线性回归方程的求法(需要给每个人发)教程文件
- 格式:doc
- 大小:183.50 KB
- 文档页数:2
线性回归计算方法及公式精编版线性回归是一种常用的统计分析方法,用于建立一个线性关系的数学模型,以预测因变量与一个或多个自变量之间的关系。
它是一种简单但强大的预测模型,被广泛应用于各个领域,如经济学、金融学、工程学等。
线性回归模型可以表示为:Y=β₀+β₁X₁+β₂X₂+...+βₚXₚ+ε其中,Y是因变量,X₁,X₂,...,Xₚ是自变量,β₀,β₁,β₂,...,βₚ是回归系数,ε是误差项。
线性回归的目标是找到最佳的回归系数,使得拟合的线性关系与实际观测值之间的差异最小化。
这个问题可以通过最小二乘法来求解。
最小二乘法是一种求解最小化误差平方和的优化方法。
以下是线性回归的计算方法及公式精编版:Step 1: 收集数据首先,需要收集自变量和因变量的观测值数据。
Step 2: 确定模型根据实际问题和数据分析的目的,确定线性回归模型中的自变量和因变量。
Step 3: 建立矩阵表示将问题转化为矩阵表示形式,以便于计算。
将自变量的观测值表示为X矩阵,因变量的观测值表示为Y矩阵。
Step 4: 计算回归系数通过最小二乘法,计算回归系数。
回归系数可以通过以下公式求解:β=(X'X)⁻¹X'Y其中,X'是X的转置,(X'X)⁻¹表示X'X的逆矩阵。
Step 5: 模型评估计算模型的拟合优度及回归系数的显著性。
常用的评估指标有决定系数R²和F检验。
决定系数R²用于度量模型对观测值的拟合程度,其计算公式为:R²=1-SSR/SST其中,SSR表示回归平方和,SST表示总平方和。
F检验用于检验回归系数的显著性,其计算公式为:F=(SSR/K)/(SSE/(n-K-1))其中,SSR表示回归平方和,SSE表示残差平方和,K表示自变量的个数,n表示观测值的个数。
Step 6: 模型应用使用建立的线性回归模型进行预测和推断。
以上是线性回归的计算方法及公式精编版。
耿老师总结的高考统计部分的两个重要公式的具体如何应用ˆ+a ˆ=bx ˆ的求法:第一公式:线性回归方程为y(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(x 1+x 2+x 3+⋅⋅⋅+x n )n 1(y 1+y 2+y 3+⋅⋅⋅+y n )n ˆ,有两个方法(3)求变量x 的系数bˆ=法1b∑(x -x )(y -y )iii =1n∑(x -x )ii =1n(题目给出不用记忆)2(x1-x )(y 1-y )+(x 2-x )(y 2-y )+...+(x n-x )(y n-y )][(需理解并会代入数据)=222⎡⎤(x -x )+(x -x )+...+(x -x )2n ⎣1⎦nˆ=法2b∑(x -x )(y -y )iii =1∑(x -x )ii =1n(题目给出不用记忆)2=[x 1y1+x 2y 2+...x ny n]-nx ⋅y,(这个公式需要自己记忆,稍微简单些)2222⎡⎣x 1+x 2+...+x n ⎤⎦-nx ˆˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ-a ˆ=bx ˆ。
可以改写为:y =bx ˆ(y ˆ与y 不做区分)最后写出写出回归方程y例.已知x ,y 之间的一组数据:x0123y1357求y 与x 的回归方程:解:(1)先求变量x 的平均值,既x =(2)求变量y 的平均值,既y =1(0+1+2+3)=1.541(1+3+5+7)=44ˆ,有两个方法(3)求变量x 的系数b2222⎡⎤(x -x )+(x -x )+(x -x )+(x -x )1234⎣⎦ˆ法1b=(0-1.5)(1-4)+(1-1.5)(3-4)+(2-1.5)(5-4)+(3-1.5)(7-4)5==22227⎡⎣(0-1.5)+(1-1.5)+(2-1.5)+(3-1.5)⎤⎦(x1-x )(y 1-y )+(x 2-x )(y 2-y )+(x 3-x )(y 3-y )+(x 4-x )(y 4-y )][=ˆ=法2b[x 1y1+x 2y 2+...x ny n]-nx ⋅y=[0⨯1+1⨯3+2⨯5+3⨯7]-4⨯1.5⨯4=52222⎡⎤x +x +...+x -nx 12n ⎣⎦2222⎡⎤0+1+2+3⎣⎦7ˆ=4-ˆ=y -bx ˆ,既a (4)求常数aˆ+a ˆ=bx ˆ=最后写出写出回归方程y第二公式:独立性检验两个分类变量的独立性检验:525⨯1.5=77525x +77y1a ca +cy2b d总计x 1a +b c +d a +b +c +d注意:数据a 具有两个属性x 1,y 1。
高考统计部分的两个重要公式的具体如何应用
第一公式:线性回归方程为ˆˆˆy
bx a =+的求法: (1) 先求变量x 的平均值,既1231()n x x x x x n =
+++⋅⋅⋅+ (2) 求变量y 的平均值,既1231()n y y y y y n
=+++⋅⋅⋅+ (3) 求变量x 的系数ˆb
,有两个方法 法112
1()()ˆ()n
i i
i n i
i x x y y b x x ==--=-∑∑(题目给出不用记忆)[]112222212()()()()...()()()()...()n n n x x y y x x y y x x y y x x x x x x --+--++--=⎡⎤-+-++-⎣⎦
(需理解并会代入数据) 法21
2
1()()ˆ()n
i i
i n i
i x x y y b x x ==--=-∑∑(题目给出不用记忆) []1122222212...,...n n n x y x y x y nx y x x x nx
++-⋅=⎡⎤+++-⎣⎦(这个公式需要自己记忆,稍微简单些) (4) 求常数ˆa ,既ˆˆa y bx =- 最后写出写出回归方程ˆˆˆy
bx a =+。
可以改写为:ˆˆy bx a =-(ˆy y 与不做区分) 例.已知,x y 之间的一组数据:
求y 与x 的回归方程:
解:(1)先求变量x 的平均值,既1(0123) 1.54x =
+++= (2)求变量y 的平均值,既1(1357)44
y =+++= (3)求变量x 的系数ˆb
,有两个方法
法1ˆb = []11223344222212342222()()()()()()()()()()()()(0 1.5)(14)(1 1.5)(34)(2 1.5)(54)(3 1.5)(74)57(0 1.5)(1 1.5)(2 1.5)(3 1.5)x x y y x x y y x x y y x x y y x x x x x x x x --+--+--+--=⎡⎤-+-+-+-⎣⎦--+--+--+--==⎡⎤-+-+-+-⎣⎦
法2ˆb =[][]11222222222212...011325374 1.5457
...0123n n n x y x y x y nx y x x x nx ++-⋅⨯+⨯+⨯+⨯-⨯⨯==⎡⎤⎡⎤+++-+++⎣⎦⎣⎦ (4)求常数ˆa ,既525ˆˆ4 1.577a y bx =-=-⨯= 最后写出写出回归方程525ˆˆˆ77
y
bx a x =+=+
第二公式:独立性检验 两个分类变量的独立性检验:
注意:数据a 具有两个属性1x ,1y 。
数
据b 具有两个属性1x ,2y 。
数据c 具有两个属性2x ,2y 数据d 具有两个属性2x ,2y 而且列出表格是最重要。
解题步骤如下
第一步:提出假设检验问题 (一般假设两个变量不相关)
第二步:列出上述表格
第三步:计算检验的指标 2
2
()()()()()n ad bc K a b c d a c b d -=++++ 第四步:查表得出结论
例如你计算出2K =9大于表格中7.879,则查表可得结论:两个变量之间不相关概率为0.005,或者可以肯定的说两个变量相关的概率为0.995.或095.50
例如你计算出2K =6大于表格中5.024,则查表可得结论:两个变量之间不相关概率为0.025,或者可以肯定的说两个变量相关的概率为0.995.或097.50
上述结论都是概率性总结。
切记事实结论。
只是大概行描述。
具体发生情况要和实际联系!!
!!。