4,1),imshow(i);title(‘原始图像')6 subplot(1,4,2),imshow(j1);title(‘最近邻法')7 subplot(1,4,3),imshow(j2);title(‘双线性插值法')8 subplot(1,4,4),imshow(j3);title(‘三次内插法')放缩变换1 x=imread('D:/picture/ZiXia.jpg')2 subplot(2,3,1)3 imshow(x);4 title('原图');5 Large=imresize(x,1.5);6 subplot(2,3,2)7 imshow(Large);8 title('扩⼤为1.5');9 Small=imresize(x,0.1);10 subplot(2,3,3)11 imshow(Small);12 title('缩⼩为0.3');13 subplot(2,3,4)14 df=imresize(x,[600700],'nearest');15 imshow(df)16 title('600*700');17 df1=imresize(x,[300400],'nearest');18 subplot(2,3,5)19 imshow(df1)20 title('300*400');后记:(1)MATLAB基础知识回顾1:crtl+R是对选中的区域注释,ctrl+T是取消注释2:有的代码中点运算如O=a.*I+b/255 ,其中b除以255原因是:灰度数据有两种表式⽅法:⼀种是⽤unit8类型,取值0~255;另⼀种是double类型,取值0~1。
二、数字图像处理的概念 1. 什么是图像“图”是物体投射或反射光的分布,“像” 是人的视觉系统对图的接受在大脑中形成的印象或反映。
是客观和主观的结合。
2数字图像是指由被称作象素的小块区域组成的二维矩阵。
将 物理图象行列划分后,每个小块区域称为像素(pixel )。
–每个像素包括两个属性:位置和灰度。
对于单色即灰度图像而言,每个象素的亮度用一个数值来表示,通常数值范围在0到255之间,即可用一个字节来表示,0表示黑、255表示白,而其它表示灰度级别。
物理图象及对应 的数字图象3彩色图象可以用红、绿、蓝三元组的二维矩阵来表示。
–通常,三元组的每个数值也是在0到255之间,0表示相应的基色在该象素中没有,而255则代表相应的基色在该象素中取得最大值,这种情况下每个象素可用三个字节来表示。
4什么是数字图像处理数字图像处理就是利用计算机系统对数字图像进行各种目的的处理 5对连续图像f (x ,y )进行数字化:空间上,图像抽样;幅度上,灰度级量化 x 方向,抽样M 行 y 方向,每行抽样N 点整个图像共抽样M ×N 个像素点一般取M=N=2n=64,128,256,512,1024,2048 6数字图像常用矩阵来表示:f(i,j)=0~255,灰度级为256,设灰度量化为8bitNN N N f N f N f N f f f N f f f y x f ⨯⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡------=)1,1( )1,1( )0,1( )1,1( )1,1( )0,1( )1,0( )1,0( )0,0( ),(7 数字图像处理的三个层次8 图像处理:9建立对图像的描述;以观察者为中心研究客观世界;图像分析是一个从图像到数据的过程。
10图像理解:研究图像中各目标的性质和它们之间的相互联系;得出对图像内容含义的理解及原来客观场景的解释;以客观世界为中心,借助知识、经验来推理、认识客观世界,属于高层操作(符号运算)11图像处理是比较低层的操作,处理的数据量非常大。
数字图像处理知识点总结第一章导论1.图像:对客观对象的一种相似性的生动性的描述或写真.2.图像分类:按可见性(可见图像、不可见图像),按波段数(单波段、多波段、超波段),按空间坐标和亮度的连续性(模拟和数字)。
3.图像处理:对图像进行一系列操作,以到达预期目的的技术。
4.图像处理三个层次:狭义图像处理、图像分析和图像理解。
5.图像处理五个模块:采集、显示、存储、通信、处理和分析。
第二章数字图像处理的基本概念6.模拟图像的表示:f(x,y)=i(x,y)×r(x,y),照度分量0< i(x,y)< ∞ ,反射分量0 <r(x,y)〈1.7.图像数字化:将一幅画面转化成计算机能处理的形式——数字图像的过程。
它包括采样和量化两个过程。
像素的位置和灰度就是像素的属性。
8.将空间上连续的图像变换成离散点的操作称为采样。
采样间隔和采样孔径的大小是两个很重要的参数。
采样方式:有缝、无缝和重叠。
9.将像素灰度转换成离散的整数值的过程叫量化。
10.表示像素明暗程度的整数称为像素的灰度级(或灰度值或灰度)。
11.数字图像根据灰度级数的差异可分为:黑白图像、灰度图像和彩色图像。
12.采样间隔对图像质量的影响:一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现像素呈块状的国际棋盘效应;采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大。
13.量化等级对图像质量的影响:量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大;量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小.但在极少数情况下对固定图像大小时,减少灰度级能改善质量,产生这种情况的最可能原因是减少灰度级一般会增加图像的对比度。
例如对细节比较丰富的图像数字化.14.数字化器组成:1)采样孔:保证单独观测特定的像素而不受其它部分的影响。
2)图像扫描机构:使采样孔按预先确定的方式在图像上移动。
《数字图像处理》课程教学大纲Digital Image Processing一、课程说明课程编码:045236001 课程总学时(理论总学时/实践总学时):51(42/9),周学时:3,学分:3,开课学期:第6学期。
1.课程性质:专业选修课2.适用专业:电子信息与技术专业3.课程教学目的和要求《数字图像处理》是信号处理类的一门重要的专业选修课,通过本课程的学习,应在理论知识方面了解和掌握数字图像的概念、类型,掌握数字图像处理的基本原理和基本方法:图像变换、图像增强、图像编码、图像的复原和重建。
并通过实验加深理解数字图像处理的基本原理。
4.本门课程与其他课程关系本课程的先修课程为:数字信号处理和应用5.推荐教材及参考书推荐教材:阮秋琦,《数字图像处理学》(第二版),电子工业出版社,2007年参考书(1)姚敏等,《数字图像处理》,机械工业出版社,2006年(2)何东健,《数字图像处理》(第二版),西安电子工业出版社,2008年(3)阮秋琦,《数字图像处理基础》,清华大学出版社,2009年(4) (美)Rafael C. Gonzalez著,阮秋琦译,《数字图像处理》(第二版),电子工业出版社,2007年6.课程教学方法与手段主要采用课堂教学的方式,通过多媒体课件进行讲解,课外作业,答疑辅导。
并辅以适当的实验加深对数字图像处理的理解。
7.课程考核方法与要求本课程为考查课课程的实验成绩占学期总成绩的50%,期末理论考查占50%;考查方式为笔试。
8.实践教学内容安排实验一:图像处理中的正交变换实验二:图像增强实验三:图像复原详见实验大纲。
二、教学内容纲要与学时分配(一)数字图像处理基础(3课时)1.主要内容:图像处理技术的分类,数字图像处理的特点,数字图像处理的主要方法及主要内容,数字图像处理的硬件设备,数字图像处理的应用,数字图像处理领域的发展动向2.基本要求:了解图像处理技术的分类和特点,数字图像处理的主要方法及主要内容,熟悉数字图像处理的硬件设备。
数字图像处理基本知识数字图像处理基木知识图像处理最早出现于20世纪50年代,当时的电子计算机己经发展到一定水平,人们开始利用计算机来处理图形和图像信息。
数字图像处理作为一门学科大约形成于20世纪60年代初期。
早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。
图像处理中,输入的是质量低的图像,输出的是改善质量后的图像,常用的图像处理方法有图像增强、复原、编码、压缩等。
数字图像处理常用方法:1)图像变换:由于图像阵列很大,直接在空间域中进行处理,涉及计算量很大。
因此,往往采用各种图像变换的方法,如傅立叶变换、沃尔什变换、离散余弦变换等间接处理技术,将空间域的处理转换为变换域处理,不仅可减少计算量,而且可获得更有效的处理(如傅立叶变换可在频域中进行数字滤波处理)。
目前新兴研究的小波变换在时域和频域中都具有良好的局部化特性,它在图像处理中也有着广泛而有效的应用。
2)图像编码压缩:图像编码压缩技术可减少描述图像的数据量(即比特数),以便节省图像传输、处理时间和减少所占用的存储器容量。
压缩可以在不失真的前提下获得,也可以在允许的失真条件下进行。
编码是压缩技术中最重要的方法,它在图像处理技术中是发展最早且比较成熟的技术。
3)图像增强和复原:图像增强和复原的目的是为了提高图像的质量,如去除噪声,提高图像的清晰度等。
图像增强不考虑图像降质的原因,突出图像中所感兴趣的部分。
如强化图像高频分量,可使图像中物体轮廓清晰,细节明显;如强化低频分量可减少图像中噪声影响。
图像复原要求对图像降质的原因有一定的了解,一般讲应根据降质过程建立“降质模型”,再采用某种滤波方法,恢复或重建原来的图像。
4)图像分割:图像分割是数字图像处理中的关键技术之一。
图像分割是将图像中有意义的特征部分提取出来,其有意义的特征有图像中的边缘、区域等,这是进一步进行图像识别、分析和理解的基础。
虽然目前己研究出不少边缘提取、区域分割的方法,但还没有一种普遍适用于各种图像的有效方法。
数字图像处理知识点总结第二章:数字图像处理的基本概念2.3 图像数字化数字化是将一幅画面转化成计算机能处理的数字图像的过程。
包括:采样和量化。
2.3.1、2.3.2采样与量化1.采样:将空间上连续的图像变换成离散点。
(采样间隔、采样孔径)2.量化:采样后的图像被分割成空间上离散的像素,但是灰度是连续的,量化就是将像素灰度转换成离散的整数值。
一幅数字图像中不同灰度值的个数称为灰度级。
二值图像是灰度级只有两级的。
(通常是0和1)存储一幅大小为M×N、灰度级数为G的图像所需的存储空间:(bit)2.3.3像素数、量化参数与数字化所得到的数字图像间的关系1.一般来说,采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时会出现国际棋盘效应。
采样间隔越小,所的图像像素数越多,空间分辨率高,图像质量好,但是数据量大。
2.量化等级越多,图像层次越丰富,灰度分辨率高,图像质量好,但数据量大。
量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓,质量变差,但数据量小。
2.4 图像灰度直方图2.4.1定义灰度直方图是反映一幅图像中各灰度级像素出现的频率,反映灰度分布情况。
2.4.2性质(1)只能反映灰度分布,丢失像素位置信息(2)一幅图像对应唯一灰度直方图,反之不一定。
(3)一幅图像分成多个区域,多个区域的直方图之和是原图像的直方图。
2.4.3应用(1)判断图像量化是否恰当(2)确定图像二值化的阈值(3)物体部分灰度值比其他部分灰度值大的时候可以统计图像中物体面积。
(4)计算图像信息量(熵)2.5图像处理算法的形式2.5.1基本功能形式(1)单幅->单幅(2)多幅->单幅(3)多幅/单幅->数字或符号2.5.2图像处理的几种具体算法形式(1)局部处理(邻域,如4-邻域,8-邻域)(移动平均平滑法、空间域锐化等)(2)迭代处理反复对图像进行某种运算直到满足给定条件。
(3)跟踪处理选择满足适当条件的像素作为起始像素,检查输入图像和已得到的输出结果,求出下一步应该处理的像素。
(完整版)数字图像处理课后题答案1. 图像处理的主要⽅法分⼏⼤类?答:图字图像处理⽅法分为⼤两类:空间域处理(空域法)和变换域处理(频域法)。
空域法:直接对获取的数字图像进⾏处理。
频域法:对先对获取的数字图像进⾏正交变换,得到变换系数阵列,然后再进⾏处理,最后再逆变换到空间域,得到图像的处理结果2. 图像处理的主要内容是什么?答:图形数字化(图像获取):把连续图像⽤⼀组数字表⽰,便于⽤计算机分析处理。
图像变换:对图像进⾏正交变换,以便进⾏处理。
图像增强:对图像的某些特征进⾏强调或锐化⽽不增加图像的相关数据。
图像复原:去除图像中的噪声⼲扰和模糊,恢复图像的客观⾯⽬。
图像编码:在满⾜⼀定的图形质量要求下对图像进⾏编码,可以压缩表⽰图像的数据。
图像分析:对图像中感兴趣的⽬标进⾏检测和测量,从⽽获得所需的客观信息。
图像识别:找到图像的特征,以便进⼀步处理。
图像理解:在图像分析的基础上得出对图像内容含义的理解及解释,从⽽指导和规划⾏为。
3. 名词解释:灰度、像素、图像分辨率、图像深度、图像数据量。
答:像素:在卫星图像上,由卫星传感器记录下的最⼩的分⽴要素(有空间分量和谱分量两种)。
通常,表⽰图像的⼆维数组是连续的,将连续参数 x,y ,和 f 取离散值后,图像被分割成很多⼩的⽹格,每个⽹格即为像素图像分辨率:指对原始图像的采样分辨率,即图像⽔平或垂直⽅向单位长度上所包含的采样点数。
单位是“像素点/单位长度”图像深度是指存储每个像素所⽤的位数,也⽤于量度图像的⾊彩分辨率.图像深度确定彩⾊图像的每个像素可能有的颜⾊数,或者确定灰度图像的每个像素可能有的灰度级数.它决定了彩⾊图像中可出现的最多颜⾊数,或灰度图像中的最⼤灰度等级(图像深度:位图图像中,各像素点的亮度或⾊彩信息⽤⼆进制数位来表⽰,这⼀数据位的位数即为像素深度,也叫图像深度。
图像深度越深,能够表现的颜⾊数量越多,图像的⾊彩也越丰富。
)图像数据量:图像数据量是⼀幅图像的总像素点数⽬与每个像素点所需字节数的乘积。
数字图像处理名词解释数字图像是由像素组成的二维矩阵,每个小块区域称为像素(pixel)。
数字图像处理是指利用数字计算机及其它数字技术,对图像进行某种运算和处理,从而达到某种预期目的的技术。
8-连通是指对于具有值V的像素p和q,如果q在集合N8(p)中,则称这两个像素是8-连通的。
灰度直方图反映了一幅图像中各灰度级像元出现的频率,是灰度级的函数,描述的是图像中该灰度级的像素个数。
直方图只反映该图像中不同灰度值出现的次数,而未反映某一灰度值像素所在位置。
直方图可用于判断图像量化是否恰当,给出了一个简单可见的指示,用来判断一幅图象是否合理的利用了全部被允许的灰度级范围。
数字图像通常有两种表示形式:位图和矢量图。
点位图由像素构成,包含不同色彩信息的像素的矩阵组合构成了千变万化的图像。
矢量图形指由代数方程定义的线条或曲线构成的图形,由许多矢量图形元素构成,这些图形元素称为“对象”。
两种图像的构成方式不同,其绘画方式也存在差别。
点位图是通过改变像素的色彩实现绘画和画面的修改,而矢量图操纵的是基本的图形(对象)。
在矢量图中,以Corel Draw为例,选择贝赛尔曲线工具,用鼠标在页面上定出一些节点,节点之间有线段,构成一个封闭图形。
用修改工具把这个图形调整圆滑。
傅里叶变换是一种将空间域中复杂的卷积运算转化为频率域中简单的乘积运算的方法,其应用主要有以下三方面:简化计算、处理空间域中难以处理或处理起来比较复杂的问题、以及实现特殊目的的应用需求。
通过傅里叶变换,可以将图像从空间域变换到频率域,利用频率域滤波或频域分析方法对其进行处理和分析,然后再将处理后的图像变换回空间域,从而实现图像的增强、特征提取、数据压缩、纹理分析、水印嵌入等效果。
对于M*N的图像f(x,y),其基矩阵的大小为M*N,也即及图像由M*N块组成。
当(x,y)取遍所有可能的值(x=0,1,2….m-1;y=0,1…n-1)时,就可得到由(M*N)*(M*N)块组成的基图像,所以其基图像大小为M平方*N平方。
数字图像处理实验报告目录1.数字图像处理简介2.实验目的3.实验内容4.实验结果及代码展示5.算法综述6.M atlab优势7.总结8.存在问题一、数字图像处理简介图像处理,是对图像进行分析、加工、和处理,使其满足视觉、心理以及其他要求的技术。
图像处理是信号处理在图像域上的一个应用。
目前大多数的图像是以数字形式存储,因而图像处理很多情况下指数字图像处理。
此外,基于光学理论的处理方法依然占有重要的地位。
图像处理是信号处理的子类,另外与计算机科学、人工智能等领域也有密切的关系。
传统的一维信号处理的方法和概念很多仍然可以直接应用在图像处理上,比如降噪、量化等。
然而,图像属于二维信号,和一维信号相比,它有自己特殊的一面,处理的方式和角度也有所不同。
二、实验目的巩固所学知识,提高所学能力三、实验内容利用matlab的GUI程序设计一个简单的图像处理程序,并含有如下基本功能:1. 读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题2. 对给定图像进行旋转3.对给定的图像添加噪声(椒盐噪声、高斯噪声)四、实验结果及代码展示1.软件设计界面2.各模块功能展示以及程序代码(1)读入一幅RGB图像,变换为灰度图像和二值图像,并在同一个窗口内分成三个子窗口来分别显示RGB图像和灰度图像,注上文字标题效果展示:代码:a = imread('C:\Documents and Settings\Administrator\桌面\数字图像\舞美.JPG');i = rgb2gray(a);I = im2bw(a,0.5);subplot(3,1,1);imshow(a);title('源图像')subplot(3,1,2);imshow(i);title('灰度图像')subplot(3,1,3);imshow(I);title('二值图像')(2)图像旋转原图效果展示:代码:clc;clear all;close all;Img=imread('D:\My Documents\My Pictures\5.JPG'); Img=double(Img);[h w]=size(Img);alpha=pi/4;wnew=w*cos(alpha)+h*sin(alpha);hnew=w*sin(alpha)+h*cos(alpha);wnew=ceil(wnew);hnew=ceil(hnew); u0=w*sin(alpha);T=[cos(alpha),sin(alpha);-sin(alpha),cos(alpha)]; Imgnew2=zeros(hnew,wnew);Imgnew1=zeros(hnew,wnew); for u=1:hnewfor v=1:wnewtem=T*([u;v]-[u0;0]);x=tem(1);y=tem(2);if x>=1&&x<=h&&y>=1&&y<=wx_low=floor(x);x_up=ceil(x);y_low=floor(y);y_up=ceil(y);if (x-x_low)<=(x_up-x)x=x_low;elsex=x_up;endif (y-y_low)<=(y_up-y)y=y_low;elsey=y_up;endp1=Img(x_low,y_low);p2=Img(x_up,y_low);p3=Img(x_low,y_low);p4=Img(x_up,y_up);s=x-x_low;t=y-y_low;Imgnew1(u,v)=Img(x,y);Imgnew2(u,v)=(1-s)*(1-t)*p1+(1-s)*t*p3+(1-t)*s*p2+s*t*p4;endendendfigure;imshow(Imgnew2,[]);B=imrotate(Img,alpha/pi*180);figure;imshow(B,[]);(3)对给定的图像添加噪声(斑点噪声、高斯噪声)效果展示:代码:I= imread('D:\My Documents\My Pictures\5.JPG');figure,subplot(211);imshow(I);title('原图');J1=imnoise(I,'gaussian',0,0.02);subplot(223);imshow(J);title('添加高斯噪声');J=imnoise(I,'speckle',0.04);subplot(224);imshow(J);title('添加斑点噪声');五、算法综述灰度图像:一幅完整的图像,是由红色、绿色、蓝色三个通道组成的。
数字图像处理概述归纳总结数字图像处理是指将图像的像素信息进行数字化并对其进行处理的一门技术。
它广泛应用于计算机视觉、医学图像处理、工业检测等领域。
本文将对数字图像处理的基本概念、常见算法以及未来发展趋势进行归纳总结。
一、数字图像处理的基本概念数字图像由像素阵列组成,每个像素存储着图像的亮度信息。
在数字图像处理中,常用的表示方法是灰度图像和彩色图像。
灰度图像是指每个像素只包含一个亮度值,通常以8位表示,取值范围为0~255。
而彩色图像则包含了红、绿、蓝三个通道的亮度值,通常以24位表示,每个通道的取值范围也为0~255。
数字图像处理的主要任务包括图像增强、图像恢复、图像分割、图像压缩等。
二、数字图像处理的常见算法1. 图像增强算法图像增强旨在改善图像的视觉品质,常用的算法包括直方图均衡化、灰度拉伸、滤波等。
直方图均衡化可以通过调整图像的亮度分布来增强图像的对比度,从而使图像细节更加清晰可见。
2. 图像恢复算法图像恢复用于去除图像中的噪声,常见的算法有均值滤波、中值滤波、小波去噪等。
其中,中值滤波可以有效地去除椒盐噪声,而小波去噪能够在保持图像细节的同时消除高频噪声。
3. 图像分割算法图像分割旨在将图像划分为不同的区域,常用的算法有阈值分割、边缘检测、区域生长等。
阈值分割根据像素灰度值与设定阈值的大小关系将图像分为前景和背景,而边缘检测则可用于检测图像中的边界。
4. 图像压缩算法图像压缩是指通过减少图像的存储空间来实现数据压缩,常见的算法有无损压缩和有损压缩。
其中,无损压缩保证了图像的质量不受损失,而有损压缩通过舍弃图像中的冗余信息来实现更高的压缩比率。
三、数字图像处理的未来发展趋势1. 深度学习在图像处理中的应用随着深度学习的发展,其在数字图像处理中的应用越来越广泛。
通过深度学习算法,可以实现更精确的图像分类、目标检测等任务,从而提升图像处理的效果和准确性。
2. 多模态图像处理多模态图像处理是指处理多个不同模态的图像,比如红外图像、可见光图像等。
数字图像处理在医学影像学中的应用前景随着数字技术的不断发展,数字图像处理在医学影像学领域的应用已成为一个新兴发展领域。
数字图像处理技术的出现,极大地促进了医学影像学的发展,从而在医学诊断、治疗、研究等方面带来了广泛的应用前景。
数字图像处理技术是将图像数字化,通过数字化的方式进行图像处理的一种技术。
在医学影像学中,数字图像处理技术主要是将医学影像数据进行数字化,然后进行各种图像处理,最终得到更加清晰、精准的图像,以便医生更好地诊断。
下面将详细探讨数字图像处理在医学影像学中的应用前景。
1、数字图像处理在医学诊断中的应用数字图像处理技术在医学诊断中的应用是最主要和最受欢迎的一种应用。
数字图像处理技术可以帮助医生更好地处理医学影像数据,从而得到更加清晰、精准的医学影像数据。
例如,在肿瘤影像学中,通过数字图像处理技术可以将多个切片的影像数据进行叠加处理,得到一个三维的肿瘤影像,从而帮助医生更好地了解肿瘤位置、大小、形态等信息,从而更加准确地判断肿瘤的性质和病程。
此外,数字图像处理技术还可以帮助医生进行图像分割,即将医学影像数据分解为不同的区域,以便医生更好地了解不同区域的情况。
例如,在视网膜图像分析中,数字图像处理技术可以帮助医生将视网膜的血管、视神经和周围组织等分割出来,从而帮助医生更好地了解不同区域的组织结构和病变情况。
2、数字图像处理在医学治疗中的应用数字图像处理技术在医学治疗中的应用同样也是非常重要的。
数字图像处理技术可以帮助医生进行医学影像数据的模拟和仿真,从而更好地进行治疗方案的设计和实施。
例如,在手术治疗中,数字图像处理技术可以帮助医生模拟手术前的病变情况,从而提前进行手术方案的设计和模拟,以便减少手术风险和提高手术成功率。
此外,数字图像处理技术还可以帮助医生进行放射治疗的计划和设计。
数字图像处理技术可以将医学影像数据进行分析和处理,得到更加精确的肿瘤大小、形态和位置等信息,从而帮助医生更好地进行放射治疗的计划和设计。