离散傅里叶变换
- 格式:doc
- 大小:1.23 MB
- 文档页数:32
离散时间信号的傅里叶变换和离散傅里叶变换摘要本文主要介绍了离散时间信号的离散时间傅里叶变换及离散傅里叶变换,说明其在频域的具体表示和分析,并通过定义的方法和矩阵形式的表示来给出其具体的计算方法。
同时还介绍了与离散时间傅里叶变换(DTFT )和离散傅里叶变换(DFT )相关的线性卷积与圆周卷积,并讲述它们之间的联系,从而给出了用圆周卷积计算线性卷积的方法,即用离散傅里叶变换实现线性卷积。
1. 离散时间傅里叶变换1.1离散时间傅里叶变换及其逆变换离散时间傅里叶变换为离散时间序列x[n]的傅里叶变换,是以复指数序列{}的序列来表示的(可对应于三角函数序列),相当于傅里叶级数的展n j e ω-开,为离散时间信号和线性时不变系统提供了一种频域表示,其中是实频率ω变量。
时间序列x[n]的离散时间傅里叶变换定义如下:)(ωj e X (1.1)∑∞-∞=-=nnj j e n x e X ωω][)(通常是实变量的复数函数同时也是周期为的周期函数,并且)(ωj e X ωπ2的幅度函数和实部是的偶函数,而其相位函数和虚部是的奇函数。
)(ωj e X ωω这是由于:(1.2))()()(tan )()()()(sin )()()(cos )()(222ωωωωωωωωωωθωθωθj re j im j im j re j j j im j j re e X e X e X e X e X e X e X e X e X =+===由于式(1.1)中的傅里叶系数x[n]可以用下面给出的傅里叶积分从中算出:)(ωj e X 1(1.3)ωπωππωd e eX n x n j j )(21][⎰-=故可以称该式为离散时间傅里叶逆变换(IDTFT ),则式(1.1)和(1.3)构成了序列x[n]的离散时间傅里叶变换对。
上述定义给出了计算DTFT 的方法,对于大多数时间序列其DTFT 可以用收敛的几何级数形式表示,例如序列x[n]=,此时其傅里叶变换可以写成简单n α的封闭形式。
离散傅里叶级数和离散傅里叶变换离散傅里叶级数和离散傅里叶变换是数字信号处理中常用的数学工具。
它们可以将一个离散的信号分解成一系列的正弦和余弦函数,从而方便地进行频域分析和滤波处理。
离散傅里叶级数是将一个周期为N的离散信号表示为一系列复数的和。
它的公式为:X(k) = Σ[x(n) * exp(-j * 2π * k * n / N)]其中,X(k)表示信号的频域表示,x(n)表示信号的时域表示,k表示频域的索引,n表示时域的索引,N表示信号的长度。
离散傅里叶级数可以将一个离散信号分解成一系列的正弦和余弦函数,每个正弦和余弦函数的频率为k / N,幅度为X(k)。
通过分析这些正弦和余弦函数的频率和幅度,我们可以了解信号的频域特性,例如信号的主要频率成分和能量分布情况。
离散傅里叶变换是将一个长度为N的离散信号转换为一个长度为N 的复数序列。
它的公式为:X(k) = Σ[x(n) * exp(-j * 2π * k * n / N)]离散傅里叶变换可以将一个离散信号从时域转换到频域,得到信号的频域表示。
通过分析信号的频域表示,我们可以了解信号的频率特性,例如信号的主要频率成分和能量分布情况。
离散傅里叶变换和离散傅里叶级数在数字信号处理中有广泛的应用。
它们可以用于信号的频域滤波,例如去除信号中的噪声或者突发干扰。
通过将信号转换到频域,我们可以选择性地滤除不需要的频率成分,从而提取出我们感兴趣的信号。
此外,离散傅里叶变换和离散傅里叶级数还可以用于信号的压缩和编码。
通过分析信号的频域表示,我们可以找到信号中能量较低的频率成分,并将其舍弃,从而实现信号的压缩。
在通信系统中,离散傅里叶变换和离散傅里叶级数也被广泛应用于调制和解调过程中。
总之,离散傅里叶级数和离散傅里叶变换是数字信号处理中重要的数学工具。
它们可以将一个离散信号分解成一系列的正弦和余弦函数,从而方便地进行频域分析和滤波处理。
通过分析信号的频域表示,我们可以了解信号的频率特性,从而实现信号的处理和编码。
傅里叶变换离散傅里叶变换
傅里叶变换和离散傅里叶变换是信号处理中常用的数学工具,它们的应用广泛,包括音频、图像、视频等。
傅里叶变换可以将一个信号分解为不同频率的正弦波,从而帮助我们理解信号的频域特性。
离散傅里叶变换则是对离散信号进行傅里叶变换的一种算法,它将信号转换为一个由复数构成的向量,从而方便我们对信号进行数字处理。
离散傅里叶变换的应用包括音频压缩、图像处理、通信系统等。
掌握傅里叶变换和离散傅里叶变换对于理解信号处理的原理及其应用都
非常重要。
- 1 -。
一、离散傅里叶变换离散傅里叶变换(Discrete Fourier Transform,DFT)是信号处理中常用的一种变换方法。
它将离散时域信号转换为频域信号,可以对信号进行频谱分析和滤波处理。
离散傅里叶变换的定义如下:$f_k = \sum_{n=0}^{N-1} x_n e^{-\frac{2\pi i}{N}kn}$其中,$x_n$表示输入的离散信号,$k$表示频率索引,$f_k$表示变换后的频域信号。
离散傅里叶变换可以通过快速傅里叶变换算法(Fast Fourier Transform,FFT)高效地计算,是数字信号处理中的重要工具之一。
二、卷积定理卷积定理是信号处理中的重要定理之一,它描述了两个信号在频域进行卷积操作等效于它们在时域进行乘法操作。
具体来说,如果有两个信号$f(x)$和$g(x)$,它们的傅里叶变换分别为$F(\omega)$和$G(\omega)$,那么它们在时域的卷积$f(x)*g(x)$的傅里叶变换等于$F(\omega)G(\omega)$。
卷积定理在信号处理中有着广泛的应用,例如可以用于滤波器的设计和信号的频域分析等。
利用卷积定理,可以将信号的卷积操作转换为频域的乘法操作,从而简化了信号处理的复杂度。
三、矩阵乘法矩阵乘法是线性代数中的重要概念,它描述了两个矩阵相乘得到的新矩阵。
具体来说,如果有两个矩阵$A$和$B$,它们的大小分别为$m\times n$和$n\times p$,那么它们的矩阵乘法$C=AB$的定义如下:$c_{ij} = \sum_{k=1}^{n} a_{ik}b_{kj}$其中,$c_{ij}$表示矩阵$C$的第$i$行第$j$列的元素,$a_{ik}$和$b_{kj}$分别表示矩阵$A$和$B$的元素。
矩阵乘法在计算机图形学、优化算法等领域有着广泛的应用,例如矩阵变换、神经网络的前向传播等。
通过高效的矩阵乘法算法(如Strassen算法、Coppersmith-Winograd算法等),可以加速复杂计算的进行。
离散傅里叶级数与离散傅里叶变换
离散傅里叶级数是一种将离散信号分解成一系列复指数函数的数学工具。
它广泛应用于信号处理、图像处理和通信系统等领域。
离散傅里叶级数的定义如下:对于一个离散信号x(n),其离散傅里叶级数X(k)可以通过以下公式计算得到:
X(k) = Σ [ x(n) * e^(-2πikn/N) ] ,n的取值范围是0到N-1
在上述公式中,k代表频率,N代表信号的长度,e是自然对数的底数。
离散傅里叶变换(Discrete Fourier Transform,简称DFT)是离散傅里叶级数的工具,它可以将一个离散信号从时域转换到频域。
DFT的计算公式如下:
X(k)代表信号在频率为k的频谱分量,x(n)是信号在时域的值,W是一个复数旋转因子,定义为:
W = e^(-2πi/N)
通过离散傅里叶变换,我们可以将时域信号的频谱信息获取出来,并对信号进行频域处理,比如滤波、频域平移等操作。
总结一下,离散傅里叶级数和离散傅里叶变换都是处理离散信号频谱的数学工具。
离散傅里叶级数用于将离散信号展开成一系列复指数函数的形式,而离散傅里叶变换则是将离散信号从时域转换到频域,通过获取信号的频谱信息进行进一步的处理。
离散傅里叶变换不仅具有明确的物理意义,相对于DTFT他更便于用计算机处理。
但是,直至上个世纪六十年代,由于数字计算机的处理速度较低以及离散傅里叶变换的计算量较大,离散傅里叶变换长期得不到真正的应用,快速离散傅里叶变换算法的提出,才得以显现出离散傅里叶变换的强大功能,并被广泛地应用于各种数字信号处理系统中。
近年来,计算机的处理速率有了惊人的发展,同时在数字信号处理领域出现了许多新的方法,但在许多应用中始终无法替代离散傅里叶变换及其快速算法。
§ 3-1 引言一.DFT是重要的变换1.分析有限长序列的有用工具。
2.在信号处理的理论上有重要意义。
3.在运算方法上起核心作用,谱分析、卷积、相关都可以通DFT在计算机上实现。
二.DFT是现代信号处理桥梁DFT要解决两个问题:一是离散与量化,二是快速运算。
傅氏变换§ 3-2 傅氏变换的几种可能形式一.连续时间、连续频率的傅氏变换-傅氏变换对称性: 时域连续,则频域非周期。
反之亦然。
二.连续时间、离散频率傅里叶变换-傅氏级数时域信号 频域信号 连续的 非周期的非周期的 连续的t⎰∞∞-Ω-=Ωdtet x j X tj )()(:⎰∞∞-ΩΩΩ=d e j X t x t j )(21)(:π反*时域周期为Tp, 频域谱线间隔为2π/Tp三.离散时间、连续频率的傅氏变换--序列的傅氏变换pT 0=Ω时域信号 频域信号 连续的 周期的非周期的 离散的⎰-Ω-=Ω2/2/00)(1)(:p p T T t jk pdte t x T jk X 正∑∞-∞=ΩΩ=k tjk e jk X t x 0)()(:0反0 T2Tt时域信号 频域信号 离散的 非周期的周期的 连续的∑∞-∞=Ω-Ω=n Tjn Tj enT x e X )()(:正⎰ΩΩ-ΩΩΩΩ=2/2/)(1)(:s s d eeX nT x Tjn Tj s反TT s π2,*=Ω频域的周期为时域抽样间隔为四.离散时间、离散频率的傅氏变换--DFT由上述分析可知,要想在时域和频域都是离散的,那么两域必须是周期的。
t0 T 2T 1 2 Nn时域信号 频域信号 离散的 周期的周期的 离散的)1()1(0-Ω-N N .2,;2*0TT T T s p p ππ=Ω=Ω频域的周期为时域的离散间隔为为函数,频域的离散间隔时域是周期为DFT 的简单推演:在一个周期内,可进行如下变换:02/2/:1~0,2:1~0:)(1)()()(Ω=∆Ω=ΩΩ-=⋅=Ω=ΩΩ-ΩΩ==⎰∑ΩΩ-ΩΩ∞-∞=Ω-Ωd d N k F k k N n d e e X nT x e nT x e X s s T jn T j sn Tjn T j π从∑∑∑∑-=-=--=ΩΩ-=Ω-Ω===Ω⋅Ω=⋅=ΩΩΩ==122102200110)(1)()()(222)()()()(0000N k nk Nj k N jN n nk Nj k N j s p N k Tjnk T jk sN n T jnk T jk e eX NnT x enT x eX N T T T e e X nT x e nT x e X πππππππ因此又Θ视作n 的函数,视作k 的函数,这样,§ 3-3 周期序列的DFS一.周期序列DFS 的引入导出周期序列DFS 的传统方法是从连续的周期信号的复数傅氏级数开始的:对上式进行抽样,得: ,代入又由于∑∑-=-=-==10212)(1)()()(N k nk NjN n nk Njek X Nn x en x k X ππ)()(2k N jeX nT x π)()()()(2k X eX n x nT x k N j →→π∑∞-∞=ΩΩ=k tjk e k X t x 0)(~)(~0∑∑∞-∞=∞-∞=ΩΩ=Ω=k nk Nj k nTjk ek X e k X nT x π200)(~)(~)(~0NT π20=Ωkn Nj rn j nk Njn rN k Njee eeππππ222)(2=⋅=+所以求和可以在一个周期内进行,即这就是说,当在k=0,1,..., N-1求和与在k=N,...,2N-1求和所得的结果是一致的。
二.的k 次谐波系数 的求法 1.预备知识 同样,当 时,p 也为任意整数,则亦即()()∑-=Ω=120~~N k nk Njek X nT x π∑-==Ω120)(~)(~)(~~)(~)(~~)(~N k nk Njek X n x k X k X n x nT x π则有,;,考虑到:)(~n x )(~k X ⎩⎨⎧==∑-=rm mN r N e N n rnN j ,其他为任意整数0,,102π)(11122)1(2222102时mN r N eeee e er N j N r NjN r Njr Nj r Nj N n rn N j==--=++++=⋅-⋅⋅-=∑ππππππΛΘpNr k =-])[()0(10)(2pN r k N N N e N n n r k Nj --===∑-=-δδπ[][])()()(11)(2pN r k pN r k pN r k eNN n n r k Nj+-=--=--=∑-=-δδδπ所以 2. 的表达式将式 的两端乘 ,然后从 n=0到N-1求和,则:[])(~)(~)()(~10r X pN r X pN r k k X N k =+=+-∑-=δ)(~k X ∑-==12)(~)(~N k nk Nj e k X n x πnr Nj e π2-∑-=-12)(~N n nr Njen x π∑∑-=-=-=101)(2)(~N n N k n r k Njek X π[])(~)(~)()(~)(~)(~)(~11010)(2101)(212r X N pN r X N pn r k N k X e k X ek X en x N k N k N n n r k Nj N n N k n r k NjN n nr Nj=+=+-⋅=⎥⎥⎦⎤⎢⎢⎣⎡==∑∑∑∑∑∑-=-=-=--=-=--=-δπππ通常将定标因子1/N 移到 表示式中。
即:3.离散傅氏级数的习惯表示法通常用符号 代入,则: ∑-=-=12)(~1)(~,N n nr Njen x Nr X π因此∑∑∑-=-=--=-===121212)(~)(~)(~1)(~,)(~1)(~N k kn Nj N n knNj N n kn Nje k X n x e n x N k X en x Nk X k r πππ对于周期序列所以则有换成将)(~n x ∑∑-=-=-==1212)(~1)(~)(~)(~N k kn NjN n kn Njek X Nn x en x k X ππNjN e W π2-=正变换: 反变换: 4. 的周期性与用Z 变换的求法周期性: 用Z 变换的求 :对作Z 变换,[]∑∑-=-=-===112)(~)(~)(~)(~N n nk NN n nk NjW n x en x n x DFS k X π[]∑∑-=--====112)(~1)(~1)(~)(~N k nk NN k nk NjW k X Nek X Nk X IDFS n x π)(~)(~)(~)(~)(~102102210)(2k X en x e e n x en x mN k X N n kn NjN n mn j knN j N n n mN k Nj==⋅==+∑∑∑-=--=---=+-ππππ个不同值。
只有这就是说,N k X )(~)(~k X )(n x )(~k X如果 ,则有可见, 是Z 变换 在单位圆上抽样,抽样点在单位圆上的N 个等分点上,且第一个抽样点为k =0。
∑∑-=-∞-∞=-==1)()()(N n nn n Z n x Z n x Z X[]Z j Im []ZkN je Z π2=)(~)()(122k X en x eX N n kn Njk N j==∑-=-ππ)(~k X )(Z X§ 3-4 DFS 的性质一.线性 如果 则有 其中,a,b 为任意常数。
二.序列的移位 如果 则有: 证明: 令i =m +n,则 n =i -m 。
n=0 时,i=m; n=N-1时,i=N-1+m所以 * 和 都是以N 为周期的周期函数。
三.调制特性[][])(~)(~)(~)(~2211n x DFS k X n x DFS k X ==[])(~)(~)(~)(~2121k X b k X a n x b n x a DFS +=+[])(~)(~k X n x DFS =[])(~)(~)(~2k X ek X W m n x DFS mk N jmk N π==+-∑-=+=+10)(~)](~[N n nk NW m n x m n x DFS mk NmN mi ik N W W i x m n x DFS -+-=⋅=+∑1)(~)](~[)(~)(~1k x W W i x W mk N N i ik N mkN--=-==∑)(~i x ik NW如果则有证明:时域乘以虚指数( )的m 次幂,频域搬移m ,调制特性。
四.周期卷积和1.如果则:2.两个周期序列的周期卷积过程 (1)画出 和 的图形;(2)将 翻摺,得到可计算出: [])(~)(~k X n x DFS =[])(~)(~m k X n x W DFS mn N +=)(~)(~)(~)](~[1)(10m k X W n x W n x W n x W DFS N n n m k Nkn N N n mn N mn N +===∑∑-=+-=mn N jnm Njmn Nj mn N eeeW )(222πππ---===n N j eπ2-)(~)(~)(~21k X k X k Y =∑∑-=-=-=-==111221)(~)(~)(~)(~)](~[)(~N m N m m n x m x m n x m x k Y IDFS n y )(~1m x )(~2m x )(~2m x )0(~)(~22m x m x -=-11020********)0(~)(~)0(~521=⨯+⨯+⨯+⨯+⨯+⨯=-=∑=m m x m x y(3)将右移一位、得到mm 计算区)1(~2m x -)(~2m x -1010********)1()(~)1(~521⨯+⨯+⨯+⨯+⨯+⨯=-=∑=m m x m x y可计算出:(4)将 再右移一位、得到 , 可计算出: (5)以此类推,m )(~2m x -)2(~2m x -3100001011121)2()(~)2(~521=⨯+⨯+⨯+⨯+⨯+⨯=-=∑=m m x m x y 4000001112111)3(~)(~)3(~521=⨯+⨯+⨯+⨯+⨯+⨯=-=∑=m m x m x y ,4)4(~=y 同样,可计算出:3)5(~=y3.频域卷积定理 如果 ,则§ 3-5 DFT--有限长序列的离散频域表示一.预备知识 1.余数运算表达式如果 ,m 为整数;则有:)(~n y n 13 4 4 )(~)(~)(~21n x n x n y =[]∑∑∑-=-=-=-=-===11210211)(~)(~1)(~)(~1)(~)(~)(~N l N l N n nk Nl k X l X Nl k X l X NW n y n y DFS k Y mN n n +=1101-≤≤N n ()()()1n n N =此运算符表示n 被N 除,商为m ,余数为 。