现代信号处理教程
- 格式:ppt
- 大小:447.50 KB
- 文档页数:23
- 230 -第8章 M 通道滤波器组8.1 M 通道滤波器组的基本关系图8.1.1是一个标准的M 通道滤波器组。
图8.1.1 M 通道滤波器组由第五章~第七章的讨论,我们不难得到图中各处信号之间的如下相互关系: ()()()k k X z X z H z = (8.1.1)1101111()()1 ()() (8.1.2)M lMk kM l M l lMMMk M l V z XW z M X Wz H W z M-=-===∑∑及 101()()()() M l lMk k Mk M l U z V z X zWH zW M-===∑ (8.1.3)滤波器组的最后输出111ˆ()()()1()()() (8.1.4)M k kk M M llM k M k l k X z G z U z X zW H zW G z M-=--====∑∑∑. . . ˆ()z (X- 231 -令 101()()() (8.1.5)M ll kM k k A z HzW G z M-==∑则 10ˆ()()() (8.1.6)M l l Ml X z A z X zW -==∑ 这样,最后的输出ˆ()X z 是()lMX zW 的加权和。
由于 (2/)()()j lj l M M z e X zW X e ωωπ-== (8.1.7)在0l ≠时是()j X e ω的移位,因此,ˆ()j Xe ω是()j X e ω及其移位的加权和。
由上一章的讨论可知,在0l ≠时,(2/)()j l M X e ωπ-是混迭分量,应想办法去除。
显然,若保证()0 1~1l A z l M ==- (8.1.8)则可以去除图8.1.1所示滤波器组中的混迭失真.再定义1001()()()()M kk k T z A z Hz G z M-==∑ (8.1.9)显然,()T z 是在去除混迭失真后整个系统的转移函数。
这时,ˆ()Xz 是否对()X z 产生幅度失真和相位失真就取决于()T z 的性能。
33及 ∑+==NL n nx x d 122),(α(1.7.8)此即信号正交分解的最小平方近似性质。
我们在有限项傅立叶级数的近似中曾经遇到过[19]。
现推导(1.7.7)及(1.7.8)两式。
将(1.7.6)式展开,有∑∑∑∑+-==jj Li i i nnn n x n x x x d 2122))()()((2|)(|),(βϕβ (1.7.9)将上式对k β求偏导,并使之为零,则有02)()(2),(2=+-=∑∂∂k n k x x d n n x kβϕβ及k nk k n n x αββ==∑)()(将此结果代入(1.7.9)式,即得(1.7.8)式。
若空间X 由向量N ϕϕϕ,......,,21张成,即},......,,{21N span X ϕϕϕ=,并有},......,,{211L span X ϕϕϕ=及},......,,{212N L L span X ϕϕϕ++=,我们称1X 和2X 是X 的子空间。
如果:1.021=X X ,即1X 和2X 没有交集;2.21X X X =,即X 是1X 和2X 的并集;这时,我们称X 是1X 和2X 的直和,记作:21X X X ⊕=(1.7.10)这些概念我们将在小波变换中用到。
性质5:将原始信号x 经正交变换后得到一组离散系数N ααα,......,,21。
这一组系数具有减少x 中各分量的相关性及将x 的能量集中于少数系数上的功能。
相关性去除的程度及能量集中的程度取决于所选择的基函数}{n ϕ的性质。
这一性质是信号与图像压缩编码的理论基础。
有关这一点,我们在本节还要继续讨论。
作为正交变换的最后一个性质,由于其重要性,我们现用定理的方式给出:定理 1.2:)(t ϕ是一个原型函数,其傅立叶变换为)(ΩΦ,若)}({k t -ϕ,Z k ∈是一组正交基,则34∑=+ΩΦkk 1|)2(|2π(1.7.11)若)(1k t -ϕ,)(2k t -ϕ是两组正交基,即0)(),(2211>=--<k t k t ϕϕ 21,k k ∀则0)2()2(*21=+Φ+Φ∑kk k πωπω(1.7.12)证明[13,21,8]:因为}),({Z k k t ∈-ϕ是一正交基,设x 是它构成空间中的一个元素,则x 可表示为)(k t -ϕ的线性组合,即∑-=kk k t a x )(ϕ(1.7.13)由性质3,有∑=kkax 22||||||,对(1.7.13)式两边作傅立叶变换,有∑∑⎰Ω-Ω-ΩΦ=-=Ωkjk k ktj k e a j dt ek t a j X )()()(ϕ(1.7.14)注意,该式是傅立叶变换(FT )和离散时间傅立叶变换(DTFT )的混合表达式。
81 为了看清图3.3.4中交叉项的行为,我们将该图作了旋转,因此,水平方向为频率,垂直方向为时间。
图3.3.3 例3.3.3的WVD 图3.3.4 例3.3.4的WVD例3.3.5 令 ()2142t x t e ααπ-⎛⎫= ⎪⎝⎭(3.3.5)可求出其WVD 为 ()22,2exp[]x W t t ααΩ=--Ω(3.3.6)这是一个二维的高斯函数,,且是恒正的,如图3.3.5所示。
()Ω,t W x 由该图可以看出,该高斯信号的WVD 的中心在处,峰值为2。
参数控()()0,0,=Ωt α制了WVD 在时间和频率方向上的扩展。
越大,在时域扩展越小,而在频域扩展越大,反α之亦然。
其WVD 的等高线为一椭圆。
当WVD 由峰值降到时,该椭圆的面积。
1-e π=A 它反映了时-频平面上的分辨率。
如果令 ,,则的谱图()2142t h t e ααπ-⎛⎫=⎪⎝⎭()2142t x t eββπ-⎛⎫= ⎪⎝⎭()t x ()⎥⎦⎤⎢⎣⎡Ω+-+-+=Ω2221exp 2,βαβααββααβt t STFT x82(3.3.7)图3.3.5 例3.3.5的WVD,(a )高斯信号,(b )高斯信号的WVD它也是时-频平面上的高斯函数。
当其峰值降到时,椭圆面积。
这一结果说明,1-e π2=A WVD 比STFT 有着更好的时-频分辨率。
如果令 ()()tj et t x t x 001Ω-=(3.3.8)式中是(3.3.5)式的高斯函数。
是的时移加调制,其WVD 是:()t x ()t x 1()t x (3.3.9)()12200,2exp[()()/]x W t t t ααΩ=---Ω-Ω它将(3.3.6)式的由移至处。
其WVD 图形请读者()Ω,t W x ()()0,0,=Ωt ()()00,,Ω=Ωt t 自己画出。
83例3.3.6令 ()2201422j tt j t z t ee e αβαπΩ-⎛⎫=⎪⎝⎭(3.3.10)它是由(3.3.5)式的与()t x ()202j t j t y t Aee βΩ=(3.3.11)相乘而得到的(在(3.3.9)式中,A=1)。
98第4章 Cohen 类时-频分布4.1 前言除了Wigner 分布和谱图以外,近几十年来人们还提出了很多其它具有双线性行式的时-频分布。
1966年,Cohen 给出了时-频分布的更一般表示形式[44]: ()()()()() ,:,⎰⎰⎰-Ω+-*-+=Ωθττθττπθτθd dud eg 2u x 2u x 21g t C u t j x (4.1.1)该式中共有五个变量,即t ,Ω,τ,θ和u ,它们的含义我们将在下一节解释。
式中()τθ,g 称为时-频分布的核函数,也可以理解为是加在原Wigner 分布上的窗函数。
给出不同的()τθ,g ,就可以得到不同类型的时-频分布。
通过后面的讨论可知,目前已提出的绝大部分具有双线性形式的时-频分布都可以看作是Cohen 类的成员。
通过对Cohen 类分布的讨论有助于我们更全面地理解时-频分布,深入地了解它们的性质,并提出改进诸如交叉项这些不足之处的方法。
在Cohen 类时-频分布的讨论及抑制交叉项的方法中,在雷达信号处理中广泛应用的模糊函数(Ambiguity Function, AF )起着重要的作用。
因此,本章首先给出模糊函数的定义及其与Wigner 分布的关系,然后讨论Cohen 类分布及其不同的成员。
在4.4节讨论为确保Cohen 类分布具有一系列好的性质而对()τθ,g 所提出的要求。
最后,在4.5节讨论核的设计问题。
文献[47]对非平稳信号的联合时-频分布给出了较为详细且是较为权威性的论述。
4.2 Wigner 分布与模糊函数令()t x 为一复信号,我们在第三章已定义()()()22τττ-+=*t x t x t r x , (4.2.1)为()t x 的瞬时自相关函数,并定义()τ,t r x 相对τ的傅立叶变换 ()()⎰Ω-=Ωτττd t r t W j x x ,, (4.2.2)为()t x 的WVD 。
除去特别说明,该式及以下各式中的积分均是从∞+∞-~。
203⎥⎦⎤⎢⎣⎡---=----)()()()(~01011010z H z z H z z H z H N N m Η (7.6.4b)利用(7.4.9b )的关系,有I ΗΗ210012~=⎥⎦⎤⎢⎣⎡=m m(7.6.5)这样,由(7.6.3)式,CQMFB 的分析滤波器组可以构成仿酉矩阵,其对应的系统也是仿酉系统。
由(7.6.4a )及(7.4.1)式有)1(2det ---=N m z Η(7.6.6)将这一结果代入(7.2.12)式,并令式中的k =0,则⎥⎦⎤⎢⎣⎡-----=--)()()()(0101)1(z H z H z H z H zN m G⎥⎦⎤⎢⎣⎡------=--------)()()()(2010)1(010)1()1(z H z H zz H z H z zN N N (7.6.7) 将(7.6.4a)及(7.6.7)代入(7.2.10)式,有X ΗG X T m m 21ˆ=X ⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡------=--------------)()()()()()()()(10)1(10)1(00010)1(010)1()1(z H z z H z z H z H z H z H zz H z H z zN N N N N X ⎥⎦⎤⎢⎣⎡-=--10012)1(2N z(7.6.8) 因此,实现了对X 的准确重建。
上面的结论说明,仿酉的调制矩阵m Η直接引出了对)(n x 的准确重建系统,也即CQMFB 。
由(7.6.7)式,可导出0G ,1G 和0H 的关系,即(7.4.2)式。
由上面的讨论可以看出,仿酉滤波器组总是包含了功率互补的关系。
需要指出的是,仿酉系统等效CQMFB ,可以实现准确重建。
但可实现准确重建的系统却并不一定是仿酉的。
现在利用上述讨论的结果来给出仿酉系统的多相表示形式。
记204)()()(20112000z E z z E z H -+= (7.6.9a ) )()()(21112101z E z z E z H -+=(7.6.9b ) )()()(20120010z R z R z z G +=- (7.6.9c ) )()()(21121011z R z R z z G +=-(7.6.9d )式中)(ij ij R E 的下标i 代表0H ,1H 的序号,j 代表多相结构的序号。
- 352 -第12章 双正交小波及小波包我们在上一章给出了正交小波的构造方法。
正交小波有许多好的性质,如)()(),(',,'k k t t k j k j -=δφφ,)()(),(',,'k k t t k j k j -=δψψ,0)(),(',,=t t k j k j ψφ ,此外,尺度函数和小波函数都是紧支撑的,有着高的消失矩等等。
Daubechies 给出的正交小波的构造方法可以方便的构造出所需要的小波(如DBN ,SymN ,CoifN)。
但是,正交小波也有不足之处,即)(t φ和)(t ψ都不是对称的,尽管SymN 和CoifN 接近于对称,但毕竟不是真正的对称,因此,这在实际的信号处理中将不可避免地带来相位失真。
)(t φ和)(t ψ的不对称性来自所使用的共轭正交滤波器组)(0z H 和)(1z H 的不对称性。
我们已在7.8节讨论了具有线性相位的双正交滤波器组的基本概念,给出了可准确重建的双正交滤波器组的设计方法。
本章,我们把这些内容引入到小波分析,给出适合小波变换的双正交滤波器组准确重建的条件,给出双正交条件下的多分辨率分析及双正交小波的构造方法,最后简要讨论小波包的基本概念12.1 双正交滤波器组现在,我们结合小波变换的需要来研究双正交滤波器组的内在关系及实现准确重建的条件。
所谓“小波变换的需要”是指在用)(0z H 对)(0z a 分解时需要将)(0z H 和)(1z H 的系数作时间上的翻转,即用的是)(10-z H 及)(11-z H ,或)()(00n h n h -=,)()(11n h n h -=,见(10.6.1)式及图10.6.2。
将图10.6.2的正变换和图10.6.3的反变换结合起来,我们可得到如图12.1.1所示的一级分解和重建的类似于两通道滤波器组的信号流图。
注意,图中用于重建的滤波器不再是图10.6.3中的)(0z H 和)(1z H ,而是)(ˆ0z H 和)(ˆ1z H ,它们分别是)(0z H 和)(1z H 的对偶滤波器。
现代信号处理教程-胡广书(清华)jtt2g t, g,ed qt2q(4.4.2)式中g t,由(4.3.7)式定义。
由(4.3.8)和(4.3.9)及上式结果,有Cx t,21jxu2xu2qt u2qt u2dued,则上式变成令u2,u2Cx t,1j x x qt qt ed d21j jx qt ed x qt ed(4.4.3)221Xq2于是结论得证。
式中Xq是x t乘上窗函数q t后的傅立叶变换。
该式说明,如果g,是某一函数的模糊函数,那么用此g,所得到的Cx t,等效于谱图。
因此,谱图也是Cohen类成员。
2.P1,实值性,即Cxt,R,t,,Q1:g,g,证明:由(4.1.1)式,t,Cx12j t u xu2xu2g,ed du d 令,,则上式变为t,Cx12j t uxu2xu2g,ed dud显然,如要求t,Cx t,,必有g,g,Cx3、时移:P2:若s t x t t0,则Cs t,Cx t t0,Q2: g,不决定于t证明:因为g 4、频移:,处于,域,和t无关,所以它不影响分布的时移性质;若sP3:t x t ej t,则Cs t,Cx t,0Q3:g,与无关性质P2与P3称为Cohen类时-频分布的“移不变”性质,它包含了时移和频移。
5、时间边缘条件,即12Ct,d xtP4:x2Q4:g,0 1证明:将(4.1.1)式两边对积分,有Cx t,d12j t uxu2xu2g,edud d dx u2x u2g,e j t u dud d x u g,0e j t u dud2欲使上式的积分等于x t,必有欲使该式成立,必有j(t u)g(,0)ed2(t u)01,也就是说,为保证C t,具有WVD的边界性质,g,xg,在轴上始终为1。
6、频率边缘条件,即P5: Q5:Cx t,dt Xg0, 12其证明请读者自己完成。
112前已述及,为了有限的抑制AF中远离,0,0的互项,希望g,应为,平面上的2-D低通函数。
现代信号处理教程-胡广书(清华)jtt2g t, g,ed qt2q(4.4.2)式中g t,由(4.3.7)式定义。
由(4.3.8)和(4.3.9)及上式结果,有Cx t,21jxu2xu2qt u2qt u2dued,则上式变成令u2,u2Cx t,1j x x qt qt ed d21j jx qt ed x qt ed(4.4.3)221Xq2于是结论得证。
式中Xq是x t乘上窗函数q t后的傅立叶变换。
该式说明,如果g,是某一函数的模糊函数,那么用此g,所得到的Cx t,等效于谱图。
因此,谱图也是Cohen类成员。
2.P1,实值性,即Cxt,R,t,,Q1:g,g,证明:由(4.1.1)式,t,Cx12j t u xu2xu2g,ed du d 令,,则上式变为t,Cx12j t uxu2xu2g,ed dud显然,如要求t,Cx t,,必有g,g,Cx3、时移:P2:若s t x t t0,则Cs t,Cx t t0,Q2: g,不决定于t证明:因为g 4、频移:,处于,域,和t无关,所以它不影响分布的时移性质;若sP3:t x t ej t,则Cs t,Cx t,0Q3:g,与无关性质P2与P3称为Cohen类时-频分布的“移不变”性质,它包含了时移和频移。
5、时间边缘条件,即12Ct,d xtP4:x2Q4:g,0 1证明:将(4.1.1)式两边对积分,有Cx t,d12j t uxu2xu2g,edud d dx u2x u2g,e j t u dud d x u g,0e j t u dud2欲使上式的积分等于x t,必有欲使该式成立,必有j(t u)g(,0)ed2(t u)01,也就是说,为保证C t,具有WVD的边界性质,g,xg,在轴上始终为1。
6、频率边缘条件,即P5: Q5:Cx t,dt Xg0, 12其证明请读者自己完成。
112前已述及,为了有限的抑制AF中远离,0,0的互项,希望g,应为,平面上的2-D低通函数。
48第2章 短时傅立叶变换2.1连续信号的短时傅立叶变换我们在1.1节中已指出,由于在实际工作中所遇到的信号往往是时变的,即信号的频率在随时间变化,而传统的傅立叶变换,由于其基函数是复正弦,缺少时域定位的功能,因此傅立叶变换不适用于时变信号。
信号分析和处理的一个重要任务,一方面是要了解信号所包含的频谱信息,另一方面还希望知道不同频率所出现的时间。
早在1946年,Gabor 就提出了短时傅立叶变换(Short Time Fourier Transform ,STFT )的概念,用以测量声音信号的频率定位[64]。
给定一信号)()(2R L t x ∈,其STFT 定义为>-=<-==ΩΩΩ-Ω⎰⎰ττττττττττj j t x et g x d et g x d g x t STFT )(),()()()()(),(**,(2.1.1)式中τττΩΩ-=j t et g g )()(,(2.1.2) 及1||)(||=τg ,1||)(||,=Ωτt g并且窗函数)(τg 应取对称函数。
STFT 的含义可解释如下:在时域用窗函数)(τg 去截)(τx (注:将)(t x ,)(t g 的时间变量换成τ),对截下来的局部信号作傅立叶变换,即得在t 时刻得该段信号得傅立叶变换。
不断地移动t ,也即不断地移动窗函数)(τg 的中心位置,即可得到不同时刻的傅立叶变换。
这些傅立叶变换的集合,即是),(Ωt STFT x ,如图2.1.1所示。
显然,),(Ωt STFT x 是变量),(Ωt 的二维函数。
由于)(τg 是窗函数,因此它在时域应是有限支撑的,又由于τΩj e在频域是线谱,所以STFT 的基函数ττΩ-j et g )(在时域和频域都应是有限支撑的。
这样,(2.1.1)式内积的结果即可实现对)(t x 进行时-频定位的功能。
当然,我们自然要关心这一变换时域及频域的分辨49率。
对(2.1.2)式两边作傅立叶变换,有 ⎰-ΩΩ-=ττυυττd e e t g G j j t )()(,⎰''='Ω--Ω--t d e t g et j tj )()()(υυ t j e G )()(Ω--Ω-=υυ (2.1.3)式中υ是和Ω等效的频率变量。
第7章两通道滤波器组7.1 两通道滤波器组中各信号的关系第6.1节已提及,滤波器组分为分析滤波器组和综合滤波器组。
分析滤波器组将分成M个子带信号。
若M=2,则分析滤波器组由一个低通滤波器和一个高通滤波器所组成,它们把分成了一个低通信号和一个高通信号。
我们可依据这两个子带信号所具有的能量的不同,也即“重要性”的不同而分别给以不同的对待及处理。
例如,分别赋以不同的字长来实现信号的编码及压缩,或是别的处理。
处理后的信号经传输后再由综合滤波器组重建出原信号。
由于分析滤波器组将原信号的带宽压缩为1/M,因此,对每一个子带信号均可作M倍的抽取,从而将抽样率减低M倍。
这样可减小编码和处理的计算量,同时,在硬件实现时也可以降低对系统性能的要求,从而降低成本。
在综合滤波器组前面,再作M倍的插值,以得到和原信号相同的抽样率。
一个两通道滤波器组如图7.1.1所示。
图7.1.1 两通道滤波器组如果,或,式中和为常数,我们称是对的“准确重建(Perfect Reconstruction,PR)”。
本节首先讨论图7.1.1中各信号间的关系,然后讨论实现准确重建的途径。
也即,如何确定,,和才能去除混叠失真,幅度失真及相位失真。
由图7.1.1及第五章关于抽取与插值的输入、输出关系,对图中的分析滤波器组,有:,( 7.1.1a )_(7.1.1b)即:(7.1.2)对综合滤波器组,有:而,所以(7.1.3)将(7.1.2)式代入(7.1.3)式,有:(7.1.4)该式给出了和及分析滤波器组,综合滤波器组之间的关系(i=0,1)。
将(7.1.4)式展开,有:令(7.1.5a)(7.1.5b)则(7.1.6)由于是移位后的结果,因此它是混叠分量。
显然,若令,则可有效的去除混叠失真,这样:(7.1.7)反应了去除混叠失真后的两通道滤波器组的总的传输特性。
系统的幅度失真及相位失真均与有关,因此又称“失真传递函数(distortion transfer function)”。