ABAQUS热应力分析实例详解
- 格式:pdf
- 大小:3.81 MB
- 文档页数:37
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
热应力分析实例详解学习要点通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:1)在Material 功能模块中,定义线胀系数;2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;实例1:带孔平板的热应力分析定义材料属性——Property Property——Material——Edit——steelMechanical——Elastic, 输入弹性模量和泊松比定义材料属性——Property Property——Material——Edit——steelMechanical——Expansion, 输入线胀系数定义边界条件——Load定义边界条件——Load定义边界条件——Load固支边界条件使用预定义场定义初始温度Load——PredefinedField Manager使用预定义场使模型温度升高至120℃网格划分——Mesh结果分析——Visualization小结在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数⏹定义初始温度场⏹定义分析步中的温度场实例2:法兰盘感应淬火的残余应力场模拟问题描述:◆表面感应淬火是一种工程中常用的热处理工艺,其原理是使用感应器来对工件的局部进行加热,然后迅速冷却,从而使工件表面产生残余压应力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭转疲劳抗力,工件表面产生的马氏体具有良好的耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料的弹性模量为210000MPa,泊松比为0.3,线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余应力场,并分析此残余应力场在缓和应力集中方面所起的作用。
1.1基于ABAQUS的热应力分析1.1.1 温度场数据处理(1)打开INP_Generator.exe,出现如下软件界面:图1.数据处理软件(2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图所示:图2.路径选择(3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的ABAQUS输入文件ABAQUSinputfile.inp。
图3.生成包含连续温度场INP文件1.1.2 复材工装模板热应力分析(1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”,如下图所示。
检查是否有名为“PID6”的set,若没有则创建一个名为“PID*”的set,set为模板整体。
(“*”为任意数字或字母)图4.创建SET(2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。
在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用ABAQUS/CAE自身功能完成剩余分析工作。
(a)(b)(c)图5.定义材料及铺层(3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。
选择“Tools”菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。
依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。
图6.定义模板局部坐标系(4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。
Step设为“Initial”,Category选择为“Mechanical”,Types for Selected Step 选择为“Displacement/Rotation”,点击“Continue”,如下图所示:图7.选择约束类型(5)将“Select regions for the boundary condition”选为“by angle”,选中模板下表现所有结点(按住Shift键可多选),点击鼠标中键,弹出如下边界条件编辑对话框,给模板施加U3和UR3约束,CSYS选择为模板局部坐标系。
Abaqus热应力分析实例1 说明:本例通过简单的杆状零件,介绍abaqus热分析的基本步骤。
利用abaqus/CAE分析图1所示的杆状零件,四面加热条件下(随时间升温T=20+5t)的温度场,并以该温度为初始条件,分析零部件受力状况。
图1为杆状零件截面的图2传热分析2.1创建part进入part模块,点击创建部件,name输入bar,模型所在空间选择3维,类型选择可变性,shape选择Solid,Type选择Extrusion,Approximate size 输入200,设置如下图,点击Continue,进入二维截面创建,分别输入(25,25)、(-25,-25)两两点,完成草图绘制,Depth(长度)输入500,完成部件的创建,如下图所示。
2.2 创建材料和截面切换到property模块,Density输入7.74e-09,Conductivity(传热率)、Specific Heat (比热)与温度有关,输入如下:2.3点击,弹出Create Section对话框,name输入Section-1,Categeory选择Solid,type选择Homogeneous,点击continue,弹出Edit Section,选择刚创建的材料Steel。
2.4赋予属性点击,选择部件,中键确定,完成材料赋予。
2.5创建分析步创建一个Heat Transfer(热传递)分析步,点击Continue,basic工具栏设置,选择Transient(瞬态分析),time period设置为100,切换到incrementation,设置如下图。
2.6 热传递与热辐射设置在杆四周面加载一个随时间变化的的温度T=20+5t,切换到interation模块,创建温度曲线,Tools》Amplitude》create,name输入Amp-1,Type选择Tabular,列表设置如下左图。
点击,分析步选择step-1,选择surface file condition,点击continue,film coefficient 设置为0.4,Sink temperature 为1,Sink amplitude 选择上述创建的温度曲线。
基于ABAQUS的刹车盘热应力分析随着机动车数量的不断增加,刹车系统的安全性和使用寿命成为一个重要的研究方向。
刹车盘作为刹车系统的关键部件之一,其材料选择对于提高机动车的安全性能至关重要。
在刹车过程中,由于制动器片和刹车盘之间的不断摩擦,会产生大量的热量并引起刹车盘的热应力,影响刹车盘的性能与使用寿命。
为深入研究刹车盘的热应力,本文采用ABAQUS软件对刹车盘进行热应力分析。
首先,我们需要进行前期工作。
根据实际情况,选取合适的刹车盘模型和材料模型,并设置刹车盘的几何尺寸和初始温度以及制动器片的作用力。
在模型的加工过程中,需要注意刹车盘各部位的加工精度,以保证模型的准确性。
然后,我们对刹车盘进行热传递分析。
刹车盘在刹车过程中会受到大量的制动器片摩擦产生的热量的影响,因此需要对其热传递进行分析。
在计算过程中,我们需要根据实际数据设置以下参数:热扩散系数、材料密度和比热、传热系数等。
这些参数可以在材料手册中获得。
接下来,我们进行热弹性分析。
在高温和大应力的环境下,刹车盘内部会产生热应力,导致刹车盘的力学性能发生变化。
利用ABAQUS软件对于刹车盘的热应力进行分析,可以了解到刹车盘在制动过程中是否发生变形、开裂等破坏现象,预测刹车盘寿命并进行优化设计。
最后,我们将分析结果进行打印和分析,根据热应力分析结果,对刹车盘的合理性进行评估。
如果出现问题,可以尝试通过改变制动片的材料、设置通风方式等方式来解决问题,提高刹车盘的寿命和安全性能。
总的来说,ABAQUS软件提供了一个重要的工具,用于对于刹车盘的热应力进行分析、寿命预测和性能优化。
通过对于刹车盘的热应力分析,我们可以有效提高机动车的安全性和使用寿命,保障行车安全。
刹车盘的热应力分析需要大量的相关数据,从材料的热物理参数到刹车盘的几何尺寸等方面都需要考虑。
下面列举了一些相关数据,并进行分析。
1. 刹车盘材料的热物理参数:例如,材料的热扩散系数、比热和密度等,这些参数会影响刹车盘在制动过程中的热传递和热应力。
abaqus cohesive单元热应力-概述说明以及解释1.引言1.1 概述Abaqus cohesive单元作为一种专用于模拟接触与断裂的元素,在工程领域有着广泛的应用。
在工程实践中,温度是一个重要的考虑因素,热应力的存在对材料性能和结构稳定性产生着重要影响。
因此,研究和了解热应力对cohesive单元的影响,对于准确模拟材料行为和结构性能至关重要。
本文将深入探讨Abaqus cohesive单元的原理、热应力对cohesive 单元的影响以及cohesive单元在热应力下的应用。
通过分析和研究,希望能够为工程实践提供一定的理论指导和方法参考,以更好地应对复杂工程环境下的材料行为和结构性能问题。
1.2 文章结构本文主要分为三个部分,分别是引言、正文和结论。
在引言部分中,首先概述了abaqus cohesive单元热应力的主题,介绍了研究的背景和意义。
同时,明确了文章的目的,即探讨热应力对cohesive单元的影响及其在实际工程中的应用。
在正文部分中,将详细介绍abaqus cohesive单元的原理,讨论热应力对cohesive单元的影响,并探讨cohesive单元在热应力下的应用。
通过理论分析和实例展示,揭示热应力对cohesive单元性能的影响机制和工程应用。
最后,在结论部分中,对全文进行总结,展望未来研究方向,并给出论文的最终结论和建议。
通过整体的论述和分析,为读者提供详尽的信息和深入的理解。
1.3 目的本文旨在探讨abaqus cohesive单元在热应力环境下的行为特性,重点分析热应力对cohesive单元性能的影响。
通过深入研究,旨在为工程领域中使用cohesive单元进行热应力仿真提供理论支持和实践指导,进一步完善和优化工程设计和计算方法。
同时,通过本文的分析和讨论,希望可以为相关领域的研究者提供参考,促进该领域的发展和应用。
2.正文2.1 Abaqus cohesive单元的原理Abaqus cohesive单元是ABAQUS软件中一种用于模拟接触和断裂行为的特殊元素。
ABAQUS热应力分析实例详解热应力分析是指在材料受到热载荷的作用下,由于温度和热应力的非均匀分布而产生的应力状态。
ABAQUS是一种常用的有限元分析软件,可以用于进行热应力分析。
下面将以一个实例来详细介绍ABAQUS热应力分析的流程和步骤。
假设我们有一个具有热源的方形材料板,需要分析其热应力分布情况。
首先,我们需要确定仿真模型的几何尺寸和材料属性。
假设板材的尺寸为10cm x 10cm,材料为铝,具有线膨胀系数α=23.1×10^-6/°C和热导率λ=237W/m·K。
1. 创建模型:打开ABAQUS软件,创建一个新模型,并在模型中创建一个二维平面应变比例等效热应力分析。
选择“3D”模型,然后在“Parts”面板中点击右键,选择“Create”->“Part”,设置尺寸为10cm x 10cm。
2. 材料属性定义:在“Model”面板中选择“Materials”->“Create”->“Isotropic”来定义材料的力学性能。
输入铝的杨氏模量E=71 GPa和泊松比ν=0.333. 模型网格划分:在“Model”面板中选择“Mesh”->“Create”->“Part”,选择要进行网格划分的实体和面,然后定义网格大小。
可以根据需要设置不同大小的网格。
4. 网格单元类型选择:在“Mesh”面板中选择网格划分的网格单元类型。
可以选择线性三角形元、线性四边形元或其他类型的单元。
5. 温度加载:在“Model”面板中选择“Loads”->“Create”->“Temperature”来定义温度加载。
选择加载的表面或体实体,并设置温度大小和类型(恒定温度或温度曲线)。
6. 边界条件定义:在“Model”面板中选择“Bounadry Conditions”->“Create”->“Encastre”来定义边界条件。
选择边界条件所在的边或节点,并设置边界条件类型(固支、自由度约束等)。
热应力分析实例详解
学习要点
通过实例分析,学习如何进行热应力分析,并掌握ABAQUS/CAE 的以下功能:
1)在Material 功能模块中,定义线胀系数;
2)在Load 功能模块中,使用预定义场(predefined field)来定义温度场;
实例1:带孔平板的热应力分析
定义材料属性——Property Property——Material——Edit——steel
Mechanical——Elastic, 输入弹性模量和泊松比
定义材料属性——Property Property——Material——Edit——steel
Mechanical——Expansion, 输入线胀系数
定义边界条件——Load
定义边界条件——Load
定义边界条件——Load
固支边界条件
使用预定义场定义初始温度
Load——Predefined
Field Manager
使用预定义场使模型温度升高至120℃
网格划分——Mesh
结果分析——Visualization
小结
在ABAQUS中进行热应力分析的基本步骤:⏹定义线胀系数
⏹定义初始温度场
⏹定义分析步中的温度场
实例2:法兰盘感应淬火的残余应力场模拟问题描述:
◆表面感应淬火是一种工程中常用的热处理工艺,
其原理是使用感应器来对工件的局部进行加热,
然后迅速冷却,从而使工件表面产生残余压应
力,抵消工作载荷所产生的一部分拉应力。
◆表面感应淬火可显著提高工件弯曲疲劳抗力和扭
转疲劳抗力,工件表面产生的马氏体具有良好的
耐磨性。
实例2:法兰盘感应淬火的残余应力场模拟 本例中的法兰盘经淬火后,由试验测得法拉盘的内圆角表面残余压应力约为-420MPa。
法拉盘的一端固定,另一端的整个端面受向下的面载荷p=100MPa,法拉盘内孔直径为24mm,材料
的弹性模量为210000MPa,泊松比为0.3,
线胀系数为1.35e-5/ ℃。
要求:模拟分析感应淬火所产生的残余
应力场,并分析此残余应力场在缓和应
力集中方面所起的作用。
建模要点说明
☐使用ABAQUS可以模拟感应淬火的完整过程,即通过分析工件与感应器之间以及工件和冷却液之间的传热过程来确定工件的温度场,从而得到相应的塑性应变场和冷却后的残余应力场。
这一模拟过程较复杂,下面介绍一种模拟残余应力的简化方法。
☐设置整个模型的初始温度为20℃,在分析步令淬硬层的温度升高至某一温度值T
(例如120℃),其余区域温度仍保持20℃。
high
这种温度差异会使高温区产生压应力,相当于所要模拟的残余
,使法兰盘内圆角表压应力。
经几次试算即可找到合适的T
high
面的压应力与试验结果大致吻合。
施加工作载荷时,仍保持上述温度场不变,就可以模拟在残余应力作用下的应力场了。
☐上述方法的优点是比较简便,不必进行复杂的传热分析和热弹塑性分析,并且通用性强,可用于模拟各种不同工艺所产生的残余应力场,但其缺点是模拟精度不高,通过选择T
high
只能保证工件局部区域的压应力值较准确。
☐一种改进的方法就是为淬硬层的不同区域设定不同的温度
值T
high
,从而得到与试验结果更加接近的残余应力场。
☐本实例中,为简单起见,只为整个淬硬层设定单一的温度
值T
high =120℃。
建模要点说明
几何建模
CAD平面图
几何建模
Part
12mm
旋转轴
几何建模
几何建模
定义材料属性——Property
E=210 000
=0.3
Expansion=1.03e-5
网格划分——Mesh 淬硬层以外区域:
Element type: Hex-dominated Technique: Sweep
Algorithm: Advancing front
淬硬层:
Element type: Hex
Technique: Sweep
Algorithm: Medial axis
(选中Minimize the mesh transition)
设置分析步——step
⏹1)第一个分析步HighTemper-Noload: 令淬硬层区域温度升
高至120℃,其余区域温度仍保持20℃,不施加外载荷;
⏹2)第二个分析步HighTemper-WithLoad:保持上述温度场不
变(相应的残余应力也不会变),施加外载荷;
⏹3)第三个分析步LowTemper-WithLoad:令整个工件的温
度都变为20℃(即去掉残余应力),保持外载荷不变,从而得到没有残余应力时的应力场,用来与第二个分析步的结果相比较。
边界条件——Load 一端固定
边界条件——Load
施加载荷——Load
p=100MPa
定义温度场——Load
定义温度场——Load
淬硬层
2020
120120
后处理
1)查看残余应力的模拟结果
1)查看残余应力的模拟结果
第一个分析步σminiP = 416.17MPa
与残余压应力的试验结果420MPa 基本吻合!565号节点
2)分析残余压应力在缓解应力集中方面的作用
σ
minP = 276MPa
第一个分析步
560号节点
2)分析残余压应力在缓解应力集中方面的作用
第二个分析步:存在残余应力!
σ
= 412MPa
maxP
560号节点
2)分析残余压应力在缓解应力集中方面的作用
第三个分析步:没有残余应力!
σ
= 683MPa
maxP
560号节点
2)分析残余压应力在缓解应力集中方面的作用
最大主应力降低的量:
683MPa -412MPa = 271MPa,大致等于残余压应
力的值276MPa。
结论:
可见残余压应力显著降低了应力集中处的最大主应力!。