当前位置:文档之家› 水泥熟料形成热的计算方法

水泥熟料形成热的计算方法

水泥熟料形成热的计算方法
水泥熟料形成热的计算方法

水泥熟料形成热的计算方法

熟料形成热的计算方法很多,有理论计算方法,也有经验公式计算方法。 现介绍我国《水泥回转窑热平衡、热效率综合能耗计算通则》中所采用的方法。首先是按照熟料成分、煤灰成分与煤灰掺入量直接计算出煅烧1kg 熟料的干物料消耗量, 然后再计算形成lkg 熟料的理论热消耗量。

若采用普通原料(石灰石、粘土、铁粉)配料,以煤粉为燃料,其具体计算方法如下:

首先确定计算基准,一般物料取1kg 熟料,温度取0℃,并给出如下已知数据:(1)熟料的化学成分;(2)煤的工业分析及煤灰的化学成分*(*若采用矿渣或粉煤灰配料还应给出矿渣或粉煤灰的化学成分及配比);(3)熟料单位煤耗,对于设计计算要根据生产条件确定,对于热工标定计算通过测定而得。

(一)生成lkg 熟料干物料消耗量的计算 1.煤灰的掺入量

A m =1

100

r ar m A α

(1-1) 式中 A m ──生成lkg 熟料,煤灰的掺入量(kg /kg-ck);

r m —每熟料的耗煤量(kg /kg-ck) A ar ──煤灰分的应用基含量(%) α── 煤灰掺入的百分比(%)。 2.生料中碳酸钙的消耗量

CaO

CaCO A A K r

CaCO

M M m CaO CaO m 33

100?

-= (1-2)ar

式中 m r CaCO3,──生成lkg 熟料碳酸钙的消耗量(kg /kg —ck);

CaO k ──熟料中氧化钙的含量(%); CaO A ──煤灰中氧化钙的含量(%);

M caCO3、M CaO ──分别为碳酸钙、氧化钙的分子量;

A m ──同(1-1)式

3.生料中碳酸镁的消耗量

m r MgCO3=

MgO

MgCO A A K M M m MgO MgO 3

100?

- (1-3) 式中 m r MgCO3──生成lkg 熟料碳酸镁的消耗量(kg /kg —ck)

MgO A ──煤灰中氧化镁的含量(%); MgO K ──熟料中氧化镁的含量(%);

M MgCO3、M MgO ──分别为碳酸镁、氧化镁的分子量;

A m ──同(1-1)式。 4.生料中高岭土的消耗量

2

2H AS r

m

=3

2221003232O Al H AS A A

K M M m O Al O Al ?

- (1-4) 式中 22H AS r m ——生料中高岭土的含量(kg /kg —ck);

Al 2O 3k ──熟料中三氧化二铝的含量(%); Al 2O 3A ──煤灰中三氧化二铝的含量(%);

22H AS M 32O Al M ──分别为高岭土和三氧化二铝的分子量;

A m ──同(1-1)式。 5.生料中CO 2的消耗量

2

CO r

m

=3

23

CaCO CO CaCO r

M M m

+3

23

MgCO CO MgCO r

M M m

(1-5)

式中 2CO r m ──生成lkg 熟料CO :的消耗量(kg /kg —ck);

3MgCO r m 3CaCO r m ──同(1-3)、(1-2)式

2CO M 3CaCO M ──二氧化碳的分子量;

3MgCO M 3CaCO M ──分别为碳酸镁及碳酸钙的分子量。 6.生料中化合水的消耗量

2

222

222H AS O H H AS O

H r

M M m m

= (1-6)

式中 O H r m 2──生料中化合水的含量(kg /kg —ck);

O H M 2 ──水的分子量; 其他符号同(1-4)式。

7.生成lkg 熟料干生料的消耗量

O H r CO r d r m m m 221++= (1-7)

式中 d r m ──生成lkg 熟料干生料的消耗量(kg /kg —ck);

O H r m 2 、2CO r m ──见(1-5)、(1-6)式。

若采用矿渣或粉煤灰配料时,在计算各成分含量时还要分别将熟料各成分中减去来自矿渣或粉煤灰中各相应的成分含量;若采用液体或气体燃料时,则可将各项公式中A m 作为零代入。

(二)形成lkg 熟料吸收热量的计算

1.干物料从0℃'C 加热到450℃C 时吸收的热量

)0450(1-=d r d r C m q (1—8 )

式中 1q ──干物料从0℃加热到450 ℃时吸收的热量(kJ /kg —ck);

d r m ──见 (1-7)式

d r C ──干物料在0~450℃C 时的比热;一般为1.058kJ /kg ·℃; 2.高岭土脱水吸收热量

669022?=O H r m q (1-9)

式中 2q ──高岭土脱水吸收的热量(kJ /kg —ck):

O H r m 2──见(1-6)式.

6690 ──高岭土脱水热效应(kJ /kg —H :O); 3.脱水后物料由450℃加热到900℃吸收的热量

)450900()(23--=m O H r d r C m m q (1—10)

式中 3q ──脱水后物料吸收的热量(kJ /kg —ck);

d r m 、O H r m 2──见(1-7)、 (1-6)式;

m C ──脱水后物料在450~900℃之间的平均比热一般为:1.184kJ /kg ·℃; 4.碳酸盐分解吸收热量

166034?=CaCO r m q +14203?MgCO r m (1-11)

式中 4q ──碳酸盐分解吸收热量(kJ /kg —ck);

3CaCO r m 、3MgCO r m ──见(1-2)、 (1-3)式 1660──碳酸钙分解热效应(kJ /kg —CaCO 3) 1420──碳酸镁分解热效应(kJ /kg —MgCO 3)。 5.物料由900℃加热到1400℃时吸收热量

)9001400()(225---=m CO r O H r d r C m m m q (1-12)

式中 5q ──分解后的物料由900~C 加热到1400℃CB 寸吸收的热量(kJ /kg —ck):

d r m 、O H r m 2、2CO r m ──分别见(1-7)、(1-6)、(1-5)式;

m C ──物料在900~1400℃时的比热一般为1.033kJ /kg ·℃。 6.形成液相吸收热量

6q =109kJ /kg —ck (1-13)

(三)形成1kg 熟料放热量的汁算

1.粘土脱水后无定形物质转变为晶体放出热量

301860301222

22221

??=?='?H AS r H AS AS H AS r m M M m q (1-14)

式中 1

q '──粘土脱水后无定形物质结晶放热(kJ /kg —ck): 22H AS r m ──见式(1—4);

0.86──脱水高岭土(Al 2O 3·2SiO 2)和高岭土(Al 2O 3·2SiO 2·2H 2O)分

子量之比;

301──脱水高岭土的结晶热(kJ /kg —AS 2)。 2.熟料矿物形成放出热

熟料矿物形成放热与各矿物的含量有关,其矿物含量可根椐熟料的化学组

成由下式进行计算。

C 3S=4.07CaO K -7.60SiO K 2-6.72Al 2O K 3-1.43Fe 2O K

3 C 2S=8.60SiO K 2+5.07Al 2O K 3+1.07 Fe 2O K 3-3.07 CaO K

C 3A=2.65 Al 2O K 3-1.69 Fe 2O K 3 C 4AF=3.04 Fe 2O K 3(P >0.64)

式中 C 3S 、C 2S 、 C 3A 、C 3A ──分别为熟料各矿物的含量(%)

CaO K 、SiO K 2、 Al 2O K 3、 Fe 2O K

3──分别为熟料中各化学成分含量(%)

熟料各矿物形成热效应如下:

C 3S —465 (kJ /kg —C 3S ) C 2S —610 (kJ /kg —C 2S) C 3A —88( kJ /kg —C 3A ) C 4AF —105( kJ /kg —C 4AF) 熟料矿物形成放热等于矿物形成热效应乘以各矿物含量之总和。

100

1

)10588610465(43232

??+?+?+?='AF C A C S C S C q (1-15) 3.熟料由1400℃冷却到0℃放出的热量

)01400(3

-='k K C m q (1-16) 式中 3

q '──熟料冷却放热量(kJ /kg —ck) K m ─—熟料量K m =1 kg ;

K C ──熟料在0-1400℃时的平均比热,一般K C =1.092 kJ /kg ·℃

4.碳酸盐分解出的CO 2由900℃冷却到0℃放出热量

)0900(224

-='CO CO r C m q (1-17) 式中 4

q '──CO 2 冷却放出热量(kJ /kg —ck) 2CO r m —见(1-5)式

2CO C —CO 2在0-900℃时的平均比热,2CO C =1.07 kJ /kg ·℃ 5.水蒸气由450℃冷却到0℃时放出热量

]2490)0450([225+-='O H O H r C m q (1-18)

式中 5

q '──水蒸气冷却放热(kJ /kg —ck); O H r m 2──见(1-6)式;

O H C 2──水蒸气在0450时的平均比热,O H C 2=1.966 kJ /kg ·℃ 2490──0℃时水的汽化潜热kJ /kg -H 2O (四)熟料形成热

)()(51

610q q q q q q q '+'-++='-= 由上述可见熟料形成热的理论计算比较麻烦,有时可用下列简易公式进行计算:

=q 109+30.04CaO K +6.48Al 2O 3K +30.32MgO K -17.12SiO 2K -1.58Fe 2O 3

K

-m A (30.24CaO A +30.32MgO A +1.58Al 2O 3A )

式中符号同前。

水泥全分析初级测试题

考生单位:姓名:准考证号: 水泥全分析初级工理论知识试卷(C卷) 一、单项选择(第1题~第80题。选择一个正确的答案,将相应的字母填入题内的括号中。 每题1分,满分80分。) 1. 以酸碱中和反应为基础的分析方法叫( A )。 A、酸碱滴定法 B、氧化还原滴定法 C、络合滴定法 D、沉淀滴定法 2. 一等品复合硅酸盐水泥要求3天抗压强度不小于( B )MPa。 A、 B、19.0 C、 D、 3. 在2g溶液中含有2×10-6g溶质,用ppm浓度表示,即为( A )。 A、1ppm B、2ppm C、4ppm D、6ppm 4. 无水碳酸钠的熔点是( D )。 A、700℃ B、750℃ C、800℃ D、850℃ 5. 熟料中氧化铝含量与氧化铁含量的重量比是表示( B )。 A、熟料KH B、熟料IM C、熟料SM D、熟料LSF 6. 用乙二醇法快速测定游离氧化钙时,滴定至终点的颜色是( D )。 A、红色 B、紫色 C、蓝色 D、红色消失 7. 下列哪一种矿物早期强度高、后期强度也好( A )。 A、C3S B、C2S C、C3A D、C4AF 8. 下列哪一项不符合标准规定属于普通硅酸盐水泥废品( B )。 A、细读 B、初凝时间 C、终凝时间 D、烧失量 9. 200ml氢氧化钾溶液中含的氢氧化钾,此溶液的物质的量浓度是( D )。 A、L B、1mol/L C、2mol/L D、L 10. 用火焰光度计测定水泥中氧化钾和氧化钠的操作中,下列哪一种酸不使用( D )。 A、氢氟酸 B、硫酸 C、盐酸 D、磷酸 11. 已知某溶液的浓度为2ppm,则在1g溶液中所含溶质的质量为( A )。 A、2×10-6g B、2×10-5g C、2×10-4g D、2×10-3g 12. 天平室的湿度要求保持在( B )之间。 A、50~60% B、55~75% C、60~80% D、75~85% 13. 测定煤的挥发分,如果要重复性测定,( B )在同一次进行。 A、可以 B、不能 14. 有一乙醇溶液的浓度是95%(V / V),则200ml这种溶液中含乙醇( B )。 A、95ml B、190ml C、 D、200ml 15. 测定煤的挥发分应严格控制温度,并且总加热时间也要严格控制在( B )。 A、5min B、7min C、8min D、10min 16. 测定煤的水分时,试样的烘干时间要按规定严格控制,不得长时间烘样,否则煤样容易氧化增重使测定结果( A )。 A、偏低 B、偏高 C、不变 D、偏高偏低不一定 17. 测定石膏结晶水时,如果测定温度过高,将导致测定结果( A )。 A、偏高 B、偏低 C、不变 D、变化很小 18. 重量分析方法是最基本最直接的分析方法,,该方法准确度高,相对误差一般在( A )。 A、%~% B、%~% C、%~% D、%~% 19. 测定水泥中三氧化二铁的操作,滴定至终点时溶液显示( C )。 A、绿色 B、红色 C、亮黄色 D、紫色 20. 下列哪种氧化物对熟料KH值影响最大( B )。 A、CaO B、SiO2 C、Al2O3 D、Fe2O3 21. 水泥化学分析室内的温度应保持在( D )。 A、20℃ B、20±3℃ C、20±1℃ D、20±2℃ 22. 化学分析测定水泥中三氧化二铝(EDTA-铜盐法)的方法属于( B )。 A、直接滴定法 B、回滴定法 C、间接滴定法 D、置换滴定法 23. 水泥如有重大质量事故发生,必须查明事故原因,并在( C )内写出书面报告,报省、地市主管部门和水泥质检机构。 A、三日 B、五日 C、七日 D、十日 24. 水泥化学分析对样品的细度要求是试样应全部通过(A )方孔筛。 A、0.080mm B、0.2mm C、0.045mm D、0.9mm 25. 优等品普通硅酸盐水泥要求终凝时间不大于( B )。 A、6h B、 C、8h D、10h 26. 使用银坩埚时,使用温度不得超过( D )。 A、550℃ B、600℃ C、650℃ D、750℃ 27. 常用化学试剂的规格,属于分析纯试剂的标签标识颜色是( B )。 A、绿色 B、红色 C、蓝色 D、棕色 28. 烧失量的测定结果通常是将试样在( C )温度下灼烧至恒温得到的。 A、800~900℃ B、900~950℃ C、950~1000℃ D、1000~1050℃ 29. 以单位体积的溶液中所含溶质的质量表示的浓度叫( C )。

水泥化学分析报告

水泥化学分析报告 熟料矿物组成(%): 1.C3S(硅酸三钙) : 54.61% 作用:早期抗压、抗折强度都低,28天后期强度高,水泥的强度主要是指硅酸三钙的强度 2.C2S(硅酸二钙):21.06% 作用:增加后期强度,一、二年以后都在增长,C3S一、二年以后强度增长很小。 3.C3A(铝酸三钙):6.71% 作用:早期放热量最大,强度高,超量放热大收缩大会产生裂纹,天冷时可提高C3A的含量,如果C3A含量偏高,只有加石膏降低其温度,可改善初凝、终凝时间,掺量不能大于5%,掺量超标影响强度。(特重、重交通路面不宜>7%,中轻交通路面不宜>9%)。 4.C4AF(铁铝酸四钙);11.14% 作用;主要提高抗折强度,民航规定>15%(特重、重交通路面不宜<15%,中轻交通路面不宜<12%). 放热量大依次为:C3A、C4AF、C3S、C2S 二、其他成分: 游离氧化钙:特重、重交通路面不得>1%;中轻交通路面不得>1.5% 氧化镁:特重、重交通路面不得>5%;中轻交通路面不得>6% 三氧化硫:特重、重交通路面不得>3.5%;中轻交通路面不得>4% 碱含量:特重、重交通路面Na2O+0.658K2O≤0.6%; 中轻交通路面,怀疑有碱活性集料时≤0.6%;无碱活性集料时≤1% 混合材种类:特重、重交通路面:不得掺窑灰、煤矸石、火山灰和粘土,有抗

盐冻要求时不得掺石灰、石粉 中轻交通路面:不得掺窑灰、煤矸石、火山灰和粘土,有抗盐冻要求时不得掺石灰、石粉 标准稠度需水量:特重、重交通路面:不宜>28%;中轻交通路面:不宜>30%比表面积:特重、重交通路面:宜在300~450m2/Kg; 中轻交通路面:宜在300~450m2/Kg 初凝时间:特重、重交通路面:不早于1.5小时;中轻交通路面:不早于1.5小时 终凝时间:特重、重交通路面:不早于10小时;中轻交通路面:不早于10小时 温度:散装水泥的夏季出厂温度:南方不宜高于65℃,北方不宜高于55℃混凝土搅拌时的水泥温度:南方不宜高于60℃,北方不宜高于50℃,且不宜低于10℃

水泥熟料的形成过程

第一章回转窑及预分解技术 第一节水泥熟料的形成 水泥是重要的建筑材料之一,它的煅烧方法从立窑生产到现代干法生产经过了180年的历史。而水泥熟料是水泥生产的半成品,其形成过程是水泥生产的一个重要的环节,它决定着水泥产品的产量、质量、消耗三大指标。本节将主要阐述熟料的形成过程和水泥熟料形成热的计算方法。 一、水泥熟料煅烧方法及窑型的演变 (一)水泥熟料的煅烧方法 从水泥熟料的生产方法分为干法生产、湿法生产以及半干法生产。干法生产是指干生料粉进入窑内进行煅烧;湿法生产是将原料加水粉磨,黏土用淘泥机制成泥浆,然后将含水量为32-40%的生料浆搅拌均匀后入窑煅烧;半干法生产是将生料粉加入12-14%的水分成球后,再入窑进行煅烧。 (二)水泥窑型的演变 自发明水泥以来,水泥窑型发生了巨大的变化,经历了立窑、干法中空回转窑、湿法窑、立波尔窑、悬浮预热器窑至窑外分解窑的变化。其规模从!) 世纪的日产几吨,发展到目前日产1万吨,增加了1000倍以上。 在这些变化中有几次重大技术突破,第一次是%# 世纪初湿法回转窑的出现并得到全面推广,提高了水泥的产量和质量,奠定了水泥工业作为现代化工业的基础;第二次是20世纪50-70年代悬浮预热和预分解技术的出现(即新型干法水泥生产技术),大大提高了水泥窑的热效率和单机生产能力,促进了水泥工业向大型化、现代化的进一步发展;第三次是20世纪80年代以后计算机信息化和网络化技术在水泥工业中得到了广泛应用,使得水泥工业真正进入了现代化阶段。 1824年,世界上第一台立窑在英国诞生,这是人类最早的用来煅烧水泥熟料窑型。它是一个竖直放置的静止的圆筒,窑内自然通风,生料制成块状,与燃料块交替分层加入窑内,采用间歇的人工加料和出料操作。立窑的产生

水泥的化学分析技巧及要领.

检测与监理广东建材2009年第3期 水泥的化学分析技巧及要领 廖映华 摘 (潮州市建筑工程质量检测站) 要:本文通过介绍水泥化学分析中几个强制性检测项目的分析技巧及要领,希望能帮助各检测 机构提高对这几个项目的检测能力。 关键词:水泥;烧失量;不溶物;三氧化硫;氧化镁 误差,也称测量误差,是测量结果减去被测量的真 值所得的差。测量结果是人们认识的结果,不仅与量的本身有关,而且与测量程序、测量仪器、测量环境以及测量人员有关。所以在分析过程中,我们一定要严格按照 以防止水泥中挥发性物质(如碱、氯化物、硫化物等等)因急剧受热,猛烈排出而使水泥样飞溅,造成结果偏低。 同时一定要确保灼烧温度控制在950~1000℃之间。 ⑸灼烧完毕坩埚盖打开后应及时将样品放在干燥 标准中的程序进行操作,还要确保测量仪器的准确性,器中密封保存,防止样品吸收空气中的水分和二氧化碳测量环境的控制,及一些人为的误差。这样才能确保检使测试结果偏高。测的准确性,杜绝不合格品的使用从而确保建筑工程的⑹瓷坩埚的标识不能象我们标识玻璃器皿,用蜡质量;同时不致于把合格品检测成不合格品,造成生产厂家的损失。 检测机构对水泥化学分析的强制性检测项目,主要有烧失量、不溶物、三氧化硫、氧化镁等,下面就来谈一谈本人在检测这几个项目时所积累的一些经验和教训,以便大家减少检测误差并且对这几个项目的检测能力有所提高。 笔,因为蜡在高温下会熔化,所以我们要用能耐高温950~1000℃的物质。可用小刀在坩埚上划出数字再用三氯化铁来着色,其颜色经950~1000℃灼烧后能永久保留。 2不溶物(IR) 不溶物的测定是先以盐酸溶液处理,滤出的不溶残渣再以氢氧化钠处理,经盐酸中和、过滤后,残渣在高温950℃下灼烧至恒量,称量剩余物质的质量算出不溶物 它的测定结果与的质量百分数。不溶物不是化学成分, 试验条件密切相关,所以在测定过程应注意:

水泥化学分析方法

水泥化学分析方法 GB/T176--1996 1 范围 本标准规定了水泥化学分析方法的基准法和在一定条件下被认为能给出同等结果的代用法。在有争议时以基准法为准。本标准适用于硅酸盐水泥、普通硅酸盐水泥、矿渣硅酸盐水泥、火山灰质硅酸水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥以及制备上述水泥的熟料和适合本标准方法的其他水泥。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。在标准出版时所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB12573─90水泥取样方法 3 试验的基本要求 3.1试验次数与要求 每项测定的试验次数规定为两次。用两次试验平均值表示测定结果。 在进行化学分析时除另有说明外必须同时做烧失量的测定;其他各项测定应同时进行空白试验并对所测结果加以校正。 3.2质量、体积、体积比、滴定度和结果的表示 用―克‖表示质量精确至0.0001g?。?滴定管体积用―毫升‖表示,?精确至0.05ml 滴定度单位用毫克/毫升(mg/ml)表示;溶液的体积比以三次测定平均值表示,滴定度和体积比经修约后保留有效数字四位。各项分析结果均以百分数计,表示至小数二位。 3.3 允许差 本标准所列允许差均为绝对偏差,用百分数表示。 同一试验室的允许差是指:同一分析试验室同一分析人员(或两个分析人员)采用本标准方法分析同一试样时,两次分析结果应符合允许差规定。如超出允许范围,应在短时间内进行第三次测定(或第三者的测定),测定结果与前两次或任一次分析结果之差值符合允许差规定时,则取其平均值,否则应查找探因,重新按上述规定进行分析。 不同试验室的允许差是指:两个试验室采用本标准方法对同一试样各自进行分析时,所得分析结果的平匀值之差应符合允许差规定。如有争议应商定另一单位按年标准进行仲裁分析。以仲裁单位报出的结果为准,与原分析结果比较,若两个分析结果之差值符合允许差规定,则认为原分析结果无误。 3.4灼烧 将滤纸和沉淀放入预先已灼烧并恒量的坩埚中,烘干。在氧化性气氛中慢慢灰化,不使有火焰产生,灰化至无黑色炭颗粒后,放入马弗炉中,在规定的温度下灼烧。在干燥器中冷却至室温,称量。 3.5恒量 经第一次灼烧、冷却积量后通过连续对每次15min的灼烧,然后冷却、称量的方法来检查恒定质量,当连续两次称量之差小于0.0005g时即达到恒量。 3.6检查Cl-离(硝酸银检验) 按规定洗涤沉淀数次后,用数滴水淋洗漏斗的下端,用灵敏毫升水洗涤滤纸和沉淀,将滤液收集在试管中,加几滴硝酸银溶液(见 4.14),?观察试管中溶液是否浑浊。如果浑浊继续洗涤并定期检查、直至用硝酸银检验不再浑浊为止。 4试剂和材料

水泥组分分析方法

某某水泥有限公司 水泥组分的定量测定 Methods for determination of contents in cement production 需要软件计算的请邮箱联系 wenkxin@https://www.doczj.com/doc/235669889.html, 2011-11-11实施

水泥组分的定量测定 1 范围 本方法采用化学分析法和现场实测法测定水泥各组分掺加量。在有争议时,以化学分析法为准。 2 规范性引用文件 下列文件中的条款通过本方法的引用而成为本方法的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版本均不适用于本方法,然而,鼓励根据本方法达成协议的各方研究是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本方法。 GB/T176 水泥化学分析方法 GB/T5484 石膏化学分析方法 GB/T5762 建材用石灰石化学分析方法 GB/T6682 分析实验室用水规格和试验方法 GB12573 水泥取样方法 JC/T850 水泥用铁质原料化学分析方法 JC/T874 水泥用硅质原料化学分析方法 3 术语和定义 3.1 特征化学成分characteristic chemical component 某组分中所含有的一种化学成分,该化学成分在其他组分中不含有或其含量可忽略不计。 3.2 特征组分characteristic constituent 含有特征化学成分(3.1)的组分。 4 试验的基本要求 4.1 结果的处理 各组分掺加量测定结果以质量计,数值以(%)表示至小数点后一位。 4.2 重复性极限 在短时间间隔内,在同一试验室由同一操作人员使用同一设备和相同的操作方法,对同一项目(材料)试验所得到的各独立测定结果之间的重复性极差,以质量分数的绝对值(%)表示。 4.3 再现性极限 不同试验室由不同操作人员使用不同设备和相同的操作方法,对同一项目(材料)试验所得到的各独立测定结果之间的再现性极差,以质量分数的绝对值(%)表示。 5 化学分析方法

水泥化学分析方法 培训试题(含答案)

《水泥化学分析方法》GB/T 176-2017培训试题 姓名:得分: 一、填空题(每空1分,共36 分) 1、重复性条件是在试验室,由操作者使用设备,按照相同的测定方法,并在短时间内从同一被测对象取得相互独立测试结果的条件。 2、重复性限是一个数值,在重复性条件下,两次测试结果的绝对差值不超过此数的概率为。 3、每一项测定的试验次数为两次、两次结果的在内,用两试验结果的平均值表示测定结果。 4、在进行化学分析时,建议同时进行的测定。 5、质量用表示,精确至,滴定管的体积用表示,精确至,滴定度用表示。 6、苯甲酸-无水乙醇标准滴定溶液对氧化钙的滴定度保留位有效数字,其他标准滴定溶液浓度、滴定度、和体积比保留位有效数字。 7、不加入,按照的测定步骤进行试验并使用的试剂,对得到的测定结果进行校正。 8、经第一次灼烧、冷却、称量后,通过连续对每次 min的灼烧,然后冷却、称量的方法来检查恒定质量,当连续两次称量之差小于时,即达到恒量。 9、除另有说明外,所用试剂应不低于,用于标定的试剂应为。所用水应不低于GB/T 6682中规定的的要求。 10、氧化镁(EDTA滴定法)的重复性限,≤2%时为,>2%时为。 11、烧失量试验,试样在℃的高温炉中灼烧,灼烧所失去的质量即是烧失量。 12、氧化镁测定-原子吸收分光光度法可以采用分解试样,熔融试样,熔融试样。 13、五氧化二磷的测定-磷钼蓝分光光度法采用 mm比色皿,于波长 nm处测定吸光度。 14、碱含量的测定可以采用的方法是和。 15、一氧化锰可以采用原子吸收分光光度法外,还可以采用。 16、三氧化硫的测定(基准法),用分解试样生成离子,在煮沸下用溶液沉淀。 二、单选题(每小题2分,共 40 分)

硅酸盐水泥熟料的形成

第七章硅酸盐水泥的水化和硬化 第一节硅酸盐水泥熟料的形成 一、硅酸盐水泥熟料的形成 水泥熟料矿物为什么能与水发生反应?主要原因是: 1. 硅酸盐水泥熟料矿物结构的不稳定性,可以通过与水反应,形成水化产物而达到稳定性。造成熟料矿物结构不稳定的原因是:<1) 熟料烧成后的快速冷却,使其保留了介稳状态的高温型晶体结构;<2) 工业熟料中的矿物不是纯的C3S,C2S等,而是 A lite 和Belite 等有限固溶体;(3) 微量元素的掺杂使晶格排列的规律性受到某种程度的影响。 2. 熟料矿物中钙离子的氧离子配位不规则,晶体结构有“空洞”,因而易于起水化反 应。例如,C3S 的结构中钙离子的配位数为 6 ,但配位不规则,有 5 个氧离子集中在一侧而另一侧只有 1 个氧离子,在氧离子少的一侧形成“空洞”,使水容易进入与它反应。户C2S 中钙离子的配位数有一半是 6 ,一半是8 ,其中每个氧离子与钙离 子的距离不等,配位不规则,因而也不稳定,可以水化,但速度较慢。 C 3A的晶体结构中,铝的配位数为 4 与6, 而钙离子的配位数为 6 与9 ,配位数为9 的钙离子周围的氧离子排列极不规则,距离不等,结构有巨大的“空洞”,故水化很快。C4A F 中钙的配位数为10 与 6 ,结构也有“空洞”,故也易水化。有些矿物如Y-C2S和 CZ A S 几乎是惰性的,主要是钙离子的配位有规则的缘故.例如: Y-CZS 中钙离子的氧配位为 6 , 6 个氧离子等距离地排列在钙离子的周围,形成八面体,结构没有“空洞”,因此不易与水反应。这里要特别指出,水化作用快的矿物,其最终强度不一定高。例如,C3A水化快,但强度绝对值并不高,而户C2S 虽然水化慢,但最终强度却很高,因为水化速度只与矿物水化快慢有关,而强度则与浆体结构 形成有关。 二、熟料单矿物的水化 (一)硅酸三钙的水化 硅酸三钙在水泥熟料中的含量约占50 %,有时高达60 %,因此它的水化作 用、产物及其所形成的结构对硬化水泥浆体的性能有很重要的影响硅酸三钙在常温下

水泥全分析实验过程

水泥熟料的测定 1烧失量的测定----灼烧差减法 称取1克试样,精确至0.0001克——以灼烧恒量的瓷坩埚——将改斜于坩埚上——放入高温炉内——(950+25)度灼烧15-20分钟——取出至于干燥器中——冷却至室温——称量 2二氧化硅的测定----氟硅酸钾容量法 吸取50.00毫升试样——300毫升塑料烧杯中——加入10-15毫升硝酸,搅拌,冷却至室温——加氯化钾至有析出——多加2克氯化钾+10毫升氟化钾(150克/升)至析出——放置15-20分钟(搅拌2次)——中速滤纸过滤——氯化钾(50克?升)洗涤3次——取下滤纸放入原烧杯——沿烧杯加10毫升氯化钾-乙醇溶液+1毫升酚酞——展开滤纸,氢氧化钠标液(0.15摩尔?升)中和至红色——加200毫升沸水——用氢氧化钠标液滴定至红色 3三氧化二铁的测定 吸取25毫升试样——300毫升烧杯——加水稀释至100毫升——加10滴磺基水杨酸钠——加氨水(1+1)调至红棕色或黄色——加盐酸(1+1)调至紫红色,再多加6滴——加热至70度——用EDTA标液滴定至亮黄色 4三氧化二铝的测定 测铁之后的溶液加入EDTA标液10-15毫升——加水稀释至150-200毫升——加热至70-80度——搅拌下加氨水(1+1)调节PH值至3.0-3.5——加15毫升PH4.3的缓冲溶液——加热煮沸1-2分钟——加5滴PAN——硫酸铜标液滴定至亮紫色或红色 5氧化钙的测定 吸取25毫升的试样——300毫升烧杯——加水稀释至200毫升——加5毫升三乙醇胺(1+2)+适量CMP——搅拌下加氢氧化钾(200克?升)至出现绿色荧光——再过量5-8毫升——用EDTA标液滴定至绿色荧光消失并出现红色 6氧化镁的测定 吸取25毫升试样——300毫升烧杯——加水稀释至200毫升——加1毫升酒石酸钾钠——搅拌——加5毫升三乙醇胺(1+2)——搅拌——加25毫升PH10氯化铵缓冲溶液+适量KB指示剂——用DETA标液滴定至纯蓝色

水泥全分析

吉林工业职业技术学院 冶金与建筑材料检验综合报告 水泥全分析 姓名: 学号: 专业班级: 指导教师:

吉林工业职业技术学院 目录 摘要: (1) 关键词 (1) 第一篇水泥分析简介 (2) 1 资料查阅 (2) 1.1水泥组成、分类、用途 (2) 1.2水泥生产简介 (2) 1.3水泥检测项目与控制指标 ................................................ 错误!未定义书签。 2 文献综述 (3) 2.1水泥检测意义 (3) 2.2拟定预做实验方案 ........................................................... 错误!未定义书签。第二篇实验部分 . (4) 1检测项目一水泥中硅含量的测定 (4) 1.1测定意义 (4) 1.2测定方法 ............................................................................ 错误!未定义书签。 1.3仪器及工作参数 (4) 1.4试剂 (4) 1.5工作程序 (4) 1.6结果与讨论 ........................................................................ 错误!未定义书签。2检测项目二水泥中铁、铝含量的测定 . (6) 1.1测定意义 (6) 1.2测定方法 (6) 1.3仪器及工作参数 (7) 1.4试剂 (7) 1.5工作程序 (7) 1.6结果与讨论 ........................................................................ 错误!未定义书签。

水泥化学分析常规项目测定方法及要领

水泥化学分析常规项目测定方法及要领 纪红梅 引言 水泥,粉状硬性无机胶凝材料,加水搅拌成浆体后能在空气中或水中硬化,用它将砂、石等散粒材料胶结成砂浆或混泥土。水泥作为一种主要的建筑材料,广泛应用于混凝土和砂浆中。为了保证建筑物结构的安全,在GB 175--2008(通用硅酸盐水泥》中,对各类通用硅酸盐水泥的化学成分指标,括烧失量、不溶物、三氧化硫、氧化镁、氯离子等有明确的限量规定,在GB 176--2008(水泥化学分析方法》中规定了各成分测定的允许误差。在进行化学分析时,即使严格按照标准规定的程序进行操作,实验仪器和检测环境均符合标准要求,但还是不可避免地存在一定的误差。 为了提高检测水平,应充分了解各成分的测定原理,掌握可能引起实验误差的关键点,并在此基础上不断完善实验方法和步骤,以减少测定误差。 1 烧失量的测定——灼烧差减法 烧失量的测定就是把试样在950℃左右的高温炉中灼烧至恒量,(即驱除水分和二氧化碳,同时将存在的易氧化元素氧化),计算灼烧掉物质的质量百分数。 烧失量操作步骤比较简单,存在的人为误差比其它项目要少得多。只要注意以下几个方面就可以把误差降到最小: (1)每次测定前都要把测定用瓷坩埚洗净后,预先在950℃下灼烧至恒量。 (2)2N热应使用电阻丝高温炉而不应使用硅碳棒电炉,并应将坩埚放在高温炉的恒温区,保证温度波动不大。高温炉的炉门处温度最低,而炉壁附近

处温度最高,注意不要放在这些位置上。 (3)应定期计量高温炉上的温度控制器。以确保温度的准确性,防止温度偏低。 (4)灼烧时高温炉温度应从低温(低于400℃)升起,以防止水泥中挥发性物质(如碱、氯化物、硫化物等等)因急剧受热,猛烈排出而使水泥样飞溅,造成结果偏低。 (5)灼烧完毕坩埚盖打开后应及时将样品放在干燥器中密封保存,防止样品吸收空气中的水分和二氧化碳使测试结果偏高。 (6)瓷坩埚的标识不能象我们标识玻璃器皿,用蜡笔,因为蜡在高温下会熔化,所以我们要用能耐高温950~1000℃的物质。 2 三氧化硫的测定——硫酸钡重量法(基准法) 三氧化硫的测定是在酸性溶液中,用氯化钡溶液沉淀硫酸盐,经过沉淀、过滤、灼烧后,以硫酸钡形式称量,再换算为三氧化硫的质量分数。实验时应注意以下几点: (1)样品要溶解完全,并除去酸不溶物和可能形成的硅酸凝胶。 (2)控制好氯化钡溶液的滴加速度。滤液及洗液收集于烧杯内,并用水稀释至约250 ml,在滴加氯化钡溶液前将试液煮沸,氯化钡溶液也应加热后使用。 (3)控制好沉淀BaSO。时试液的酸度。加入氯化钡溶液后,应继续煮沸3~5 rain,以使沉淀更好地形成,此时溶液的体积约在200 ml,溶液的酸度在0.25~0.30 mol/L之间。另一方面,可以增加BaSO。的溶解度,降低溶液的相对过饱和度,有利于生成大颗粒的沉淀。

水泥生产工艺及水泥熟料的形成

水泥生产工艺及水泥熟料的形成 水泥生料经过连续升温,达到相应的温度时,其煅烧会发生一系列物理化学变化,最后形成熟料。硅酸盐水泥熟料主要由硅酸三钙(C3S)、硅酸盐二钙(C2S)、铝酸三钙(C3A)、铁铝酸四钙(C4AF)等矿物所组成。 硅酸盐水泥生料通常是用石灰石、黏土及少量铁矿石等按适当的比例配制而成。石灰石的主要组成是碳酸钙(CaCO3)和少量的碳酸镁(MgCO3),黏土的主要矿物是高岭石(2SiO2·Al2O3·2H2O)及蒙脱石(4SiO2·Al2O3·9H2O)等,铁矿石的主要组成是氧化铁(Fe2O3)。 硅酸盐水泥熟料形成的过程,实际上是石灰石、黏土、铁矿石等主要原料经过加热,发生一系列物理化学变化形成C3A、C4AF、C2S和C3S等矿物的过程,不论窑型的变化如何,其过程是不变的。 一、煅烧过程物理化学变化 水泥生料在加热煅烧过程中所发生的主要变化有以下六点: (一)自由水的蒸发 (二)黏土质原料脱水和分解 (三)石灰石的分解 (四)固相反应 (五)熟料烧成

(六)熟料的冷却 (一)自由水的蒸发 无论是干法生产还是湿法生产,入窑生料都带有一定量的自由水分,由于加热,物料温度逐渐升高,物料中的水分首先蒸发,物料逐渐被烘干,其温度逐渐上升,温度升到100~150℃时,生料自由水分全部被排除,这一过程也称为干燥过程。 (二)黏土质原料脱水和分解 黏土主要由含水硅酸铝所组成,其中二氧化硅和氧化铝的比例波动于2:1~4:1之间。当生料烘干后,被继续加热,温度上升较快,当温度升到450℃时,黏土中的主要组成高岭土(Al2O3·2SiO2·2H2O)失去结构水,变为偏高岭石(2SiO2·Al2O3)。 高岭土进行脱水分解反应时,在失去化学结合水的同时,本身结构也受到破坏,变成游离的无定形的三氧化二铝和二氧化硅,其具有较高的化学活性,为下一步与氧化钙反应创造了有利条件。在900-950℃,由无定形物质转变为晶体,同时放出热量。 (三)石灰石的分解

硅酸盐水泥的分析实验报告

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和MgO含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定SiO2 的含量,Fe2O3 、Al2O3 、CaO和MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、Fe2O3 、Al2O3 、CaO和MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA

GB175~2007通用硅酸盐水泥标准

GB 175-2007 通用硅酸盐水泥 前言 本标准与欧洲水泥标准ENV197-1:2000《通用波特兰水泥》的一致性程度为非等效。本标准自实施之日起代替GB175-1999《硅酸盐水泥、普通硅酸盐水泥》、GB1344-1999《矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥》、GB12958-1999《复合硅酸盐水泥》三个标准。 ——将火山灰质硅酸盐水泥中火山灰质混合材料掺量由“20%~50%”改为“>20%且≤40%”(原版GB1344-1999中第3.2条,本版第5.1条); ——将复合硅酸盐水泥中混合材料总掺加量由“应大于15%,但不超过50%”改为“>20%且≤50%”(原版GB12958-1999中第3章,本版第5.1条); ——取消了复合硅酸盐水泥中允许掺加粒化精炼铬铁渣、粒化增钙液态渣、粒化碳素铬铁渣、粒化高炉钛矿渣等混合材料以及符合附录A新开辟的混合材料,并将附录A取消(原版GB12958-1999中第4.2、4.3条和附录A); ——普通水泥强度等级中取消了32.5和32.5R(原版GB175-1999中第5章,本版第6章); ——增加了氯离子限量的要求,即水泥中氯离子含量不大于0.06%(本版第7.1条); ——增加了选择水泥组分试验方法的原则和定期校核要求(本版第8.1条); ——将“按0.50水灰比和胶砂流动度不小于180mm来确定用水量”的规定的适用水泥品种扩大为火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥和掺火山灰质混合材料的普通硅酸盐水泥(原版GB1344-1999第7.5条,本版第8.5条);

——编号与取样中增加了年生产能力“200×104t以上”的级别,即:200×104t以上,不超过4000t为一个编号;将“120万吨以上,不超过1200吨为一个编号”改为“120×104t~200×104t,不超过2400t为一个编号”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.1条,本版第9.1条); ——将“出厂水泥应保证出厂强度等级,其余技术要求应符合本标准有关要求”改为“经确认水泥各项技术指标及包装质量符合要求时方可出厂”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.2条,本版第9.2条); ——增加了出厂检验项目(本版第9.3条); ——取消了废品判定(原版GB175-1999、GB1344-1999、GB12958-1999中第9.3条); ——检验报告中增加了“合同约定的其他技术要求”(原版GB175-1999、GB1344-1999、GB12958-1999中第8.4条,本版第9.5条); ——包装标志中将“且应不少于标志质量的98%”改为“且应不少于标志质量的99%”(原版GB175-1999、GB1344-1999、GB12958-1999中第9.1条,本版第10.1条); ——包装标志中将“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色”改为“火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥和复合硅酸盐水泥包装袋的两侧印刷采用黑色或蓝色”(原版GB1344-1999、GB12958-1999中第9.2条,本版第10.2条)。 本标准由中国建筑材料工业协会提出。 本标准由全国水泥标准化技术委员会(SAC/TC184)归口。

水泥化学分析习题集及其规范标准答案

水泥化学分析习题 一、填空题(每空1分) 1、矿物和岩石中的水分,一般以附着水和化合水两种形态存在。 2、附着水不是物质的固有组成部分,其含量与其细度以及周围空气的湿度有关。 3、化合水有结晶水和结构水两种形式。 4、结晶水是以H20分子状态存在于物质的晶格中(如二水石膏CaS04·2H2O),通常在 400℃以下加热便可完全除去;结构水是以化合状态的氢或氢氧基的形式存在于物质的晶格中,一般需加热到高温才能分解并放出水分。 5、附着水分通常在105~110℃下就能除掉,在测定矿物岩石中的附着水分时,可把试 样在105~110℃下烘干至恒量。 6、天然二水石膏由于其失去结晶水的温度较低,在80~90℃时即开始变成半水石膏, 故测定其附着水通常是在45~60℃的温度下进行。 7、水泥在吸水后,矿物即发生水化,水以化合水形态存在,在105~110℃不可能将其 烘出。 8、一般规定,试样在950~1000℃下灼烧后的减少的质量百分数即为烧失量(个别试样 的测定温度则另作规定)。 9、烧失量实际上是样品中各种化学反应在质量上的增加和减少的代数和。 10、烧失量的大小与灼烧温度、灼烧时间及灼烧方式等有关。 11、正确的灼烧方法应是在马弗炉中(不应使用硅碳棒炉)由低温升起达到规定温度 并保温半小时以上。 12、不溶物是指在一定浓度的酸和碱溶液中对水泥(或熟料)进行处理后得到的残渣。 13、不溶物的测定方法是一个规范性很强的经验方法。结果正确与否同试剂浓度、 试剂温度、处理时间等密切相关。 14、为了测定二氧化硅,首先要把样品中的二氧化硅转化成可溶性的硅酸盐。试样 通过分解制得溶液。溶液中硅酸含量的测定,通常采用重量法(盐酸蒸干法,氯化铵法等)和氟硅酸钾容量法。对硅酸含量低的样品,也可采用比色法。对某些硅酸含量特高,而其中碱金属和碱土金属元素含量又很低的样品,也可直接用氢氟酸-硫酸处理,按差减法求得二氧化硅的含量,但目前在水泥分析中已很少采用,它已被氟硅

硅酸盐水泥的分析实验报告

硅酸盐水泥的分析实验 报告 Company Document number:WUUT-WUUY-WBBGB-BWYTT-1982GT

硅酸盐水泥中的SiO2,Fe2O3,Al2O3,CaO 和M g O含量的测定 摘要 硅酸是一种很弱的无机酸,在水溶液中绝大部分以溶胶状态存在在用浓酸和加热蒸干等方法处理后,能使绝大部分硅酸水溶胶脱水成水凝胶析出,因此可以利用沉淀分离的方法把硅酸与水泥中的铁、铝、钙、镁等其他组分分开重量法测定 SiO2 的含量, Fe2O3 、Al2O3 、CaO和 MgO的含量以EDTA配位滴定法测定。 关键词:SiO2、 Fe2O3 、Al2O3 、CaO和 MgO、EDTA Abstract Silicate is a weak inorganic acid , it exists in aqueous solution in most in the form of the gel .When heated with concentrated acid and evvaporated ,dehydration can make most of the acid water sol gel precipition into water . Therefore,the method can be used to precipition of iron silicate and cement ,aluminum,calcium and other components separately from the content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the weight determination of SiO2,Fe2O3,Al2O3,CaO,and MgO content of the EDTA titrimetric method. Keywords: SiO2, Fe2O3, Al2O3, CaO and MgO, EDTA 目录

水泥化学分析方法(标准状态:现行)

I C S91.100.10 Q11 中华人民共和国国家标准 G B/T176 2017 代替G B/T176 2008 水泥化学分析方法 M e t h o d s f o r c h e m i c a l a n a l y s i s o f c e m e n t (I S O29581-1:2009,C e m e n t T e s tm e t h o d s P a r t1:A n a l y s i sb y w e t c h e m i s t r y,N E Q) 2017-12-29发布2018-11-01实施中华人民共和国国家质量监督检验检疫总局

中华人民共和国 国家标准 水泥化学分析方法 G B/T176 2017 * 中国标准出版社出版发行 北京市朝阳区和平里西街甲2号(100029)北京市西城区三里河北街16号(100045)网址:w w w.s p c.o r g.c n 服务热线:400-168-0010 2017年11月第一版 * 书号:155066四1-59088

目 次 前言Ⅴ 1 范围1 2 规范性引用文件1 3 术语和定义1 4 试验的基本要求2 4.1 试验次数与要求2 4.2 质量二 体积二滴定度和结果的表示2 4.3 重复性限和再现性限2 4.4 空白试验2 4.5 灼烧2 4.6 恒量3 4.7 检查氯离子( 硝酸银检验)3 4.8 试剂总则3 4.9 检验方法的验证3 5 试样的制备3 6 化学分析方法3 6.1 试剂和材料3 6.2 仪器与设备20 6.3 水泥烧失量的测定 灼烧差减法23 6.4 矿渣硅酸盐水泥烧失量的测定 校正法(基准法)24 6.5 硫酸盐三氧化硫的测定 硫酸钡重量法(基准法)25 6.6 不溶物的测定 盐酸-氢氧化钠处理26 6.7 二氧化硅的测定 氯化铵重量法(基准法)27 6.8 三氧化二铁的测定 邻菲罗啉分光光度法(基准法)28 6.9 三氧化二铝的测定 E D T A 直接滴定铁铝合量(基准法)29 6.10 氧化钙的测定 E D T A 滴定法(基准法)30 6.11 氧化镁的测定 原子吸收分光光度法(基准法)30 6.12 二氧化钛的测定 二安替比林甲烷分光光度法31 6.13 氯离子的测定 硫氰酸铵容量法(基准法)32 6.14 氧化钾和氧化钠的测定 火焰光度法(基准法)32 6.15 硫化物的测定 碘量法33 6.16 一氧化锰的测定 高碘酸钾氧化分光光度法(基准法)34 6.17 五氧化二磷的测定 磷钼蓝分光光度法35 6.18 二氧化碳的测定 碱石棉吸收重量法36 G B /T 176 2017

水泥厂生产流程及设备原理终审稿)

水泥厂生产流程及设备 原理 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

水泥厂生产流程及设备原理简介 1、水泥厂生产流程 1.1 水泥生产工艺 水泥的生产工艺简单讲便是两磨一烧,即原料要经过采掘、破碎、磨细和混匀制成生料,生料经1450℃的高温烧成熟料,熟料再经破碎,与石膏或其他混合材一起磨细成为水泥。由于生料制备有干湿之别,所以将生产方法分为湿法、半干法或半湿法、干法3种。 1.2全场平面布置 图1.1 水泥厂的工艺流程简图 图1.2 立磨原理图 图1.1 图1.2 1.3全厂主机设备与存储设备 表1.1全厂主机设备与存储设备列表 生料磨、回转窑、水泥磨、煤磨、冷却机、储存设备(堆料场,配料站,均化库,熟料库,水泥库)

(1)PC-2018反击锤式破碎机(2)板式喂料机(3)MLS3626立式辊磨机(4)LS 型螺旋输送机(5)链斗输送机(6)O-Sepa选粉机(7)罗茨鼓风机(8)水泥窑尾引风机(9)调速型液力偶合器(10)陕西压强设备厂调速机(11)离心通风机 2、生料制备 2.1 矿山开采的工艺流程

矿山开采的工艺流程:采矿工作面的整平→布置爆孔→钻孔→装药爆破 →集矿→装车 2.2 原料的破碎,预均化和生料粉磨 从矿山开采的矿石用卡车运到水泥厂,由板式喂料机送入单段锤式破碎机,再用皮带送到预均化堆场,采用横堆竖取的方式取料,料经皮带送到石灰 石仓.再加上从铁粉仓和粘土仓及粉煤灰仓经电子皮带称定量取料混合后送入生料磨(立磨).经立磨粉磨后粗细料被选粉机分离,粗料返回立磨继 续粉磨,细料送入两个锥型仓暂时储存. 2.3 生料储存,均化和输送 由立磨出来的细粉经气力输送管道和皮带提升机送到均化库顶部,经四嘴下料机进入均化库.均化库既有均化的作用也有储存生料的作用. 2.4 水泥厂生料工段工艺流程图石灰石→板式喂料机→单段锤式破碎机 →皮带→堆料机→取料机→皮带→配料站→立磨→o-sepa选粉机→气力 输送管道和皮带提升机→生料均化库 2.5 生料工段主要设备,设备工作原理 (1) 板式喂料机 板式喂料机能承受较大的料压和冲击,适应大块矿石的喂料,该机给料均 衡运转可靠,但设备较重,价格高.板式喂料机分轻型,中型和重型三种.立窑水泥厂石灰石破碎的喂料机一般选用中型的占多.

水泥化学分析.docx

水泥化学分析 一( 目的 检测水泥的化学指标,指导检测员按规程正确操作,保证检测结果科学、准 确。 二 ( 检测参数及执行标准 MgO、碱含量。烧失量、不溶物、SO32-、 执行标准 :GB/T176-2008 《水泥化学分析方法》。 三 ( 适用范围 适用于水泥烧失量、不溶物、SO32- 、 MgO、碱含量的测定。 四( 职责 1.检测人员必须执行现行标准。 2.检测人员负责操作 , 随时做记录 , 编制报告 , 并对数据负责。 五 ( 样本大小及抽样方法 水泥分析代表样品 1 公斤 , 采用四分法缩分至约 100g, 经 0.08mm方孔筛筛析 , 用磁铁吸去筛余物中的金属铁 , 将筛余物经过研磨后使其全部通过 0.080mm方孔筛 , 装入磨口瓶中备用。 六 ( 仪器设备 分析天平 (JC602) 、 SX2-2.54-10 高温炉 (HX051)、101-3 烘干箱 (HX071)、X-11铂坩埚 (HX271)、X30银坩埚 (HX281)、火焰光度计 (HX361)、马弗炉 (HX051)、干燥器、烧杯、中速滤纸、表面皿 化学试剂 : 氢氧化钠溶液、甲基红指示剂、盐酸(1+1) 、硝酸铵溶液、 BaCl2(10%)、硫酸、硫酸钡、甲基红、1+1 氨水 10.53.1 —1

水泥化学分析 七 ( 环境条件 1( 天平室 : 避光 2( 化学分析室 : 有通风设施 , 上下水道等。 八 ( 检测步骤及数据处理 1.不溶物的测定 ( 基准法 ) (1)称取 m91.000g 试样于 150ml 烧杯中,加 25ml 水,搅拌。在搅拌 , 下加入 5ml 盐酸,用平头玻璃棒压碎块状物使其分解完全,加近沸的水稀释至 50ml,盖上表面皿,置于蒸汽浴中加热15min。用中速滤纸过滤,用热水充分洗涤10 次以上。将残渣和滤纸一并移入烧杯中,加入100 ml 氢氧化钠溶液,盖上表面皿,至于蒸汽浴中加热 15min,加热期间搅动滤纸及残渣 2-3次。取下烧杯加入 1-2 滴甲基红指示剂溶液,滴加盐酸 (1+1)至溶液成红色,再过量8-10 滴。用中速滤纸过滤,用热的硝酸铵溶液,充分洗涤14 次以上。将残渣和滤纸一并移入已灼烧 恒量的瓷坩埚中,灰化后在950?25?的马弗炉内灼烧30 min ,取出坩埚置于干燥器中冷却至室温,称量。反复灼烧,直至恒量m10。 (2)不溶物的计算: XIR=(m10/m9)*100 2. 烧失量的测定 ( 基准法 ) X (1)称取 m0,1.000g 试样于已灼烧恒重的瓷坩埚中 , 盖斜盖 , 放在马弗 炉内从低温开始逐渐升高至 950?25?灼烧 15-20 分钟 , 取出坩埚于干燥器中冷却 至室温 , 称量。反复灼烧至恒重m1。 (2)烧失量的计算 : 10.53.1 —2 水泥化学分析

相关主题
文本预览
相关文档 最新文档