2013年四川省成都市中考数学一模预测试卷
- 格式:doc
- 大小:777.50 KB
- 文档页数:30
成都市二O 一三年高中阶段教育学校统一招生考试(含成都市初三毕业会考)数 学注意事项:1. 全套试卷分为A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。
2. 在作答前,考生务必将自己的姓名,准考证号涂写在试卷和答题卡规定的地方。
考试结束,监考人员将试卷和答题卡一并收回。
3. 选择题部分必须使用2B 铅笔填涂;非选择题部分也必须使用毫米黑色签字笔书写,字体工整,笔迹清楚。
4. 请按照题号在答题卡上各题目对应的答题区域内作答,超出答题区域书写的答案无效;在草稿纸,试卷上答题均无效。
5. 保持答题卡清洁,不得折叠、污染、破损等。
A 卷(共100分)第I 卷(选择题,共30分)一、选择题(本大题共10个小题,每小题3分,共30分.每小题均有四个选项.其中只有一项符合题目要求,答案涂在答题卡上) 1.2的相反数是( )(A)2 (B)-2 (C)21 (D)21-2.如图所示的几何体的俯视图可能是( )3.要使分式15-x 有意义,则x 的取值范围是( ) (A )x ≠1 (B )x>1 (C )x<1 (D )x ≠-1 4.如图,在△ABC 中,∠B=∠C,AB=5,则AC 的长为( ) (A )2 (B )3 (C )4 (D )5 5.下列运算正确的是( )(A )31×(-3)=1 (B )5-8=-3(C )32-=6 (D )0)2013(-=06.参加成都市今年初三毕业会考的学生约有13万人,将13万用科学计数法表示应为( )(A )×510 (B )13×410 (C )×510 (D )×6107.如图,将矩形ABCD 沿对角线BD 折叠,使点C 和点'C 重合,若AB=2,则'C D 的长为( ) (A )1 (B )2 (C )3 (D )48.在平面直角坐标系中,下列函数的图像经过原点的是( ) (A )y=-x +3 (B )y=x5(C )y=x 2 (D )y=722-+-x x 9.一元二次方程x 2+x-2=0的根的情况是( )(A )有两个不相等的实数根 (B )有两个相等的实数根 (C )只有一个实数根 (D )没有实数根10.如图,点A ,B ,C 在⊙O 上,∠A=50°,则∠BOC 的度数为( ) (A )40° (B )50° (C )80° (D )100°二.填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.不等式312>-x 的解集为_______________. 12.今年4月20日在雅安市芦山县发生了7.0级的大地震,全川人民众志成城,抗震救灾,某班组织“捐零花钱,献爱心”活动,全班50名学生的捐款情况如图所示,则本次捐款金额的众数是__________元.13.如图,∠B=30°,若AB ∥CD ,CB 平分∠ACD,则∠ACD=__________度.14.如图,某山坡的坡面AB=200米,坡角∠BAC=30°,则该山坡的高BC 的长为__________米. 三.解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分)(1)计算1260sin 2|3|)2(2-+-+- (2)解方程组⎩⎨⎧=-=+②① 521y x y x16.(本小题满分6分)化简112)(22-+-÷-a a a a a17.(本小题满分8分)如图, 在边长为1的小正方形组成的方格纸上,将△ABC 绕着点A 顺时针旋转90° (1)画出旋转之后的△''C AB(2)求线段AC 旋转过程中扫过的扇形的面积18.(本小题满分8分)“中国梦”关乎每个人的幸福生活, 为进一步感知我们身边的幸福,展现成都人追梦的风采,我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品. 现将参赛的50件作品的成绩(单位:分)进行统计如下:等级 成绩(用s 表示) 频数频率 A 90≤s ≤100 xB 80≤s <9035 yC s <8011 合 计501请根据上表提供的信息,解答下列问题: (1)表中的x 的值为_______,y 的值为________(2)将本次参赛作品获得A 等级的学生一次用1A ,2A ,3A ,…表示,现该校决定从本次参赛作品中获得A 等级学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生1A 和2A 的概率.19.(本小题满分10分)如图,一次函数11y x =+的图像与反比例函数2ky x=(k 为常数,且0≠k )的图像都经过点)2,(m A(1)求点A 的坐标及反比例函数的表达式; (2)结合图像直接比较:当0>x 时,1y 和2y 的大小.20.(本小题满分10分) 如图,点B 在线段AC 上,点D ,E 在AC 同侧,90A C ∠=∠=,BD BE ⊥,AD BC =. (1)求证:CE AD AC +=;(2)若3AD =,5CE =,点P 为线段AB 上的动点,连接DP ,作DP PQ ⊥,交直线BE 与点Q ;i )当点P 与A ,B 两点不重合时,求DPPQ的值; ii )当点P 从A 点运动到AC 的中点时,求线段DQ 的中点所经过的路径(线段)长.(直接写出结果,不必写出解答过程)B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21. 已知点(3,5)在直线y ax b =+(,a b 为常数,且0a ≠)上,则5ab -的值为_____.22. 若正整数n 使得在计算(1)(2)n n n ++++的过程中,各数位均不产生进位现象,则称n 为“本位数”.例如2和30是“本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为_______.23. 若关于t 的不等式组0214t a t -≥⎧⎨+≤⎩,恰有三个整数解,则关于x 的一次函数14y x a=-的图像与反比例函数32a y x+=的图像的公共点的个数为_________. 24. 在平面直角坐标系xOy 中,直线y kx =(k 为常数)与抛物线2123y x =-交于A ,B 两点,且A 点在y 轴左侧,P 点的坐标为(0,4)-,连接,PA PB .有以下说法:○12PO PA PB =⋅;○2当0k >时,()()PA AO PB BO +-的值随k 的增大而增大;○3当33k =-时,2BP BO BA =⋅;○4PAB ∆面积的最小值为46. 其中正确的是_______.(写出所有正确说法的序号)25. 如图,A B C ,,,为⊙O 上相邻的三个n 等分点,AB BC =,点E 在弧BC 上,EF 为⊙O 的直径,将⊙O 沿EF 折叠,使点A 与'A 重合,连接'EB ,EC ,'EA .设'EB b =,EC c =,'EA p =.先探究,,b c p 三者的数量关系:发现当3n =时, p b c =+.请继续探究,,b c p 三者的数量关系: 当4n =时,p =_______;当12n =时,p =_______. (参考数据:62sin15cos 754-==, 62cos15sin 754+==) 二、解答题(本小题共三个小题,共30分.答案写在答题卡上) 26.(本小题满分8分)某物体从P 点运动到Q 点所用时间为7秒,其运动速度v (米每秒)关于时间t (秒)的函数关系如图所示.某学习小组经过探究发现:该物体前进3秒运动的路程在数值上等于矩形AODB 的面积.由物理学知识还可知:该物体前n (37n <≤)秒运动的路程在数值上等于矩形AODB 的面积与梯形BDNM 的面积之和.根据以上信息,完成下列问题:(1)当37n <≤时,用含t 的式子表示v ;(2)分别求该物体在03t ≤≤和37n <≤时,运动的路程s (米)关于时间t (秒)的函数关系式;并求该物体从P 点运动到Q 总路程的710时所用的时间.27.(本小题满分10分)如图,⊙O 的半径25r =,四边形ABCD 内接圆⊙O ,AC BD ⊥于点H ,P 为CA 延长线上的一点,且PDA ABD ∠=∠.(1)试判断PD 与⊙O 的位置关系,并说明理由: (2)若ta n ∠ADB=43,AH PA 3334-=,求BD 的长; (3)在(2)的条件下,求四边形ABCD 的面积.28.(本小题满分12分)在平面直角坐标系中,已知抛物线212y x bx c =-++(,b c 为常数)的顶点为P ,等腰直角三角形ABC 的定点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限.(1)如图,若该抛物线过 A ,B 两点,求该抛物线的函数表达式;(2)平移(1)中的抛物线,使顶点P 在直线AC 上滑动,且与AC 交于另一点Q . i )若点M 在直线AC 下方,且为平移前(1)中的抛物线上的点,当以M P Q 、、 三点为顶点的三角形是等腰直角三角形时,求出所有符合条件的点M 的坐标;ii)取BC的中点N,连接,NP BQ.试探究PQNP BQ是否存在最大值?若存在,求出该最大值;若不存在,请说明理由.成都市二〇一三年高中阶段教育学校统一招生考试试卷(含成都市初三毕业会考)数学参考答案及评分意见说明:(一)考生的解法与“参考答案”不同时,可参照“答案的评分标准”的精神进行评分(二)如解答的某一步计算出现错误,这一错误没有改变后续部分的考查目的,可酌情给分,但原则上不超过后面应得分数的二分之一;如属严重的概念性错误,就不给分.(三)以下解答各行右端所注分数表示正确做完该步骤应得的分数.(四)评分的最小单位是1分,得分或扣分都不能出现小数.A 卷(共100分)第Ⅰ卷(共30分)一、 选择题(每小题3分,共30分) 1.B ; 2.C ; 3.A ; 4.D ; 5.B ;6.A ;7.B ;8.C ;9.A ;10.D .第Ⅱ卷(共70分)二、 填空题(每小题4分,共16分) 11.2x >;12.10;13.60;14.100.三、 解答题(本大题共6个小题,共54分) 15.(本小题满分12分,每题6分) (1)解:原式=343223+······4分=4.······6分(2)解:由①+②,得 36x =, ∴2x =.······3分把2x =代入①,得 21y +=,∴ 1y =-.······5分 ∴ 原方程组的解为 2,1.x y =⎧⎨=-⎩······6分16.(本小题满分6分)解:原式=2(1)(1)1a a a a --÷-······4分=(1)a a -21(1)a a -⋅-······5分 =a .······6分17.(本小题满分8分)解:(1)如图,△AB ′C ′为所求三角形.······4分(2)由图可知, 2AC =,∴线段AC 在旋转过程中所扫过的扇形的面积为:2902360S π⋅==π.······8分18.(本小题满分8分) 解:(1)4,0.7;(每空2分)······4分(2)由(1)知获得A 等级的学生共有4人,则另外两名学生为A 3和A 4.画如下树状图:所有可能出现的结果是:(A 1,A 2),(A 1,A 3),(A 1,A 4),(A 2,A 1),(A 2,A 3),(A 2,A 4),(A 3,A 1),(A 3,A 2),(A 3,A 4),(A 4,A 1),(A 4,A 2),(A 4,A 3).······7分 或列表如下:A 1 A 2 A 3 A 4 A 1 (A 1,A 2)(A 1,A 3) (A 1,A 4) A 2 (A 2,A 1) (A 2,A 3)(A 2,A 4) A 3 (A 3,A 1) (A 3,A 2) (A 3,A 4)A 4(A 4,A 1)(A 4,A 2)(A 4,A 3)·····7分由此可见,共有12种可能出现的结果,且每种结果出现的可能性相同,其中恰好抽到A 1,A 2两名学生的结果有2种.∴P (恰好抽到A 1,A 2两名学生)21126==.·····8分19.(本小题满分10分)解:(1)∵ 一次函数11y x =+的图象经过点(A m ,2),∴ 21m =+. ······1分 解得 1m =.······2分 ∴ 点A 的坐标为(1A ,2).······3分∵ 反比例函数2ky x=的图象经过点(1A ,2), ∴ 21k =. 解得 2k =.∴ 反比例函数的表达式为22y x=. ······5分(2)由图象,得当01x <<时,12y y <;······7分当1x =时,12y y =; ······8分当1x >时,12y y >.······10分20.(本小题满分10分)解:(1)证明:∵BD ⊥BE ,A ,B ,C 三点共线,∴∠ABD +∠CBE =90°.······1分∵∠C =90°, ∴∠CBE +∠E =90°. ∴∠ABD =∠E .又∵∠A =∠C ,AD =BC , ∴△DAB ≌△BCE (AAS).······2分∴AB=CE .∴AC=AB+BC=AD+CE .······3分(2)ⅰ)连接DQ ,设BD 与PQ 交于点F .∵∠DPF =∠QBF =90°,∠DFP =∠QFB , ∴△DFP ∽△QFB .······4分∴DF PFQF BF=. 又∵∠DFQ =∠PFB ,∴△DFQ ∽△PFB .······5分∴∠DQP =∠DBA . ∴tan tan DQP DBA ∠=∠. 即在Rt △DPQ 和Rt △DAB 中,DP DAPQ AB=. ∵AD=3,AB=CE=5, ∴35DP PQ =. ·····7分ⅱ)线段DQ 的中点所经过的路径(线段)长为2334.······10分B 卷(共50分)一、填空题(每小题4分,共20分) 21.13-; 22.711; 23.0或1;24.③④;25.p c =+;p c =+(每空2分). 二、解答题(本大题共3个小题,共30分) 26.(本小题满分8分)解:(1)当37t <≤时,设v kt b =+,把(3,2),(7,10)代入得23,107.k b k b =+⎧⎨=+⎩······1分解得2,4.k b =⎧⎨=-⎩······2分∴2 4.v t =- ······3分(2)当03t ≤≤时,2.s t = ······4分当37t <≤时,[]1232(24)(3)2s t t =⨯++-- 249.t t =-+······6分∴总路程为:2747930-⨯+=,且73021 6.10⨯=> 令21s =,得24921t t -+=.解得16t =,22t =-(舍去).∴该物体从P 点运动到Q 点总路程的710时所用的时间是6秒. ······8分 27.(本小题满分10分)解:(1)PD 与⊙O 相切.理由如下:······1分过点D 作直径DE ,连接AE . 则∠DAE =90°.∴∠AED + ∠ADE =90°.∵∠ABD =∠AED ,∠PDA =∠ABD , ∴∠PDA =∠AED .······2分∴∠PDA +∠ADE =90°.∴PD 与⊙O 相切.······3分(2)连接BE ,设AH =3k ,∵3tan 4ADB ∠=,433PA AH -=,AC ⊥BD 于H .∴DH =4k ,AD =5k ,()433PA k =,43PH PA AH k =+=. ∴3tan 3DH P PH ==∴∠P =30°,8PD k =.······4分∵BD ⊥AC , ∴∠P +∠PDB =90°. ∵PD ⊥DE ,∴∠PDB +∠BDE =90°. ∴∠BDE =∠P =30°. ∵DE 为直径,∴∠DBE =90°,DE =2r =50.······5分 ∴cos 50cos30253BD DE BDE =⋅∠=︒=.······6分(3)连接CE .∵DE 为直径, ∴∠DCE =90°.∴4sin sin 50405CD DE CED DE CAD =⋅∠=⋅∠=⨯=. ······7分∵∠PDA =∠ABD =∠ACD ,∠P =∠P , ∴△PDA ∽△PCD . ∴PD DA PAPC CD PD==. ∴()43385408k k kPC k==.解得:PC =64,433k =. ······8分∴()()264433644337243AC PC PA k =-=-=-=+ ······9分 ∴S 四边形ABCD = S △ABD + S △CBD1122BD AH BD CH =⋅+⋅ 12BD AC =⋅28.(本小题满分12分)解:(1)由题意,得点B 的坐标为(4,–1). ······1分∵抛物线过点A (0,–1),B (4,–1)两点, ∴21,1144.2c b c -=⎧⎪⎨-=-⨯++⎪⎩解得2,1.b c =⎧⎨=-⎩ ∴抛物线的函数表达式为:21212y x x =-+-.······3分(2)ⅰ)∵A 的坐标为(0,–1),C 的坐标为(4,3).∴直线AC 的解析式为:y =x –1.设平移前的抛物线的顶点为P 0,则由(1)可得P 0的坐标为(2,1),且P 0在直线AC 上. ∵点P 在直线AC 上滑动,∴可设P 的坐标为(m ,m -1),则平移后的抛物线的函数表达式为21()(1)2y x m m =--+-.解方程组21,1()(1).2y x y x m m =-⎧⎪⎨=--+-⎪⎩得{11,1,x m y m ==-{222,3.x m y m =-=- 即P (m ,m -1),Q (m -2,m -3).过点P 作PE ∥x 轴,过点Q 作QE ∥y 轴,则 PE =m -(m -2)=2,QE =(m -1)-(m -3)=2. ∴PQ =AP 0.······5分若△MPQ 为等腰直角三角形,则可分以下两种情况:①当PQ 为直角边时:M 到PQ 的距离为为22(即为PQ 的长).由A (0,-1),B (4,-1),P 0(2,1)可知:△ABP 0为等腰直角三角形,且BP 0⊥AC ,BP 0=22.过点B 作直线l 1∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 1的解析式为:1y x b =+.又∵点B 的坐标为(4,–1),∴114b -=+.解得15b =-. ∴直线l 1的解析式为:5y x =-. 解方程组25,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩得:114,1,x y =⎧⎨=-⎩222,7.x y =-⎧⎨=-⎩ ∴1(4,1)M -,2(2,7)M --.······7分②当PQ 为斜边时:MP =MQ =2,可求得M 到PQ 的距离为为2.取AB 的中点F ,则点F 的坐标为(2,-1).由A(0,-1),F(2,-1),P 0(2,1)可知:△AFP 0为等腰直角三角形,且F 到AC 的距离为2.∴过点F 作直线l 2∥AC 交抛物线21212y x x =-+-于点M ,则M 为符合条件的点.∴可设直线l 2的解析式为:2y x b =+. 又∵点F 的坐标为(2,–1), ∴212b -=+.解得23b =-. ∴直线l 2的解析式为:3y x =-. 解方程组23,12 1.2y x y x x =-⎧⎪⎨=-+-⎪⎩ 得: 1115,25,x y ⎧=+⎪⎨=-+⎪⎩2215,2 5.x y ⎧=-⎪⎨=--⎪⎩ ∴3(15,25)M +-+,4(15,25)M ---.······9分综上所述:所有符合条件的点M 的坐标为:1(4,1)M -,2(2,7)M --,3(15,25)M +-+,4(15,25)M ---.ⅱ)PQNP BQ +存在最大值,理由如下:由ⅰ)知PQ =22,当NP +BQ 取最小值时,PQNP BQ+有最大值.取点B 关于AC 的对称点B ′,易得B ′ 的坐标为(0,3),BQ = B ′Q . 连接QF ,FN ,QB ′,易得FN PQ . ∴四边形PQFN 为平行四边形. ∴NP=FQ .∴NP +BQ =F Q + B ′P ≥F B ′222425+当B ′,Q ,F 三点共线时,NP +BQ 最小,最小值为25 ∴PQ NP BQ +的最大值 222510.······12分。
2013年某某省某某市青羊区中考数学一模试卷一、选择题(本大题共10题,每小题3分,共30分)1.(3分)(2012•某某)sin45°的值等于()A.B.C.D.1考点:特殊角的三角函数值.分析:根据特殊角度的三角函数值解答即可.解答:解:sin45°=.故选B.点评:此题比较简单,只要熟记特殊角度的三角函数值即可.2.(3分)(2012•某某)若一元二次方程x2+2x+m=0有实数解,则m的取值X围是()A.m≤﹣1 B.m≤1C.m≤4D.考点:根的判别式.专题:计算题;压轴题.分析:由一元二次方程有实数根,得到根的判别式大于等于0,列出关于m的不等式,求出不等式的解集即可得到m的取值X围.解答:解:∵一元二次方程x2+2x+m=0有实数解,∴b2﹣4ac=22﹣4m≥0,解得:m≤1,则m的取值X围是m≤1.故选B点评:此题考查了一元二次方程解的判断方法,一元二次方程ax2+bx+c=0(a≠0)的解与b2﹣4ac有关,当b2﹣4ac>0时,方程有两个不相等的实数根;当b2﹣4ac=0时,方程有两个相等的实数根;当b2﹣4ac<0时,方程无解.3.(3分)(2012•某某地区)如图,正方形ABOC的边长为2,反比例函数的图象过点A,则k的值是()A.2B.﹣2 C.4D.﹣4考点:反比例函数系数k的几何意义.专题:数形结合.分析:根据反比例函数图象上的点的横纵坐标之积是定值k,同时|k|也是该点到两坐标轴的垂线段与两坐标轴围成的矩形面积即可解答.解答:解:因为图象在第二象限,所以k<0,根据反比例函数系数k的几何意义可知|k|=2×2=4,所以k=﹣4.故选D.点评:本题主要考查反比例函数的比例系数k的几何意义.反比例函数图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系,即S=|k|.4.(3分)(2013•某某)已知:如图,OA,OB是⊙O的两条半径,且OA⊥OB,点C在⊙O上,则∠ACB的度数为()A.45°B.35°C.25°D.20°考点:圆周角定理.专题:探究型.分析:直接根据圆周角定理进行解答即可.解答:解:∵OA⊥OB,∴∠AOB=90°,∴∠ACB=∠AOB=45°.故选A.点评:本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.5.(3分)(2011•某某)已知1是关于x的一元二次方程(m﹣1)x2+x+1=0的一个根,则m的值是()A.1B.﹣1 C.0D.无法确定考点:一元二次方程的解;一元二次方程的定义.分析:把x=1代入方程,即可得到一个关于m的方程,即可求解.解答:解:根据题意得:(m﹣1)+1+1=0,解得:m=﹣1.故选B.点评:本题主要考查了方程的解的定义,正确理解定义是关键.6.(3分)(2012•某某)分别写有数字0,﹣1,﹣2,1,3的五X卡片,除数字不同外其他均相同,从中任抽一X,那么抽到负数的概率是()A.B.C.D.考点:概率公式.分析:让是负数的卡片数除以总卡片数即为所求的概率,即可选出.解答:解:∵五X卡片分别标有0,﹣1,﹣2,1,3五个数,数字为负数的卡片有2X,∴从中随机抽取一X卡片数字为负数的概率为.故选B.点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.7.(3分)(2013•青羊区一模)抛物线y=x2+2x﹣3的顶点在第()象限.A.一B.二C.三D.四考点:二次函数的性质.分析:先根据抛物线的顶点式求出抛物线y=x2+2x﹣3的顶点坐标,再根据各象限内点的坐标特点进行解答.解答:解:∵y=x2+2x﹣3=(x+1)2﹣4,∴顶点坐标为:(﹣1,﹣4),∵﹣1<0,﹣4<0,∴顶点在第三象限.故选C.点评:本题考查的是二次函数的性质及各象限内点的坐标特点,根据题意得出抛物线的顶点坐标是解答此题的关键.8.(3分)(2012•某某)某某市2009年平均房价为每平方米4000元.连续两年增长后,2011年平均房价达到每平方米5500元,设这两年平均房价年平均增长率为x,根据题意,下面所列方程正确的是()A.5500(1+x)2=4000 B.5500(1﹣x)2=4000 C.4000(1﹣x)2=5500 D.4000(1+x)2=5500考点:由实际问题抽象出一元二次方程.专题:增长率问题;压轴题.分析:根据下一年的房价等于上一年的房价乘以(1+x),可以列出2011年的房价,2011年将达到每平方米5500元,故可得到一个一元二次方程.解答:解:设年平均增长率为x,那么2010年的房价为:4000(1+x),2011年的房价为:4000(1+x)2=5500.故选:D.点评:本题主要考查了由实际问题抽象出一元二次方程:解决实际问题时,要全面、系统地弄清问题的已知和未知,以及它们之间的数量关系,找出并全面表示问题的相等关系,设出未知数,用方程表示出已知量与未知量之间的等量关系,即列出一元二次方程.9.(3分)(2012•某某)如图,已知菱形ABCD的对角线AC、BD的长分别为6cm、8cm,AE⊥BC于点E,则AE的长是()A.B.C.D.考点:菱形的性质;勾股定理.专题:压轴题.分析:根据菱形的性质得出BO、CO的长,在RT△BOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BC×AE,可得出AE的长度.解答:解:∵四边形ABCD是菱形,∴CO=AC=3cm,BO=BD=4cm,AO⊥BO,∴BC==5cm,∴S菱形ABCD==×6×8=24cm2,∵S菱形ABCD=BC×AE,∴BC×AE=24,∴AE=cm,故选D.点评:此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分.10.(3分)(2007•眉山)下列命题中的假命题是()A.一组邻边相等的平行四边形是菱形B.一组邻边相等的矩形是正方形C.一组对边平行且相等的四边形是平行四边形D.一组对边相等且有一个角是直角的四边形是矩形考点:命题与定理.专题:综合题.分析:要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.解答:解:A、根据菱形的判定定理,正确;B、根据正方形和矩形的定义,正确;C、符合平行四边形的定义,正确;D、错误,可为不规则四边形.故选D.点评:本题考查菱形、矩形和平行四边形的判定与命题的真假区别.二、填空题(本大题共4小题,每小题4分,共16分)11.(4分)(2013•青羊区一模)方程x2=3x的根是0或3 .考点:解一元二次方程-因式分解法.分析:本题应对方程进行变形,提取公因式x,将原式化为两式相乘的形式,再根据“两式相乘值为0,这两式中至少有一式值为0”来解题.解答:解:x2=3xx2﹣3x=0即x(x﹣3)=0∴x=0或3故本题的答案是0或3.点评:本题考查了一元二次方程的解法.解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法.本题运用的是因式分解法.12.(4分)(2013•青羊区一模)二次函数y=﹣(x﹣1)(x+3)的对称轴是直线x=﹣1 .考点:二次函数的性质.分析:利用配方法或抛物线的对称轴的公式即可求解.解答:解:y=﹣(x﹣1)(x+3),=﹣(x2+2x﹣3),=﹣(x2+2x+1﹣4),=﹣(x+1)2+4,对称轴为x=﹣1,故答案为:x=﹣1.点评:此题主要考查了求抛物线的对称轴,既可以利用配方法,也可以利用对称轴的公式解决问题.13.(4分)(2012•某某)如图,点P是⊙O外一点,PA是⊙O的切线,切点为A,⊙O的半径OA=2cm,∠P=30°,则PO=4 cm.考点:切线的性质;含30度角的直角三角形.专题:压轴题.分析:根据切线的性质判定△APO为直角三角形,然后在直角三角形中,利用30度角所对的直角边OA等于斜边PO的一半即可求得PO的值.解答:解:∵如图,PA是⊙O的切线,∴PA⊥OA,∴∠PAO=90°;又∵∠P=30°(已知),∴PO=2OA(30°角所对的直角边是斜边的一半);∵OA=2cm(已知),∴PO=4cm;故答案是:4.点评:本题考查了切线的性质、含30度角的直角三角形.运用切线的性质可推知∠PAO=90°,即△PAO是直角三角形.14.(4分)(2013•青羊区一模)已知一斜坡的坡度为1:,则斜坡的坡角为30 度.考点:解直角三角形的应用-坡度坡角问题.分析:坡度=坡角的正切值,以此求出坡角的度数.解答:解:设坡角为α,由题意知:tanα==,∴∠α=30°.即斜坡的坡角为30°.点评:此题考查的是坡度和坡角的关系,坡角的正切等于坡度,坡角越大,坡度也越大,坡面越陡.三、解答题(本大题2个小题,共18分)15.(12分)(2013•青羊区一模)计算:(1)(2)解方程:x(x﹣2)+x﹣2=0.考点:解一元二次方程-因式分解法;实数的运算;负整数指数幂;特殊角的三角函数值.分析:(1)根据负整数指数幂、绝对值、特殊角的三角函数值分别进行计算,再把所得的结果相加哎即可;(2)根据因式分解法解一元二次方程的步骤,分别进行计算,即可求出答案.解答:解:(1)=3﹣2++9=12﹣;(2)x(x﹣2)+x﹣2=0,x2﹣2x+x﹣2=0,x2﹣x﹣2=0,(x﹣2)(x+1)=0,x1=2,x2=﹣1.点评:此题考查了因式分解法解一元二次方程和实数的运算,掌握负整数指数幂、绝对值、特殊角的三角函数值以及因式分解法解一元二次方程的步骤是解题的关键.16.(6分)(2005•某某)如图,某船向正东航行,在A处望见某岛C在北偏东60°,前进6海里到B点,测得该岛在北偏东30°,己知在该海岛周围6海里内有暗礁,问若船继续向东航行,有无触礁危险?请说明理由.考点:解直角三角形的应用-方向角问题.专题:计算题.分析:判断有无危险只要求出点C到AB的距离,与6海里比较大小就可以.解答:解:过点C作CD⊥AB于点D,∵∠CAD=90°﹣60°=30°,∠CBD=90°﹣30°=60°,∴∠ACB=∠CBD﹣∠CAD=30°=∠CDA,∴BC=AB=6,在Rt△CBD中,sin∠CBD=,∴CD=CB•sin60°=6×=3<6答:若船继续向东航行,有触礁危险.点评:解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.四、解答题(本题8分)17.(8分)(2012•某某)如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.(1)求证:BD=EC;(2)若∠E=50°,求∠BAO的大小.考点:菱形的性质;平行四边形的判定与性质.专题:证明题.分析:(1)根据菱形的对边平行且相等可得AB=CD,AB∥CD,然后证明得到BE=CD,BE∥CD,从而证明四边形BECD是平行四边形,再根据平行四边形的对边相等即可得证;(2)根据两直线平行,同位角相等求出∠ABO的度数,再根据菱形的对角线互相垂直可得AC⊥BD,然后根据直角三角形两锐角互余计算即可得解.解答:(1)证明:∵菱形ABCD,∴AB=CD,AB∥CD,又∵BE=AB,∴BE=CD,BE∥CD,∴四边形BECD是平行四边形,∴BD=EC;(2)解:∵平行四边形BECD,∴BD∥CE,∴∠ABO=∠E=50°,又∵菱形ABCD,∴AC丄BD,∴∠BAO=90°﹣∠ABO=40°.点评:本题主要考查了菱形的性质,平行四边形的判定与性质,熟练掌握菱形的对边平行且相等,菱形的对角线互相垂直是解本题的关键.五、解答题(本大题2个小题,共18分)18.(8分)(2013•青羊区一模)有三X正面分别写有数字﹣2,﹣1,1的卡片,它们的背面完全相同,将这三X卡片背面朝上洗匀后随机抽取一X,以其正面的数字作为x的值,放回卡片洗匀,再从三X卡片中随机抽取一X,以其正面的数字作为y的值,两次结果记为(x,y).(1)用树状图或列表法表示(x,y)所有可能出现的结果;(2)若(x,y)表示平面直角坐标系的点,求点(x,y)在图象上的概率.考点:列表法与树状图法;反比例函数图象上点的坐标特征.分析:(1)根据题意列出图表,即可表示(x,y)所有可能出现的结果;(2)根据反比例函数的性质求出在图象上的点,即可得出答案.解答:解:(1)用列表法表示(x,y)所有可能出现的结果如下:﹣2 ﹣1 1﹣2 (﹣2,﹣2)(﹣1,﹣2)(1,﹣2)﹣1 (﹣2,﹣1)(﹣1,﹣1)(1,﹣1)1 (﹣2,1)(﹣1,1)(1,1)(2)∵点(x,y)在图象上的只有(﹣2,1),(1,﹣2),∴点(x,y)在图象上的概率.点评:此题考查了树状图法与列表法求概率.此题难度不大,解题的关键是根据题意画出树状图或列出表格,注意树状图法与列表法可以不重不漏地表示出所有等可能的结果,注意用到的知识点为:概率=所求情况数与总情况数之比.19.(10分)(2013•青羊区一模)如图,在平面直角坐标系中,一次函数y=kx+b的图象分别交x轴、y轴于A、B两点,与反比例函数的图象交于C、D两点,DE⊥x轴于点E,已知C点的坐标是(6,﹣1),DE=3.(1)求反比例函数与一次函数的解析式;(2)求△CDE的面积.考点:反比例函数与一次函数的交点问题.专题:计算题.分析:(1)将C坐标代入反比例解析式中求出m的值,确定出反比例解析式,再由DE为3得到D纵坐标为3,将y=3代入反比例解析式中求出x的值,即为D的横坐标,设直线解析式为y=kx+b,将D与C的坐标代入求出k与b的值,即可确定出一次函数解析式;(2)过C作CH垂直于x轴,由C、D的纵坐标确定出DE与CH的长,分别为三角形ADE与三角形ACE中AE边上的高,由三角形CDE的面积=三角形AED的面积+三角形AEC的面积,求出即可.解答:解:(1)∵点C(6,﹣1)在反比例y=图象上,∴将x=6,y=﹣1代入反比例解析式得:﹣1=,即m=﹣6,∴反比例解析式为y=﹣,∵点D在反比例函数图象上,且DE=3,即D纵坐标为3,将y=3代入反比例解析式得:3=﹣,即x=﹣2,∴点D坐标为(﹣2,3),设直线解析式为y=kx+b,将C与D坐标代入得:,解得:,∴一次函数解析式为y=﹣x+2;(2)过C作CH⊥x轴于点H,∵C(6,﹣1),∴CH=1,对于一次函数y=﹣x+2,令y=0,求得x=4,故A(4,0),由D坐标(﹣2,3),得到E(﹣2,0),∴AE=OA+OE=6,∴S△CDF=S△CAE+S△DAE=×6×1+×6×3=12.点评:此题考查了一次函数与反比例函数的交点问题,涉及的知识有:坐标与图形性质,待定系数法确定函数解析式,一次函数与坐标轴的交点,熟练掌握待定系数法是解本题的关键.六、解答题(共10分)20.(10分)(2012•某某州)如图,AB是⊙O的弦,D为OA半径的中点,过D作CD⊥OA交弦AB于点E,交⊙O于点F,且CE=CB.(1)求证:BC是⊙O的切线;(2)连接AF,BF,求∠ABF的度数;(3)如果CD=15,BE=10,sinA=,求⊙O的半径.考点:切线的判定;勾股定理;相似三角形的判定与性质;解直角三角形.专题:几何综合题;压轴题.分析:(1)连接OB,有圆的半径相等和已知条件证明∠OBC=90°即可证明BC是⊙O的切线;(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;(3)过点C作CG⊥BE于点G,由CE=CB,可求出EG=BE=5,又Rt△ADE∽Rt△CGE和勾股定理求出DE=2,由Rt△ADE∽Rt△CGE求出AD的长,进而求出⊙O的半径.解答:(1)证明:连接OB∵OB=OA,CE=CB,∴∠A=∠OBA,∠CEB=∠ABC又∵CD⊥OA∴∠A+∠AED=∠A+∠CEB=90°∴∠OBA+∠ABC=90°∴OB⊥BC∴BC是⊙O的切线.(2)解:连接OF,AF,BF,∵DA=DO,CD⊥OA,∴AF=OF,∵OA=OF,∴△OAF是等边三角形,∴∠AOF=60°∴∠ABF=∠AOF=30°(3)解:过点C作CG⊥BE于点G,由CE=CB,∴EG=BE=5又∵Rt△ADE∽Rt△CGE∴sin∠ECG=sin∠A=,∴CE==13∴CG==12,又∵CD=15,CE=13,∴DE=2,由Rt△ADE∽Rt△CGE得=∴AD=•CG=∴⊙O的半径为=2AD=.点评:本题考查了切线的判定和性质,等边三角形的判定和性质、圆周角定理以及勾股定理和相似三角形的判定和性质,题目的综合性不小,难度也不小.一、填空题(本大题5个小题,每小题4分,共20分)21.(4分)(2012•某某)设a,b是方程x2+x﹣2013=0的两个不相等的实数根,则a2+2a+b的值为2012 .考点:根与系数的关系;一元二次方程的解.分析:根据方程的根的定义,把a代入方程求出a2+a的值,再利用根与系数的关系求出a+b的值,然后两者相加即可得解.解答:解:∵a,b是方程x2+x﹣2013=0的两个不相等的实数根,∴a2+a﹣2013=0,∴a2+a=2013,又∵a+b=﹣=﹣1,∴a2+2a+b=(a2+a)+(a+b)=2013﹣1=2012.故答案为:2012.点评:本题考查了根与系数的关系与一元二次方程的解的定义,考虑把a2+2a+b分成(a2+a)与(a+b)的和是解题的关键.22.(4分)(2013•青羊区一模)如图,⊙O的半径为2,弦AB=,点C在弦AB上,AC=AB,则OC的长为.考点:垂径定理;勾股定理.分析:过O作OD⊥AB于D,根据垂径定理求出BD,根据勾股定理求出OD,根据勾股定理求出OC即可.解答:解:过O作OD⊥AB于D,∵OD⊥AB,OD过O,AB=,∴AD=BD=AB=,∵AB=,点C在弦AB上,AC=AB,∴AC=,CD=AD﹣AC=,在Rt△OBD中,由勾股定理得:OD==1,在Rt△OCD中,由勾股定理得:OC===,故答案为:.点评:本题考查了初级定理和勾股定理的应用,关键是构造直角三角形,主要考查学生运用定理进行推理和计算的能力.23.(4分)(2013•青羊区一模)已知抛物线y=(k﹣1)x2+(2﹣2k)x+c经过点(﹣3,﹣m)和点(a,﹣m),则a的值为 5 .考点:二次函数图象上点的坐标特征.分析:先求出抛物线的对称轴为直线x=1,再根据点(﹣3,﹣m)和点(a,﹣m)关于直线x=1对称,即可求出a的值.解答:解:∵y=(k﹣1)x2+(2﹣2k)x+c,∴此抛物线的对称轴为直线x==1,∵点(﹣3,﹣m)和点(a,﹣m)的纵坐标相同,∴点(﹣3,﹣m)和点(a,﹣m)关于直线x=1对称,∴=1,解得a=5.故答案为5.点评:本题考查了二次函数的性质及二次函数图象上点的坐标特征,判断出点(﹣3,﹣m)和点(a,﹣m)关于抛物线的对称轴对称是解题的关键.24.(4分)(2012•某某)如图,M为双曲线y=上的一点,过点M作x轴、y轴的垂线,分别交直线y=﹣x+m于点D、C两点,若直线y=﹣x+m与y轴交于点A,与x轴相交于点B,则AD•BC的值为2.考点:反比例函数综合题.专题:综合题;压轴题.分析:作CE⊥x轴于E,DF⊥y轴于F,由直线的解析式为y=﹣x+m,易得A(0,m),B(m,0),得到△OAB 等腰直角三角形,则△ADF和△CEB都是等腰直角三角形,设M的坐标为(a,b),则ab=,并且CE=b,DF=a,则AD=DF=a,BC=CE=b,于是得到AD•BC=a•b=2ab=2.解答:解:作CE⊥x轴于E,DF⊥y轴于F,如图,对于y=﹣x+m,令x=0,则y=m;令y=0,﹣x+m=0,解得x=m,∴A(0,m),B(m,0),∴△OAB等腰直角三角形,∴△ADF和△CEB都是等腰直角三角形,设M的坐标为(a,b),则ab=,CE=b,DF=a,∴AD=DF=a,BC=CE=b,∴AD•BC=a•b=2ab=2.故答案为2.点评:本题考查了反比例函数综合题:点在反比例函数图象上,点的横纵坐标满足其解析式;会求一次函数与坐标轴的交点坐标以及灵活运用等腰直角三角形的性质.25.(4分)(2013•青羊区一模)二次函数的图象如图所示,点A0位于坐标原点,点A1,A2,A3,…,A2008在y轴的正半轴上,点B1,B2,B3,…,B2008在二次函数位于第一象限的图象上,若△A0B1A1,△A1B2A2,△A2B3A3,…,△A2007B2008A2008都为等边三角形,则△A2007B2008A2008的边长= 2008 .考点:二次函数综合题.专题:压轴题.分析:先计算出△A0B1A1;△A1B2A2;△A2B3A2的边长,推理出各边长组成的数列各项之间的排列规律,依据规律得到△A2007B2008A2008的边长.解答:解:作B1A⊥y轴于A,B2B⊥y轴于B,B3C⊥y轴于C.设等边△A0B1A1、△A1B2A2、△A2B3A3中,AA1=a,BA2=b,CA2=c.①等边△A0B1A1中,A0A=a,所以B1A=atan60°=a,代入解析式得×(a)2=a,解得a=0(舍去)或a=,于是等边△A0B1A1的边长为×2=1;②等边△A2B1A1中,A1B=b,所以BB2=btan60°=b,B2点坐标为(b,1+b)代入解析式得×(b)2=1+b,解得b=﹣(舍去)或b=1,于是等边△A2B1A1的边长为1×2=2;③等边△A2B3A3中,A2C=c,所以CB3=btan60°=c,B3点坐标为(c,3+c)代入解析式得×(c)2=3+c,解得c=﹣1(舍去)或c=,于是等边△A3B3A2的边长为×2=3.于是△A2007B2008A2008的边长为2008.故答案为:2008.点评:此题主要考查了二次函数和等边三角形的性质的综合应用,将其性质结合在一起,增加了题目的难度,是一道开放题,有利于培养同学们的探索发现意识.二、解答题(本题8分)26.(8分)(2009•某某)为了扩大内需,让惠于农民,丰富农民的业余生活,鼓励送彩电下乡,国家决定对购买彩电的农户实行政府补贴.规定每购买一台彩电,政府补贴若干元,经调查某商场销售彩电台数y (台)与补贴款额x(元)之间大致满足如图①所示的一次函数关系.随着补贴款额x的不断增大,销售量也不断增加,但每台彩电的收益Z(元)会相应降低且Z与x之间也大致满足如图②所示的一次函数关系.(1)在政府未出台补贴措施前,该商场销售彩电的总收益额为多少元?(2)在政府补贴政策实施后,分别求出该商场销售彩电台数y和每台家电的收益z与政府补贴款额x之间的函数关系式;(3)要使该商场销售彩电的总收益w(元)最大,政府应将每台补贴款额x定为多少并求出总收益w的最大值.考点:一次函数的应用.专题:压轴题.分析:(1)总收益=每台收益×总台数;(2)结合图象信息分别利用待定系数法求解;(3)把y与z的表达式代入进行整理,求函数最值.解答:解:(1)该商场销售家电的总收益为800×200=160000(元);(2)根据题意设y=k1x+800,Z=k2x+200∴400k1+800=1200,200k2+200=160解得k1=1,k2=﹣∴y=x+800,Z=﹣x+200;(3)W=yZ=(x+800)•(﹣x+200),=﹣(x﹣100)2+162000.∵﹣<0,∴W有最大值.当x=100时,W最大=162000∴政府应将每台补贴款额x定为100元,总收益有最大值其最大值为162000元.点评:本题主要考查待定系数法求函数解析式和二次函数的最值问题,审好题非常重要!三、解答题(本题10分)27.(10分)(2013•青羊区一模)如图,△ABC中AB=AC,BC=6,,点P从点B出发沿射线BA 移动,同时,点Q从点C出发沿线段AC的延长线移动,已知点P、Q移动的速度相同,PQ与直线BC相交于点D.(1)如图①,当点P为AB的中点时,求CD的长;(2)如图②,过点P作直线BC的垂线垂足为E,当点P、Q在移动的过程中,线段BE、DE、CD中是否存在长度保持不变的线段?请说明理由;考点:等腰三角形的性质;全等三角形的判定与性质.专题:几何综合题;压轴题;分类讨论.分析:(1)过点P做PF平行与AQ,由平行我们得出一对同位角和一对内错角的相等,再由AB=AC,根据等边对等角得角B和角ACB的相等,根据等量代换的角B和角PFB的相等,根据等角对等边得BP=PF,又因点P和点Q同时出发,且速度相同即BP=CQ,等量代换得PF=CQ,在加上对等角的相等,证得三角形PFD和三角形QCD的全等,根据全等三角形的对应边边相等得出DF=CD=CF,而又因P是AB的中点,PF∥AQ得出F是BC的中点,进而根据已知的BC的长,求出CF,即可得出CD的长.(2)分两种情况讨论,第一种情况点P在线段AB上,根据等腰三角形的三线合一得BE=EF,再又第一问的全等可知DF=CD,所以ED=,得出线段DE的长为定值;第二种情况,P在BA的延长线上,作PM平行于AC交BC的延长线于M,根据两直线平行,同位角相等推出角PMB等于角ACB,而角ACB等于角ABC,根据等量代换得到角ABC等于角PMB,根据等角对等边得到PM等于PB,根据三线合一,得到BE等于EM,同理可得△PMD全等于△QCD,得到CD等于DM,根据DE等于EM减DM,把EM换为BC加CM的一半,化简后得到值为定值.解答:解:(1)如图,过P点作PF∥AC交BC于F,∵点P和点Q同时出发,且速度相同,∴BP=CQ,∵PF∥AQ,∴∠PFB=∠ACB,∠DPF=∠CQD,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PFB,∴BP=PF,∴PF=CQ,又∠PDF=∠QDC,∴证得△PFD≌△QCD,∴DF=CD=CF,又因P是AB的中点,PF∥AQ,∴F是BC的中点,即FC=BC=3,∴CD=CF=;(2)分两种情况讨论,得ED为定值,是不变的线段如图,如果点P在线段AB上,过点P作PF∥AC交BC于F,∵△PBF为等腰三角形,∴PB=PF,BE=EF,∴PF=CQ,∴FD=DC,∴ED=,∴ED为定值,同理,如图,若P在BA的延长线上,作PM∥AC的延长线于M,∴∠PMC=∠ACB,又∵AB=AC,∴∠B=∠ACB,∴∠B=∠PMC,∴PM=PB,根据三线合一得BE=EM,同理可得△PMD≌△QCD,所以CD=DM,,综上所述,线段ED的长度保持不变.点评:此题考查了等腰三角形的性质,全等三角形的判断与性质,考查了分类讨论的数学思想,是一道综合题.四、解答题(本题12分)28.(12分)(2013•青羊区一模)如图,抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0)、B(x2,0)(x1<x2),与y轴的正半轴交于点C(0,3).已知该抛物线的顶点横坐标为1,A、B两点间的距离为4.(1)求这条抛物线的解析式;(2)求△ABC外接圆的圆心M的纵坐标;(3)在抛物线上是否存在一点P,使△PBD(PD垂直于x轴,垂足为D)被直线BM分成面积比为1:2两部分?若存在,请求出点P的坐标;若不存在,请说明理由.考点:二次函数综合题.分析:(1)因为抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0),B(x2,0)(x1<x2),所以A和B关于抛物线的对称轴对称,于是=1①;又因为A、B两点间的距离为4,且x1<x2,所以x2﹣x1=4②,将①②组成方程组,解出x1,x2的值,再将点A、B、C的坐标代入y=ax2+bx+c,运用待定系数法即可求出抛物线的解析式;(2)根据三角形外心的定义可知MA=MB=MC,由MA=MB及A、B两点的坐标,得出圆心M的横坐标为1,设M(1,y),根据MA=MC列出方程,即可求出M的纵坐标;(3)设PD与BM的交点为E,分成两种情况考虑:①当△BPE的面积是△BDE的2倍时,由于△BDE 和△BPD同高不等底,那么它们的面积比等于底边的比,即DE=PD,可设出P点的坐标,那么E点的纵坐标是P点纵坐标的,BD的长为B、P横坐标差的绝对值,由于∠OBC=45°,那么BD=DE,可以此作为等量关系求出P点的坐标;②当△BDE的面积是△BPE的2倍时,方法同①.解答:解:(1)∵抛物线y=ax2+bx+c与x轴有两个不同的交点A(x1,0)、B(x2,0)(x1<x2),且抛物线顶点的横坐标为1,∴=1,即x1+x2=2①;又∵A、B两点间的距离为4,且x1<x2,∴x2﹣x1=4②,①与②组成方程组,解得,∴A(﹣1,0),B(3,0).把A(﹣1,0),B(3,0),C(0,3)代入y=ax2+bx+c,得,解得,∴函数解析式为y=﹣x2+2x+3;(2)∵△ABC外接圆的圆心是M,∴MA=MB=MC,M点在线段AB的垂直平分线上,∵A(﹣1,0),B(3,0),∴M的横坐标为:=1.设M(1,y),由MA=MC,得(1+1)2+y2=12+(y﹣3)2,解得y=1.故△ABC外接圆的圆心M的纵坐标为1;(3)在抛物线上存在一点P,能够使△PBD(PD垂直于x轴,垂足为D)被直线BM分成面积比为1:2的两部分.理由如下:设PD与BM的交点为E,可求直线BM解析式为y=﹣x+,设P(x,﹣x2+2x+3),分两种情况:①当S△BED:S△BEP=1:2时,PD=3DE,如图.则﹣x2+2x+3=3(﹣x+),整理,得2x2﹣7x+3=0,解得x=或3,∴或(舍去),∴P(,);②当S△PBE:S△BED=1:2时,2PD=3DE,如图.则2(﹣x2+2x+3)=3(﹣x+),整理,得4x2﹣11x﹣3=0,解得x=﹣或3,∴或(舍去),∴P(﹣,).故在抛物线上存在点P(,)或P(﹣,),使△PBD(PD垂直于x轴,垂足为D)被直线BM分成面积比为1:2的两部分.点评:此题是二次函数的综合类题目,其中涉及到运用待定系数法求函数的解析式,二次函数的性质,三角形的外心,两点间的距离公式以及图形面积的求法等知识,综合性强,难度稍大,(3)中进行分类讨论是解题的关键.。
2013年成都市中考数学模拟试题A 卷(100分)一、选择题。
(每小题3分,共30分) 1.下列计算正确的是:A .-4+3=1B . |-5|=-5C .2×(-2)=-4D . 90-8=12.从正面观察下图1所示的两个几何体,你看到的是:3.在2012年全国初中数学竞赛复赛中,成都市某校9年级10名参赛学生成绩分别为:84,85,86,84,86,87,87,86,87,87,则这组数据的中位数和众数分别是: A .86;87B . 87;86C . 86.5;87D . 87;86.54.某校科技制作小组有4名女生和6名男生,现从中任选1人去参加市科技制作比赛,则选中女生的概率是:A .32B.52 C.101 D.21 5.如图2,△ABC 内接于⊙O ,∠C=45°,AB=8,则⊙O 的半径为:A .24 B. 8C. 34D. 96.不等式组⎩⎨⎧>>-1203x x 的解集为:A .x >3B. 21>x C. x<3 D.321<<x 7.如图3,△ABC 沿边BC 所在直线向右平移得到△DEF ,则下列结论中错误的是:A .△ABC ≌△DEF B. AC=DF C .AB=DED. EC=FC8.下列4个命题:①矩形的对角线互相平分且相等;②对角线互相垂直的四边形是菱形; ③等腰梯形的两条对角线相等;④等腰三角形底边上的中点到两腰的距离相等。
其中正确的是 A .①②③B. ②③④C. ①②④D. ①③④9.已知二次函数y=x 2-2x-1的图象如图4所示,根据图中提供的信息,求使得y ≤2成立的x 的取值范围是 A .x ≤-1或x ≥3 B . -2≤x ≤2 C .x ≥-2D . -1≤x ≤3CABCD图1图2图310.某校公布了该校反映各年级学生体育达标情况的两张 统计图(如图5),该校七、八、九三个年级共有学生1000人。
2013年成都市中考模拟试题(一)数 学A卷 (共100分)第Ⅰ卷(选择题,共30分)一、选择题:(每小题3分,共3 0分)每小题有四个选项,其中只有一项符合题目要求。
1.﹣|2-|的相反数是( ) A .2-B .2C .12D .12-2.今年某市参加中考的人数约是105 000,数据105 000用科学记数法表示为( ) A .410.510⨯B .310510⨯C .51.0510⨯D .60.10510⨯3.下列运算正确的是( )A .246x x x +=B .326()x x -= C .235a b ab +=D .632x x x ÷=4、如图2,已知△ABC 的面积为24,点D 在线段AC 上,点F 在线段 BC 的延长线上,且BC =4CF ,DCFE 是平行四边形,则图中阴影部 分的面积为( )A 、3B 、4C 、6D 、8 图15、如图2所示是一个三棱柱纸盒,在下面四个图中,只有一个是这个纸盒的展开图,那么这个展开图是( )图26、参加一次聚会的每两个人都握一次手,所有人共握手66次,则参加聚会的人数是( ) A 、8 B 、10 C 、12 D 、147、如图4,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),那么这个圆锥的高为( ) A 、62cm B 、35cmC 、8cmD 、53cm 图4ABCDEA BFCD剪去8、市委、市政府打算在2015年底前,完成国家森林城市创建.这是小明随机抽取我市10个小区所得到的绿化率情况,结果如下表:小区绿化率(%)20 25 30 32 小区个数2431则关于这10个小区的绿化率情况,下列说法错误..的是( ) A .中位数是25% B .众数是25% C .极差是13% D .平均数是26.2%9、对正整数n ,记!123......n n =⨯⨯⨯⨯,则1!2!3!......10!+++的末尾数为( ) A 、0 B 、1 C 、3 D 、510、如图5,AB 是半圆O 的直径,点P 从点O 出发,沿 OA AB BO --的路径运动一周.设OP 为s ,运动时间为t ,则下列图形能大致地刻画s 与t 之间关系的是( )第Ⅱ卷《非选择题,共7()分)二、填空题:(每小题4分,共l 6分)11.分解因式:x x 43- = x(x+2)(x-2) 。
12999数学网欢迎来投稿下载!
12999数学网欢迎来投稿下载! 成都市二○一三年高中阶段教育学校统一招生考试模拟试卷
(含成都市初三毕业会考)
27.(本小题满分10分)
如图,已知点C 是以AB 为直径的⊙O 上一点,CH ⊥AB 于点H ,过点B 作⊙O 的切线交直线AC 于点D ,点E 为CH 的中点,连结并延交BD 于点F ,直线CF 交AB 的延长线于G .
⑴求证:EC AF FD AE ⋅=⋅;
⑵求证:FB FC =;
⑶若2==FE FB ,求⊙O 的半径r 的长.
28.(本小题满分12分)
在平面直角坐标xoy 中,(如图)正方形OABC 的边长为4,边OA 在x 轴的正半轴上,边OC 在y 轴的正半轴上,点D 是OC 的中点,BE ⊥DB 交x 轴于点E .
⑴求经过点D 、B 、E 的抛物线的解析式;
⑵将∠DBE 绕点B 旋转一定的角度后,边BE 交线段OA 于点F ,边BD 交y 轴于点G ,交⑴中的抛物线于M (不与点B 重合),如果点M 的横坐标为5
12,那么结论OF =21DG 能成立吗?请说明理由. ⑶过⑵中的点F 的直线交射线CB 于点P ,交⑴中的抛物线在第一象限的部分于点Q ,且使△PFE 为等腰三角形,求Q 点的坐标.
A。
S (千米)t (时)O 10 22.57.5l B l A0.5 1.53成都市二○一三年高中阶段教育学校统一招生考试模拟试卷(含成都市初三毕业会考)数 学 模 拟 卷(四)A 卷(共100分)一、选择题:(每小题3分,共30分) 1、32--的相反数是( )23)(32)(23)(32)(D C B A --2、为了充分利用我国丰富的水力资源,国家计划在四川省境内长江上游修建一系列大型水力发电站,预计这些水力发电站的总发电量相当于10个三峡电站的发电量。
已知三峡电站的年发电量将达到84700000000千瓦时,那么四川省境内的这些大型水力发电站的年发电总量用科学计数法表示为( )千瓦时A 、91047.8⨯B 、111047.8⨯C 、101047.8⨯D 、121047.8⨯3、下列运算中,结果正确的是( )A .633·x x x =; B .422523x x x =+; C .532)(x x =; D .222()x y x y +=+. 4.下列调查,比较适用普查而不适用抽样调查方式的是( )A .调查全省食品市场上某种食品的色素含量是否符合国家标准;B .调查一批灯泡的使用寿命;C .调查你所在班级全体学生的身高;D .调查全国初中生每人每周的零花钱数. 5、下列四个命题中,假.命题的是( ). A .四条边都相等的四边形是菱形; B .对角线互相垂直平分且相等的四边形是正方形; C .有三个角是直角的四边形是矩形; D .一组对边平行,另一组对边相等的四边形是等腰梯形. 6、某学校有数学教师25名,将他们的年龄分成3组,在38~45(岁)组内有8名教师, 那么这个小组的频率是( )12.0)(A 38.0)(B 32.0)(C 12.3)(D7、如果两圆半径分别为3和7,圆心距为4,那么这两圆的位置关系是( ). (A )内含 (B )内切 (C )相交 (D )外切8、汽车由重庆驶往相距400千米的成都。
2013年中考数学预测试卷(一)(满分120分,考试时间100分钟)一、选择题(每小题3分,共24分)1.9的平方根是()A.3 B.-3 C.±3 D.62.某种微粒子,测得它的质量为0.000 067 46克,这个质量用科学记数法表示(保留三个有效数字)应为()A.6.75×10-5克B.6.74×10-5克C.6.74×10-6克D.6.75×10-6克3.下列图形中,既是轴对称图形又是中心对称图形的共有()A.1个B.2个C.3个D.4个4.某市5月上旬前五天的最高气温如下(单位:°C):28,29,31,29,33,对这组数据,下列说法错误的是()A.平均数是30 B.众数是29 C.中位数是31 D.极差是5 5.如图,二次函数2y ax bx c=++的图象经过(-1,1),(2,-1)两点,下列关于这个二次函数的叙述正确的是()A.当x=0时,y的值大于1 B.当x=3时,y的值小于0C.当x=1时,y的值大于1 D.y的最大值小于0(2,-1)(-1,1)yxO水平面主视方向第5题图第6题图6.两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是()A.两个外离的圆B.两个相交的圆C.两个外切的圆D.两个内切的圆7.如图,已知直线y 1=x +m 与y 2=kx -1相交于点P (-1,1),则关于x 的不等式 x +m >kx -1的解集在数轴上表示正确的是( )-100-10-10-1A . B . C . D .8.如图,已知线段OA 交⊙O 于点B ,且OB =AB ,若点P 是⊙O 上的一个动点,则∠OAP 的最大值是( )A .30°B .45°C .60°D .90°y 2y 1PO y xOBPAFE D CBA第7题图 第8题图 第10题图 二、填空题(每小题3分,共21分) 9.化简:128=2-_________. 10.如图,在△ABC 中,∠B =50°,三角形的外角∠DAC 和∠ACF 的平分线交于点E ,则∠AEC =_________.11.圆锥的底面圆直径和母线长均为80cm ,则它的侧面展开图的圆心角是_________.12.某市初中毕业男生体育测试项目有四项,其中“立定跳远”、“1000米跑”、“掷实心球”为必测项目,另一项从“篮球运动”或“一分钟跳绳”中选一项测试.小亮、小明和大刚从“篮球运动”或“一分钟跳绳”中选择同一个测试项目的概率是__________.13.如图,在△OAB 中,C 是AB 的中点,反比例函数y =kx(k >0)在第一象限的图象经过A ,C 两点,若△OAB 面积为6,则k 的值为______.AOxyCB14.将矩形纸片ABCD 按如图所示的方式折叠,点A 、点C 恰好落在对角线BD上,得到菱形BEDF .若BC =6,则AB 的长为_________.15.如图,在菱形ABCD 中,对角线AC ,BD 相交于点O ,AC =12,BD =16,E 为AD 中点,点P 在x 轴上移动.小明同学写出了两个使△POE 为等腰三角形的P 点坐标,即( 5 0 ) -,和( 5 0 ),.请你写出其余所有符合这个条件的P 点坐标__________________.ACBDEFDBCAAO xyBED C第14题图 第15题图 三、解答题(本大题共8小题,满分75分) 16.(8分)先化简2111122x x x x ⎛⎫-÷⎪-+-⎝⎭,然后从-2≤x ≤2的范围内选择一个合适的整数作为x 的值代入求值.17.(9分)为了更好地宣传吸烟的危害,某中学九年级一班数学兴趣小组设计了如下调查问卷,调查了部分吸烟人群,并将调查结果绘制成统计图.42%调查结果的扇形统计图调查结果的条形统计图人数选项307812612120100806040200AC B DEE DBCA根据以上信息,解答下列问题:(1)本次接受调查的总人数是 人,并把条形统计图补充完整. (2)在扇形统计图中,C 选项的人数百分比是 ,E 选项所在扇形的圆心角的度数是 .(3)若某地区约有烟民14万人,试估计对吸烟有害持“无所谓”态度的约有多少人?吸烟有害——你打算怎样减少吸烟的危害?(单选) A .无所谓B .少吸烟,以减轻对身体的危害C .不在公众场所吸烟,减少他人被动吸烟的危害D .决定戒烟,远离烟草的危害E .希望相关部门进一步加大控烟力度18.(9分)已知:如图,四边形ABCD 是正方形,BD 是对角线,BE 平分∠DBC 交DC 于E 点,交DF 于M 点,F 是BC 延长线上一点,且CE =CF . (1)求证:BM ⊥DF ;(2)若正方形ABCD 的边长为2,求ME ·MB 的值.M AC DEFB19.(9分)甲、乙两地相距300km ,一辆货车和一辆轿车先后从甲地出发驶向乙地.如图,线段OA 表示货车离甲地的距离y (km )与时间x (h )之间的函数关系,折线BC -CD -DE 表示轿车离甲地的距离y (km )与时间x (h )之间的函数关系.请根据图象,解答下列问题: (1)线段CD 表示轿车在途中停留了_____h ; (2)求线段DE 对应的函数解析式;(3)求轿车从甲地出发后经过多长时间追上货车.3008054.52.521Ox /hy /km AED B C20.(9分)如图所示,当小华站立在镜子EF 前的A 处时,他看自己的脚在镜中的像的俯角为45°;如果小华向后退0.5米到B 处,这时他看自己的脚在镜中的像的俯角为30°.求小华的眼睛到地面的距离.(结果精确到0.1米,参考数据:3 1.73 )45°30°A 1B 1FE DB CA21.(10分)某商店为了抓住文化艺术节的商机,决定购进A ,B 两种艺术节纪念品.若购进A 种纪念品8件,B 种纪念品3件,需要950元;若购进A 种纪念品5件,B 种纪念品6件,需要800元. (1)求购进A ,B 两种纪念品每件各需多少元.(2)若该商店决定购进这两种纪念品共100件,考虑市场需求和资金周转,用于购买这100件纪念品的资金不少于7 500元,但不超过7 650元,那么该商店共有几种进货方案?(3)若销售每件A 种纪念品可获利润20元,每件B 种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?22.(10分)在正方形ABCD 中,对角线AC ,BD 交于点O ,点P 在线段BC上(不与点B 重合),∠BPE =12∠ACB ,PE 交BO 于点E ,过点B 作BF ⊥PE ,垂足为F ,交AC 于点G .(1)当点P 与点C 重合时(如图1),求证:△BOG ≌△POE ;(2)通过观察、测量,猜想:BF PE= ,并结合图2证明你的猜想;(3)把正方形ABCD 改为菱形,其他条件不变(如图3),若∠ACB =α,求BFPE的值.(用含α的式子表示) C (P )E AG OF DBAOBD F P GEC BD F G CEPOA图1 图2 图323.(11分)如图,在平面直角坐标系中,点A 的坐标为(1,3),△AOB 的面积为3.(1)求过点A ,O ,B 的抛物线解析式.(2)在(1)中抛物线的对称轴上是否存在点M ,使△AOM 的周长最小?若存在,求出点M 的坐标;若不存在,请说明理由.(3)在x 轴下方的抛物线上是否存在一点P ,过点P 作x 轴的垂线,交直线AB 于点E ,线段OE 把△AOB 分成两个三角形,使其中一个三角形的面积与四边形BPOE 的面积之比为2:3?若存在,求出点P 的坐标;若不存在,请说明理由.yxO B A参考答案一、选择题1 2 3 4 5 6 7 8 CABCBDBA二、填空题9.2- 10.65° 11.180° 12.1413.4 14.2315.25(80)(0)8,或, 三、解答题 16.原式=4x,当2x =时,原式=2.(或当2x =-时,原式=2-.) 17.(1)300;(2)26%,36°;(3)5600人. 18.(1)证明略;(2)422-.19.(1)0.5;(2)110195y x =-;(3)2.9. 20.1.4 m .21.(1)A :100元,B :50元;(2)4;(3)当购进A 种纪念品50件,B 种纪念品50件时,可获最大利润,最大利润是2500元.22.(1)证明略;(2)12,证明略;(3)1tan 2α. 23.(1)232333y x x =+;(2)存在,3(1)3M -,;(3)存在,13()24--,.。
2013年成都七中中考数学一诊试题A 卷(共100分)一、单项选择题(每题3分,共30分) 1、-8的相反数是A 、81 B 、-81C 、-8D 、8 2、如图所示的物体由两个紧靠在一起的圆柱组成,小刚准备画出它的三视图,那么他所画的三视图中的俯视图应该是A 、两个相交的圆B 、两个内切的圆C 、两个外切的圆D 、两个外离的圆2题图3题图ADC3、如图,已知在□ABCD 中,AD=3cm ,AB=2cm ,则□ABCD 的周长等于A 、10cmB 、6cmC 、5cmD 、4cm 4、下列运算正确的是A 、3322=-a a B 、963a a a =⋅ C 、532)(a a = D 、2224)2(a a = 5、南海资源丰富,其面积约为350万平方米,相当于我国的渤海、黄海和东海总面积的3倍,其350万用科学记数法表示为A 、3.5×108B 、3.5×107C 、3.5×106D 、3.5×1056、线段MN 在平面直角坐标系中的位置如图,若线段M 1N 1与MN 关于y 轴对称,则点M 的对应点M 1的坐标为A 、(4,2)B 、(-4,2)C 、(-4,-2)D 、B 、(4,2)6题图7题图7、如图,点A 、B 、C 是⊙O 上三点,∠AOC=130°,则∠ABC 等于A 、65°B 、60°C 、50°D 、70°8、为了参加市中学生篮球运动会,一支校篮球队准备购买10双运动鞋,各种尺码统计如下表所示:尺码(厘米) 25 25.5 26 26.5 27 购买量(双)12332则这10双鞋尺码的众数和中位数分别是 A 、25.5厘米,26厘米 B 、26厘米,25.5厘米 C 、25.5厘米,25.5厘米 D、26厘米,26厘米 9、用圆心角为120°,半径为6cm 的扇形纸片,卷成一个圆锥形无底纸帽(如图所示),则这个纸帽的高是 cmA 、2B 、32C 、42D 、410题图10、若二次函数y =ax 2+bx +a 2-2(a 、b 为常数)的图像如图,则a 的值为A 、±2B 、-2C 、2D 、-2二、填空题(每题4分,共16分)11、分解因式:4x 2-6= 12、如图,△ABC 中,DE ∥BC ,21=BD AD ,DE=2cm ,则BC 边的长是13、若一元二次方程x 2+2x +m =0有实数解,则m 的取值范围是14、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,如果AB=26,CD=24,那么sin ∠OCE=12题图ADECB三、解答题(共6个小题,共54分) 15、(本小题满分12分,每题6分) (1)计算:3tan30°+(π-2013)0-121(12--(2)解不等式组⎪⎩⎪⎨⎧+≤-+<+23531)2(213x x x x ,并写出该不等式组的自然数解16、(本小题满分6分)如图,一架飞机以每小时900千米的速度水平飞行。
2013年四川省成都市中考数学一诊预测试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D233.(3分)(2011•莆田)已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为B.D4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能5.(3分)(2008•衡阳)如图所示的几何体的主视图是()7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()B.D•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()9.(3分)(2011二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=_________.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是_________.(填“甲”、“乙”、“丙”中的一个)13.(3分)方程组的解是_________.14.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为_________.15.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.三、解答题(本大题共8个小题,满分55分)16.(21分)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.19.(8分)(2011•绍兴)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为_________(结果保留根号的形式).23.(4分)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是_________.24.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN 交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=_________.(用含m的代数式表示)25.(4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?五、解答题:(本大题共3个小题,共30分)26.(8分)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余费用由区财政部门其中学校所在的区不同,m的取值也不相同,但市财政部门将m调控在20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.28.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.2013年四川省成都市中考数学一模预测试卷参考答案与试题解析一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D233.(3分)(2011•莆田)已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为B.D,分别解出其解集,然后,取其公共,4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换能力将成倍增长.该工程投资预算约为930 000万元,这一数据用科学记数法表示为()5.(3分)(2008•衡阳)如图所示的几何体的主视图是()B.D7.(3分)把不等式组的解集表示在数轴上,下列选项正确的是()B.Dr=,9.(3分)(2011•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()10.(3分)(2006•重庆)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()(垂径定理)∠二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=y(x﹣1)2.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是乙.(填“甲”、“乙”、“丙”中的一个)13.(3分)方程组的解是.解:所以原方程组的解为:故答案为:.14.(3分)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为.cd ab=215.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).﹣三、解答题(本大题共8个小题,满分55分)16.(21分)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.,将方程化为关于的值,即可求出方程的解;﹣×+6=1+))﹣,方程变为或﹣﹣=÷•=,时,原式.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)﹣18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.代入反比例函数解析式,=yy=联立解得=×19.(8分)(2011•绍兴)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)AD==7520.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).,,CQ=aBE=CE=aBC=3AC=PQ==a四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为6.22.(4分)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为4或(结果保留根号的形式).×=2因而面积是×2=4CEA==××=或423.(4分)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.OM=TC=,OAM=∠,×=故答案为:24.(4分)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)(=,==,=(﹣x y((==故答案为:.25.(4分)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?的最大值等于矩形对角线的长度,即==12+4.五、解答题:(本大题共3个小题,共30分)26.(8分)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余费用由区财政部门20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.=,==,AB=BG==4228.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.DG,,解得DG,∴,∴(,(,解得x+6DGx x+2=),解得x x+2=x,﹣.,),(,。
2013年四川省成都市中考数学一模预测试卷2013年四川省成都市中考数学一模预测试卷一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D.233.(3分)(2011•莆田)已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为.C D.”字交叉,城市交通通行和转换4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十5.(3分)(2008•衡阳)如图所示的几何体的主视图是().C D.7.(3分)(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是().C D.8.(3分)(2011•福建)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为9.(3分)(2011•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()10.(3分)(2006•重庆)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=_________.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是_________.(填“甲”、“乙”、“丙”中的一个)13.(3分)(2013•成都一模)方程组的解是_________.14.(3分)(2013•成都一模)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为_________.15.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是_________.三、解答题(本大题共8个小题,满分55分)16.(21分)(2013•成都一模)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解)18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.19.(8分)(2012•枣庄)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)20.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)(2013•成都一模)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为_________.22.(4分)(2013•成都一模)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为_________(结果保留根号的形式).23.(4分)(2013•成都一模)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD 延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是_________.24.(4分)(2013•成都一模)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则= _________.(用含m的代数式表示)25.(4分)(2013•东城区一模)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?五、解答题:(本大题共3个小题,共30分)26.(8分)(2013•成都一模)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.28.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.2013年四川省成都市中考数学一模预测试卷参考答案与试题解析一、选择题:(每小题3分,共30分)每小题均有四个选项,其中只有一项符合题目要求.D.233.(3分)(2011•莆田)已知点P(a,a﹣1)在平面直角坐标系的第一象限内,则a的取值范围在数轴上可表示为.C D.)在平面直角坐标系的第一象限内,可得4.(3分)(2012•成都)成都地铁二号线工程即将竣工,通车后与地铁一号线呈“十”字交叉,城市交通通行和转换5.(3分)(2008•衡阳)如图所示的几何体的主视图是().C D.7.(3分)(2013•内江)把不等式组的解集表示在数轴上,下列选项正确的是().C D.8.(3分)(2011•福建)用半径为12cm,圆心角为90°的扇形纸片,围成一个圆锥的侧面,这个圆锥的底面半径为r=9.(3分)(2011•北海)如图,直线l:y=x+2与y轴交于点A,将直线l绕点A旋转90°后,所得直线的解析式为()10.(3分)(2006•重庆)如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于()DCF=二、填空题(每小题3分,共15分)11.(3分)(2011•东营)分解因式:x2y﹣2xy+y=y(x﹣1)2.10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是乙.(填“甲”、“乙”、“丙”中的一个)13.(3分)(2013•成都一模)方程组的解是.,.故答案为:14.(3分)(2013•成都一模)如图,是反比例函数y=和y=(k1<k2)在第一象限的图象,直线AB∥x轴,并分别交两条曲线于A、B两点,若S△AOB=2,则k2﹣k1的值为4.﹣15.(3分)(2009•枣庄)如图,直线y=﹣x+4与x轴、y轴分别交于A、B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(7,3).三、解答题(本大题共8个小题,满分55分)16.(21分)(2013•成都一模)(1)计算:;(2)解方程:;(3)先化简,再求值:,其中m=.﹣﹣﹣×+6=﹣+1+6=8﹣)﹣,方程变为﹣=或;÷•,.17.(8分)(2008•济南)完全相同的4个小球,上面分别标有数字1,﹣1,2,﹣2,将其放入一个不透明的盒子中摇匀,在从中随机摸球两次(第一次摸出球后放回摇匀).把第一次,第二次摸到的球上标有的数字分别记作m,n,以m,n分别作为一个点的横坐标与纵坐标,求点(m,n)不在第二象限的概率.(用树状图或列表法求解))不在第二象限的概率为18.(8分)(2012•德阳)已知一次函数y1=x+m的图象与反比例函数的图象交于A、B两点.已知当x>1时,y1>y2;当0<x<1时,y1<y2.(1)求一次函数的解析式;(2)已知双曲线在第一象限上有一点C到y轴的距离为3,求△ABC的面积.=y =2,××19.(8分)(2012•枣庄)为倡导“低碳生活”,常选择以自行车作为代步工具,如图1所示是一辆自行车的实物图.车架档AC与CD的长分别为45cm,60cm,且它们互相垂直,座杆CE的长为20cm,点A,C,E在同一条直线上,且∠CAB=75°,如图2.(1)求车架档AD的长;(2)求车座点E到车架档AB的距离.(结果精确到1cm.参考数据:sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321)=7520.(10分)(2012•成都)如图,△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合.将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=a,CQ=时,P、Q两点间的距离(用含a的代数式表示).aBE=CE=aAC=PQ==a四、填空题(本大题共5个小题,每小题4分,共20分.)21.(4分)(2013•成都一模)已知当x=1时,2ax2+bx的值为3,则当x=2时,ax2+bx的值为6.22.(4分)(2013•成都一模)若等腰梯形ABCD的上、下底之和为4,并且两条对角线所夹锐角为60°,则该等腰梯形的面积为4或(结果保留根号的形式).×=2因而面积是=4CEA==30××或或23.(4分)(2013•成都一模)如图,AB是⊙O的直径,点D、T是圆上的两点,且AT平分∠BAD,过点T作AD延长线的垂线PQ,垂足为C.若⊙O的半径为2,TC=,则图中阴影部分的面积是.OM=TC=∠=××﹣故答案为:24.(4分)(2013•成都一模)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数(k为常数,且k>0)在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线EM与FN交于点C.若(m为大于l的常数).记△CEF的面积为S1,△OEF的面积为S2,则=.(用含m的代数式表示)==,((﹣ME﹣(﹣(=.故答案为:25.(4分)(2013•东城区一模)如图,长方形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针方向旋转180°,使线段GB与GE重合,将MN右侧纸片绕H 点按逆时针方向旋转180°,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片.(注:裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最小值和最大值分别为多少?的最大值等于矩形对角线的长度,即=2=12+412+4五、解答题:(本大题共3个小题,共30分)26.(8分)(2013•成都一模)为了实施教育均衡化,成都市决定采用市、区两级财政部门补贴相结合的方式为各级中小学添置多媒体教学设备,针对各个学校添置多媒体所需费用的多少市财政部门实施分类补贴措施如下表,其余20至40之间(20≤m≤40).试解决下列问题:(1)若某学校的多媒体教学设备费用为18万元,求市、区两级财政部门应各自补贴多少;(2)若某学校的多媒体教学设备费用为x万元,市财政部门补贴y万元,试分类列出y关于x的函数式;(3)若某学校的多媒体教学设备费用为30万元,市财政部门补贴y万元的取值范围为12≤y≤24,试求m的取值范围.27.(10分)(2012•德阳)如图,已知点C是以AB为直径的⊙O上一点,CH⊥AB于点H,过点B作⊙O的切线交直线AC于点D,点E为CH的中点,连接AE并延长交BD于点F,直线CF交AB的延长线于G.(1)求证:AE•FD=AF•EC;(2)求证:FC=FB;(3)若FB=FE=2,求⊙O的半径r的长.==,=4,28.(12分)(2012•德阳)在平面直角坐标xOy中,(如图)正方形OABC的边长为4,边OA在x轴的正半轴上,边OC在y轴的正半轴上,点D是OC的中点,BE⊥DB交x轴于点E.(1)求经过点D、B、E的抛物线的解析式;(2)将∠DBE绕点B旋转一定的角度后,边BE交线段OA于点F,边BD交y轴于点G,交(1)中的抛物线于M(不与点B重合),如果点M的横坐标为,那么结论OF=DG能成立吗?请说明理由;(3)过(2)中的点F的直线交射线CB于点P,交(1)中的抛物线在第一象限的部分于点Q,且使△PFE为等腰三角形,求Q点的坐标.x x+2,x x+2=,∴,),)x+6DGx+,∴),+,,﹣2=(,)或,参与本试卷答题和审题的老师有:wenming;Linaliu;caicl;sd2011;zjx111;bjy;算术;zhehe;hbxglhl;星期八;sks;未来;73zzx;lanchong;137-hui;wdxwzk;HLing;wangjc3;zcx;zhangCF;gbl210;hnaylzhyk;CJX;yangwy;蓝月梦(排名不分先后)菁优网2013年11月7日。