精密研磨与抛光的主要工艺因素
- 格式:pdf
- 大小:220.07 KB
- 文档页数:5
精密与特种加工技术复习资料第一章1.精密与特种加工技术在机械制造领域的作用与地位如何答:目前,精密和特种加工技术已经成为机械制造领域不可缺少的重要手段,在难切削材料、复杂型面、精细零件、低刚度零件、模具加工、快速原形制造以及大规模集成电路等领域发挥着越来越重要的作用,尤其在国防工业、尖端技术、微电子工业方面作用尤为明显。
由于精密与特种加工技术的特点以及逐渐被广泛应用,已引起了机械制造领域内的许多变革,已经成为先进制造技术的重要组成部分,是在国际竞争中取得成功的关键技术。
精密与特种加工技术水平是一个国家制造工业水平的重要标志之一。
2.精密与特种加工技术的逐渐广泛应用引起的机械制造领域的那些变革答:⑴提高了材料的可加工性。
⑵改变了零件的典型工艺路线。
⑶大大缩短新产品试制周期。
⑷对产品零件的结构设计产生很大的影响。
⑸对传统的结构工艺性好与坏的衡量标准产生重要影响。
3.特种加工工艺与常规加工工艺之间有何关系应该改如何正确处理特种加工与常规加工之间的关系答:常规工艺是在切削、磨削、研磨等技术进步中形成和发展起来的行之有效的实用工艺,而且今后也始终是主流工艺。
但是随着难加工的新材料、复杂表面和有特殊要求的零件越来越多,常规传统工艺必然难以适应。
所以可以认为特种加工工艺是常规加工工艺的补充和发展,特种加工工艺可以在特定的条件下取代一部分常规加工工艺,但不可能取代和排斥主流的常规加工工艺。
4.特种加工对材料的可加工性以及产品的结构工艺性有何影响举例说明.工件材料的可加工性不再与其硬度,强度,韧性,脆性,等有直接的关系,对于电火花,线切割等加工技术而言,淬火钢比未淬火钢更容易加工。
对传统的结构工艺性好与坏的衡量标准产生重要影响,以往普遍认为方孔,小孔,弯孔,窄缝等是工艺性差的典型,但对于电火花穿孔加工,电火花线切割加工来说,加工方孔和加工圆孔的难以程度是一样的,相反现在有时为了避免淬火产生开裂,变形等缺陷,故意把钻孔开槽,等工艺安排在淬火处理之后,使工艺路线安排更为灵活。
研磨与抛光的区别
很早以前看过这样一个报道,说是德国、日本等几个国家的科学家耗时5年时间,花了近千万元打造了一个高纯度的硅-28材料制成的圆球,这个1kg纯硅球要求超精密加工研磨抛光,精密测量(球面度,粗糙度,质量..),可谓是世界上最圆的球了。
关于这个圆球的故事
我们明天会具体的介绍一下
今天我们主要是想通过这个视频
来介绍一下超精密抛光工艺
我们经常把研磨和抛光放在一起讲,因为零件经过这两个工序的粗糙度已经十分小了。
首先咱们了解一下它们的区别。
研磨与抛光的区别
研磨利用涂敷或压嵌在研具上的磨料颗粒,通过研具与工件在一定压力下的相对运动对加工表面进行的精整加工。
研磨可用于加工各种金属和非金属材料,加工的表面形状有平面,内、外圆柱面和圆锥面,凸、凹球面,螺纹,齿面及其他型面。
加工精度可达IT5~IT1,表面粗糙度可达Ra0.63~0.01微米。
抛光是利用机械、化学或电化学的作用,使工件表面粗糙度降低,以获得光亮、平整表面的加工方法。
两者的主要区别在于:抛光达到的表面光洁度要比研磨更高,并且可以采用化学或者电化学的方法,而研磨基本只采用机械的方法,所使用的磨料粒度要比抛光用的更粗,即粒度大。
现代电子工业,超精密抛光是灵魂
超精密抛光技术在现代电子工业中所要完成的使命,不仅仅是平坦化不同的材料,而且要平坦化多层材料,使得几毫米见方的硅片通过这种‘全局平坦化’形成上万至百万晶体管。
精密研磨及抛光用陶瓷材料的生产开发与应用方案一、实施背景随着科技的快速发展和产业结构的改革,精密研磨和抛光技术的需求逐渐增大。
传统研磨材料如金、银、铜等已无法满足高精度、高耐磨性的要求。
因此,开发新型研磨抛光陶瓷材料及其制备技术,对于推动制造业、光学产业、半导体产业等领域的发展具有重要意义。
二、工作原理精密研磨及抛光用陶瓷材料的生产开发基于先进的材料科学和制造技术。
首先,通过选用具有高耐磨性、高硬度、高化学稳定性等特性的陶瓷材料,如氧化铝、氮化硅等,制备出适合研磨抛光用途的陶瓷磨料。
然后,利用先进的热压烧结工艺,将陶瓷磨料烧结成具有所需形状和尺寸的陶瓷研磨盘或抛光轮。
最后,通过调整工艺参数,如温度、压力、烧结时间等,实现对陶瓷材料的微观结构和性能的精确调控。
三、实施计划步骤1.调研市场需求:了解精密研磨和抛光材料的性能要求、应用领域和市场趋势。
2.选取合适的陶瓷材料:根据调研结果,筛选出适合精密研磨和抛光用途的陶瓷材料。
3.开发制备技术:研究陶瓷材料的制备工艺,包括粉体制备、成型、烧结等关键技术。
4.研制样品:按照确定的制备工艺,制备出陶瓷研磨盘或抛光轮样品。
5.性能测试:对样品进行性能测试,包括硬度、耐磨性、化学稳定性等指标的检测。
6.应用试验:将样品应用于实际生产过程中,验证其研磨抛光效果。
7.优化工艺:根据性能测试和应用试验结果,对制备工艺进行优化改进。
8.推广应用:将优化后的产品推广至市场,应用于光学、半导体、汽车制造等产业领域。
四、适用范围本方案适用于光学玻璃、半导体硅片、金属表面处理等精密研磨和抛光领域。
通过对不同材料和表面的研磨抛光处理,可有效提高产品精度、降低制造成本,满足各行业对高精度、高耐磨性的需求。
五、创新要点1.选用新型陶瓷材料:本方案选用具有高耐磨性、高硬度、高化学稳定性等特性的陶瓷材料,如氧化铝、氮化硅等,以满足高精度研磨抛光的要求。
2.开发先进的制备技术:采用先进的热压烧结工艺,实现对陶瓷材料的微观结构和性能的精确调控,提高产品的硬度和耐磨性。
第5章模具的研磨与抛光模具的研磨与抛光是以降低零件外表粗糙度,提高外表形状精度和增加外表光泽为主要目的,属光整加工,可归为磨削工艺大类。
他们研磨与抛光在工作成形理论上很相似,一般用于产品、零件的最终加工。
现代模具成形外表的精度和外表粗糙度要求越来越高,特别是高精度、高寿命的模具要求到μm级的精度。
一般的磨削外表不可防止要留下磨痕、微裂纹等缺陷,这些缺陷对一些模具的精度影响很大,其成形外表一部分可采用超精密磨削加工到达设计要求,但大多数异型和高精度外表大都要进行研磨与抛光加工。
对冲压模具来讲,模具经研磨与抛光后,改善了模具的外表粗糙度,利于板料的流动,减小流动阻力,极大地提高了成形零件的外表质量,特别是对于汽车外覆盖件尤为明显。
经研磨刃口后的冲裁模具,可消除模具刃口的磨削伤痕,使冲裁件毛刺高度减少。
塑料模具型腔研磨、抛光后,极大地提高型腔外表质量,提高成形性能,满足塑件成型质量的要求、塑件易于脱模。
浇注系统经研磨、抛光后,可降低注射时塑料的流动阻力。
另外研磨与抛光可提高模具接合面精度,防止树脂渗漏,防止出现沾粘等。
电火花成型的模具外表会有一层薄薄的变质层,变质层上许多缺陷需要用研磨与抛光去处。
另外研磨与抛光还可改善模具外表的力学性能,减少应力集中,增加型面的疲劳强度。
研磨的基本原理与分类研磨是一种微量加工的工艺方法,研磨借助于研具与研磨剂〔一种游离的磨料〕,在工件的被加工外表和研具之间上产生相对运动,并施以一定的压力,从工件上去除微小的外表凸起层, 以获得很低的外表粗糙度和很高的尺寸精度、几何形状精度等,在模具制造中,特别是产品外观质量要求较高的精密压铸模、塑料模、汽车覆盖件模具应用广泛。
1.研磨的基本原理1〕物理作用研磨时,研具的研磨面上均匀地涂有研磨剂,假设研具材料的硬度低于工件,当研具和工件在压力作用下做相对运动时,研磨剂中具有尖锐棱角和高硬度的微粒,有些会被压嵌入研具外表上产生切削作用〔塑性变形〕,有些则在研具和工件外表间滚动或滑动产生滑擦〔弹性变形〕。
1-1试述精密和超精密加工技术对发展国防和尖端技术的重要意义。
精密和超精密加工是国际竞争取得成功的关键技术。
许多现代技术产品需要高精度制造。
发展尖端技术,发展国防工业,发展微电子工业等都需要精密和超精密加工制造出来的仪器设备。
1-2从机械制造技术发展看,过去和现在达到怎样的精度可被称为精密和超精密加工精密加工:加工精度0.1~1um表面粗糙度Ra在0.02~0.1um超精密加工:加工精度高于0.1um表面粗糙度Ra小于0.01um1-3精密和超精密加工现在包括那些领域。
1)超精密切削(各种镜面)2)精密和超精密磨削研磨(集成电路基片和高精度磁盘)3)精密特种加工(电子束、离子束加工使美国超大规模集成电路线宽达到0.1um)1-4试展望精密和超精密加工技术的发展。
对精密和超精密加工技术给予足够的重视,投入较多的人力物力进行研究和发展,在生产中稳定纳米加工,扩大应用亚微米加工技术,并开始纳米级加工的试验研究,则在10~15年内有希望达到美国等先进国家的水平。
可先在某些单项技术上取得突破,逐步使我国的精密和超精密加工技术达到国际先进水平。
1-5我国的精密和超精密加工技术和发达国家相比情况如何与发达国家相比,仍有不少的差距。
不少精密机电产品尚靠进口。
有些靠老工人手艺,且报废高。
某些精密机电产品我国虽已能生产,但其中的核心关键部件仍需依靠进口,我国每年需进口大量尚不能生产的精密数控机床设备。
1-6我国要发展精密和超精密加工技术,应重点发展哪些方面的内容?1)超精密切削、磨削的基本理论和工艺2)超精密设备的关键技术、精度、动特性和热稳定性3)超精密加工的精度检测、在线检测和误差补偿4)超精密加工的环境条件;5)超精密加工的材料2-1金刚石刀具超精密切削有哪些应用范围?用于加工铝合金、无氧铜、黄铜、非电解镍等有色金属和某些非金属材料。
用于加工陀螺仪、激光反射镜、天文望远镜的反射镜、红外反射镜和红外透镜、雷达的波导管内腔、计算机磁盘、激光打印机的多面棱镜、复印机的硒鼓、菲尼尔透镜2-2金刚石刀具超精密切削的切削速度如何选择?根据所使用的超精密机床的动特性和切削系统的动特性选取,即选择振动最小的转速。
精密和超精密加⼯复习整理资料1.精密和超精密加⼯⽬前包含的三个领域:超精密切削、精密和超精密磨削研磨和精密特种加⼯2.超精密加⼯中超稳定的加⼯环境条件主要指(恒温)、(恒湿)、(防振)和(超净)四个⽅⾯的条件。
3.电⽕花型腔加⼯的⼯艺⽅法有:(单电极平动法)、(多电极更换法)、(分解电极法)、简单电极数控创成法等。
4.超精密加⼯机床的总体布局形式主要有以下⼏种:(T形布局)、(⼗字形布局)、(R-θ布局)、(⽴式结构布局)等。
5.实现超精密加⼯的技术⽀撑条件主要包括:(超精密加⼯机理与⼯艺⽅法)、(超精密加⼯机床设备)、(超精密加⼯⼯具)、(精密测量和误差补偿)、⾼质量的⼯件材料、超稳定的加⼯环境条件等。
6.激光加⼯设备主要包括电源、(激光器)、(光学系统)、(机械系统)、控制系统、冷却系统等部分。
7.精密和超精密加⼯机床主轴轴承的常⽤形式有(液体静压轴承)和(空⽓静压轴承)。
8.⾦刚⽯晶体的激光定向原理是利⽤⾦刚⽯在不同结晶⽅向上(因晶体结构不同⽽对激光反射形成不同的衍射图像)进⾏的。
9.电⽕花加⼯蚀除⾦属材料的微观物理过程可分为(介质电离击穿)、(介质热分解、电极材料熔化、⽓化)、(蚀除物抛出)和(间隙介质消电离)四个阶段。
10.超精密加⼯机床的关键部件主要有:(精密主轴部件)、(导轨部件)和(进给驱动系统)等。
11.三束加⼯是指电⼦束、离⼦束和激光束。
12.所谓空⽓洁净度是指空⽓中含尘埃量多少的程度。
13.⼯业⽣产中常见的噪声主要有空⽓动⼒噪声、机械噪声和电磁噪声。
14.纳⽶级加⼯精度包含:纳⽶级尺⼨精度、纳⽶级⼏何形状精度、纳⽶级表⾯质量。
15.超精密切削时积屑瘤的⽣成规律:1)在低速切削时,h0值⽐较稳定;在中速时值不稳定。
2)在进给量f很⼩时,h0较⼤3)在背吃⼑量a p<25um时,h0变化不⼤;在a p>25um时,h0将随a p的值增⼤⽽增⼤。
16.超精密切削时积屑瘤对切削过程的影响:积屑瘤⾼时切削⼒⼤,积屑瘤⼩时切削⼒⼩。
磁力研磨抛光机工作原理理论说明以及概述1. 引言1.1 概述磁力研磨抛光机是一种用于对工件进行抛光和修整的先进设备。
它利用磁力场与磨料之间的相互作用,通过磨料与工件表面的摩擦力来实现去除表面缺陷、改善表面质量的目的。
磁力研磨抛光机在金属加工、精密制造、光学等领域中得到广泛应用,并且具有高效、自动化程度高以及成本低等优点。
1.2 文章结构本文将详细介绍磁力研磨抛光机的工作原理和理论说明,并分析其技术应用与发展趋势。
具体而言,文章由引言、主体和结论三部分组成,其中主体包含三个章节:磁力研磨抛光机的工作原理、理论说明和技术应用与发展趋势展望。
1.3 目的本文旨在深入探讨并解释磁力研磨抛光机的工作原理和相关理论知识,为读者提供清晰全面的了解。
同时,通过对磁力研磨抛光机技术应用与发展趋势的分析,为行业发展提供参考和展望。
希望通过本文的阐述,读者能够全面认识磁力研磨抛光机,并认识到其在各个领域中的重要性和潜力。
2. 磁力研磨抛光机工作原理2.1 磁力研磨抛光机的定义与分类磁力研磨抛光机是一种利用磁力来实现金属零件表面抛光和修整的设备。
根据其工作方式和结构特点,可以将磁力研磨抛光机分为多种类型,包括旋转式、振动式和喷射式等。
2.2 磁力研磨抛光机的组成部分磁力研磨抛光机主要由以下几个组成部分构成:- 磁盘:用于承载和固定待加工的金属零件。
- 研磨液槽:用于装载和供应研磨液体,保持较低的摩擦系数和温度。
- 颗粒物:在操作过程中,将颗粒物掺入到研磨液中用于实现表面修整效果。
- 电源系统:提供电流以形成所需的电场。
- 控制装置:可调节电流和时间参数来控制加工过程。
- 传动系统:通过驱动装置实现盘与盘之间的运动。
2.3 磁力研磨抛光机的工作原理磁力研磨抛光机利用磁力和液体流动来实现抛光和修整目标。
具体工作过程如下:- 将待加工零件固定在磁盘上。
- 在磁盘上方注入带有颗粒物的研磨液。
- 接通电源,形成一个施加磁力的电场。
考试复习题库一、填空题(本大题共10小题,每小题2分,共20分)请在每小题的空格中填上正确答案。
错填、不填均无分。
1、精密和超精密加工目前包含的三个领域:(超精密切削)、(精密和超精密磨削研磨)和(精密特种加工)。
2、金刚石晶体的激光定向原理是利用金刚石在不同的(结晶方向)上因晶体结构不同而对激光放射形成不同的(衍射图像)进行的。
3、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。
4、目前金刚石刀具主要用于(铝、铜及其合金等软金属)材料的精密与超精密加工,而对于(黑色金属、硬脆)材料的精密与超精密加工,则主要应用精密和超精密磨料加工。
5、金刚石刀具在超精密切削时所产生的积屑瘤,将影响加工零件的(表面质量)和(尺寸精度)。
6、金刚石有(人工目测定向)、(X射线定向)和(激光定向)三种方法。
7、由于金刚石的脆性,在保证获得较小的加工表面粗糙度前提下,为增加切削刃的强度,应采用(较大)的刀具楔角β,故刀具的前角和后角都取得(较小)。
8、金刚石刀具适合加工(铝合金)、无氧铜、黄铜、(非电解镍)等有色金属和某些非金属材料。
9、单晶金刚石有(100 )、(110 )、(111 )三个主要晶面。
10、研磨金刚石晶体时,(110 )晶面摩擦因数最大,(100 )晶面次之,(111 )晶面最小。
11、在高磨削率方向上,(110 )晶面的磨削率最高,最容易磨;(100 )晶面的磨削率次之,(111 )晶面磨削率最低,最不容易磨。
12、单晶金刚石的(破损)机理主要产生于(111 )晶面的解理。
13、单晶金刚石的磨损机理主要属(机械磨损),其磨损的本质是(微观解理)的积累。
14、超硬磨料在当前是指(金刚石)和(立方氮化硼)以及它们为主要成分的复合材料。
15、用普通磨料砂轮或砂块与超硬磨料砂轮对磨进行修整的(磨削法)是目前最为广泛采用的(修整方法)。
16、精密和超精密磨料加工分为(固结磨料)加工和(游离磨料)加工两大类。
抛光方法种类、基本程序、注意事项以及影响因素1 目前常用的抛光方法有以下几种:1.1机械抛光机械抛光是靠切削、材料表面塑性变形去掉被抛光后的凸部而得到平滑面的抛光方法,一般使用油石条、羊毛轮、砂纸等,以手工操作为主,特殊零件如回转体表面,可使用转台等辅助工具,表面质量要求高的可采用超精研抛的方法。
超精研抛是采用特制的磨具,在含有磨料的研抛液中,紧压在工件被加工表面上,作高速旋转运动。
利用该技术可以达到Ra0.008μm的表面粗糙度,是各种抛光方法中最高的。
光学镜片模具常采用这种方法。
1.2化学抛光化学抛光是让材料在化学介质中表面微观凸出的部分较凹部分优先溶解,从而得到平滑面。
这种方法的主要优点是不需复杂设备,可以抛光形状复杂的工件,可以同时抛光很多工件,效率高。
化学抛光的核心问题是抛光液的配制。
化学抛光得到的表面粗糙度一般为数10μm。
1.3电解抛光电解抛光基本原理与化学抛光相同,即靠选择性的溶解材料表面微小凸出部分,使表面光滑。
与化学抛光相比,可以消除阴极反应的影响,效果较好。
电化学抛光过程分为两步:(1)宏观整平溶解产物向电解液中扩散,材料表面几何粗糙下降,Ra>1μm。
(2)微光平整阳极极化,表面光亮度提高,Ra<1μm。
1.4超声波抛光将工件放入磨料悬浮液中并一起置于超声波场中,依靠超声波的振荡作用,使磨料在工件表面磨削抛光。
超声波加工宏观力小,不会引起工件变形,但工装制作和安装较困难。
超声波加工可以与化学或电化学方法结合。
在溶液腐蚀、电解的基础上,再施加超声波振动搅拌溶液,使工件表面溶解产物脱离,表面附近的腐蚀或电解质均匀;超声波在液体中的空化作用还能够抑制腐蚀过程,利于表面光亮化。
1.5流体抛光流体抛光是依靠高速流动的液体及其携带的磨粒冲刷工件表面达到抛光的目的。
常用方法有:磨料喷射加工、液体喷射加工、流体动力研磨等。
流体动力研磨是由液压驱动,使携带磨粒的液体介质高速往复流过工件表面。
5.2.5型腔的研磨和抛光模具型腔 (型芯)经切削加工后,表面上残留有切削痕迹。
为了去除切削加工痕迹和提高模具表面质量,需要对其进行研磨抛光。
抛光和研磨在型腔加工中所占工时比重很大,是提高模具质量的重要工序,它不仅对成形制件的尺寸精度,表面质量影响很大,也影响模具的使用寿命。
研磨抛光的方法主要有:机械研磨和抛光、超声波抛光和电解抛光,这里主要讲机械研磨和抛光原理和工艺方法,超声波抛光和电解抛光在学习单元六中讲。
一、研磨的原理和目的1.研磨的原理研磨是在工件和工具(研具)之间加入研磨剂,在一定压力下由工具和工件间的相对运动,驱动大量磨粒在加工表面上滚动、滑擦,去除微细的金属层而使加工表面的粗糙度减小。
研磨加工时,在研具和工件表面间存在有分散的磨料或研磨剂,在两者之间施加一定的压力,并使其产生复杂的相对运动,这样经过磨粒的切削作用及研磨剂的化学和物理作用,在工件表面上即可去掉极薄的一层余量,获得较高的尺寸精度和较低的表面粗糙度。
根据实验表明,磨粒的切削作用如图5-68a所示,分为滑动切削作用和滚动切削作用两类。
前者磨粒基本固定在研具上,靠磨粒在工件表面移动进行切削;后者磨粒基本上是自由状态的,在研具和工件间滚动,靠滚动来切削。
在研磨脆性材料时,除上述作用外,还有如图5-68b 所示的情况,磨粒在压力作用下,使加工面产生裂纹,随着磨粒的运动,裂纹不断地扩大、交错,以致形成碎片,成为切屑脱离工件。
图5-68 研磨时磨粒的切削作用研磨时的金属去除过程,除磨粒的切削作用外,还常常由于化学或物理作用所致。
在湿研磨时,所用的研磨剂中除了有磨粒外,还常加有油酸、硬脂酸等酸性物质,这些物质会使工件表面产生一层很软的氧化物薄膜,钢铁成膜时间只要0.05s,氧化膜厚度约2~7μm。
凸点处的薄膜很容易被磨粒去除,露出的新鲜表面很快地继续氧化,继续被去掉,如此循环,加速了去除的过程。
除此之外,研磨时在接触点处的局部高温高压,也有可能产生局部挤压作用,使高点处的金属流入低点,降低了工件表面粗糙度。